
Package ‘SCDB’
January 23, 2026

Type Package

Title Easily Access and Maintain Time-Based Versioned Data
(Slowly-Changing-Dimension)

Version 0.6.0

Description
A collection of functions that enable easy access and updating of a database of data over time.
More specifically, the package facilitates type-2 history for data-
warehouses and provides a number
of Quality of life improvements for working on SQL databases with R.
For reference see Ralph Kimball and Margy Ross (2013, ISBN 9781118530801).

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>= 3.6.0)

Imports checkmate, DBI, dbplyr (>= 2.4.0), dplyr, glue, lubridate,
methods, openssl, parallelly, purrr, rlang, R6, stringr, tidyr,
tidyselect, utils, magrittr

Suggests callr, conflicted, devtools, duckdb (>= 0.10.1), ggplot2,
here, jsonlite, knitr, lintr, microbenchmark, odbc, pak,
rmarkdown, roxygen2, pkgdown, RPostgres, RSQLite, spelling,
testthat (>= 3.0.0), tibble, tidyverse, withr

Language en-US

URL https://github.com/ssi-dk/SCDB, https://ssi-dk.github.io/SCDB/

Config/testthat/edition 3

BugReports https://github.com/ssi-dk/SCDB/issues

VignetteBuilder knitr

NeedsCompilation no

Author Rasmus Skytte Randløv [aut, cre, rev] (ORCID:
<https://orcid.org/0000-0002-5860-3838>),

Marcus Munch Grünewald [aut] (ORCID:

1

https://github.com/ssi-dk/SCDB
https://ssi-dk.github.io/SCDB/
https://github.com/ssi-dk/SCDB/issues
https://orcid.org/0000-0002-5860-3838

2 Contents

<https://orcid.org/0009-0006-8090-406X>),
Lasse Engbo Christiansen [rev, ctb] (ORCID:

<https://orcid.org/0000-0001-5019-1931>),
Sofia Myrup Otero [rev],
Kim Daniel Jacobsen [ctb],
Statens Serum Institut [cph, fnd]

Maintainer Rasmus Skytte Randløv <rske@ssi.dk>

Repository CRAN

Date/Publication 2026-01-23 16:00:23 UTC

Contents

close_connection . 3
create_index . 3
create_logs_if_missing . 4
create_table . 5
db_locks . 5
db_timestamp . 6
defer_db_cleanup . 7
delta_loading . 8
digest_to_checksum . 10
filter_keys . 11
get_catalog . 12
get_connection . 14
get_table . 16
get_tables . 17
id . 18
interlace . 19
is.historical . 20
joins . 21
Logger . 23
LoggerNull . 26
nrow . 28
schema_exists . 28
slice_time . 29
table_exists . 30
unique_table_name . 31
unite.tbl_dbi . 31
update_snapshot . 32

Index 36

https://orcid.org/0009-0006-8090-406X
https://orcid.org/0000-0001-5019-1931

close_connection 3

close_connection Close connection to the database

Description

Close connection to the database

Usage

close_connection(conn)

Arguments

conn (DBIConnection(1))
Connection object.

Value

dbDisconnect() returns TRUE, invisibly.

Examples

conn <- get_connection()

close_connection(conn)

create_index Create the indexes on table

Description

Create the indexes on table

Usage

create_index(conn, db_table, columns)

Arguments

conn (DBIConnection)
A connection to a database.

db_table (id-like object(1))
A table specification (coercible by id()).

columns (character())
The columns that should be unique.

4 create_logs_if_missing

Value

NULL (called for side effects)

Examples

conn <- get_connection()

mt <- dplyr::copy_to(conn, dplyr::distinct(mtcars, .data$mpg, .data$cyl), name = "mtcars")
create_index(conn, mt, c("mpg", "cyl"))

close_connection(conn)

create_logs_if_missing

Create a table with the SCDB log structure if it does not exists

Description

Create a table with the SCDB log structure if it does not exists

Usage

create_logs_if_missing(conn, log_table)

Arguments

conn (DBIConnection(1))
Connection object.

log_table (id-like object)
A table specification where the logs should exist (coercible by id()).

Value

Invisibly returns the generated (or existing) log table.

Examples

conn <- get_connection()
log_table <- id("test.logs", conn = conn, allow_table_only = TRUE)

create_logs_if_missing(conn, log_table)

close_connection(conn)

create_table 5

create_table Create a historical table from input data

Description

Create a historical table from input data

Usage

create_table(.data, conn = NULL, db_table, ...)

Arguments

.data (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
Data object.

conn (DBIConnection(1))
Connection object.

db_table (id-like object(1))
A table specification (coercible by id()).

... Other arguments passed to DBI::dbCreateTable().

Value

Invisibly returns the table as it looks on the destination (or locally if conn is NULL).

Examples

conn <- get_connection()

create_table(mtcars, conn = conn, db_table = "mtcars")

close_connection(conn)

db_locks Sets, queries and removes locks for database tables

Description

This set of function adds a simple locking system to database tables.

• lock_table() adds a record in the schema.locks table with the current time and R-session
process id.

• unlock_table() removes records in the schema.locks table with the target table and the R-
session process id.

6 db_timestamp

When locking a table, the function will check for existing locks on the table and produce an error
a lock is held by a process which no longer exists. In this case, the lock needs to be removed
manually by removing the record from the lock table. In addition, the error implies that a table may
have partial updates that needs to be manually rolled back.

Usage

lock_table(conn, db_table, schema = NULL)

unlock_table(conn, db_table, schema = NULL, pid = Sys.getpid())

Arguments

conn (DBIConnection(1))
Connection object.

db_table (character(1))
A specification of "schema.table" to modify lock for.

schema (character(1))
The schema where the "locks" table should be created.

pid (numeric(1))
The process id to remove the lock for.

Value

• lock_table() returns the TRUE (FALSE) if the lock was (un)successfully added. If a lock
exists for a non-active process, an error is thrown.

• unlock_table() returns NULL (called for side effects).

Examples

conn <- DBI::dbConnect(RSQLite::SQLite())

lock_table(conn, "test_table") # TRUE

unlock_table(conn, "test_table")

DBI::dbDisconnect(conn)

db_timestamp Determine the type of timestamps the database supports

Description

Determine the type of timestamps the database supports

defer_db_cleanup 7

Usage

db_timestamp(timestamp, conn = NULL)

Arguments

timestamp (POSIXct(1) or character(1))
The timestamp to be transformed to the database type.

conn (DBIConnection(1))
Connection object.

Value

The given timestamp converted to a SQL-backend dependent timestamp.

Examples

conn <- get_connection()

db_timestamp(Sys.time(), conn)

close_connection(conn)

defer_db_cleanup Delete table at function exit

Description

This function marks a table for deletion once the current function exits.

Usage

defer_db_cleanup(db_table)

Arguments

db_table (tbl_sql)
A unmanipulated reference to a sql table.

Value

NULL (called for side effects)

8 delta_loading

Examples

conn <- get_connection()

mt <- dplyr::copy_to(conn, mtcars)
id_mt <- id(mt)

defer_db_cleanup(mt)

DBI::dbExistsTable(conn, id_mt) # TRUE

withr::deferred_run()

DBI::dbExistsTable(conn, id_mt) # FALSE

close_connection(conn)

delta_loading Import and export a data-chunk with history from historical data

Description

delta_export() exports data from tables created with update_snapshot() in chunks to allow for
faster migration of data between sources.

delta_load() import deltas created by delta_export() to rebuild a historical table.

Usage

delta_export(conn, db_table, timestamp_from, timestamp_until = NULL)

delta_load(conn, db_table, delta, logger = NULL)

Arguments

conn (DBIConnection(1))
Connection object.

db_table (id-like object(1))
A table specification (coercible by id()).

timestamp_from (POSIXct(1), Date(1), or character(1))
The timestamp describing the start of the export (including).

timestamp_until

(POSIXct(1), Date(1), or character(1))
The timestamp describing the end of the export (not-including).
If NULL (default), all history after timestamp_from is exported.

delta .data (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
A "delta" exported from delta_export() to load.
A list of "deltas" can also be supplied.

delta_loading 9

logger (Logger(1))
A configured logging object. If none is given, one is initialized with default
arguments.

Details

This pair of functions is designed to facilitate easy migration or incremental backups of a historical
table (created by update_snapshot()).

To construct the basis of incremental backups, delta_export() can be called with only timestamp_from
at the desired frequency (weekly etc.)

To migrate a historical table in chunks, delta_export() can be called with timestamp_until to
constrain the size of the delta.

In either case, the table can then be re-constructed by "replaying" the deltas with delta_load().
The order the deltas are replayed does not matter, but all have to be replayed to achieve the same
state as the source table.

Value

delta_export() returns a lazy-query containing the data (and history) in the source to be used in
conjunction with delta_load().

This table is a temporary table that may need cleaning up.

delta_load() returns NULL (called for side effects).

See Also

update_snapshot

Examples

conn <- get_connection()

data <- dplyr::copy_to(conn, mtcars)

Copy the first 3 records
update_snapshot(

head(data, 3),
conn = conn,
db_table = "test.mtcars",
timestamp = "2020-01-01"

)

Create a delta with the current state
delta <- delta_export(

conn,
db_table = "test.mtcars",
timestamp_from = "2020-01-01"

)

Update with the first 5 records

10 digest_to_checksum

update_snapshot(
head(data, 5),
conn = conn,
db_table = "test.mtcars",
timestamp = "2021-01-01"

)

dplyr::tbl(conn, "test.mtcars")

Create a backup using the delta
delta_load(

conn = conn,
db_table = "test.mtcars_backup",
delta = delta

)

dplyr::tbl(conn, "test.mtcars_backup")

close_connection(conn)

digest_to_checksum Computes an checksum from columns

Description

Computes an checksum from columns

Usage

digest_to_checksum(.data, col = "checksum", exclude = NULL, warn = TRUE)

Arguments

.data (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
Data object.

col (character(1))
Name of the column to put the checksums in. Will be generated if missing.

exclude (character())
Columns to exclude from the checksum generation.

warn (logical(1))
Warn if col exists in the input data?

Details

In most cases, the md5 algorithm is used to compute the checksums. For Microsoft SQL Server,
the SHA-256 algorithm is used.

filter_keys 11

Value

.data with a checksum column added.

Examples

digest_to_checksum(mtcars)

filter_keys Filters .data according to all records in the filter

Description

If filters is NULL, no filtering is done. Otherwise, the .data object is filtered via an inner_join()
using all columns of the filter: inner_join(.data, filter, by = colnames(filter))

by and na_by can overwrite the inner_join() columns used in the filtering.

Usage

filter_keys(.data, filters, by = NULL, na_by = NULL, ...)

Arguments

.data (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
Data object.

filters (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
A object subset data by. If filters is NULL, no filtering occurs. Otherwise, an
inner_join() is performed using all columns of the filter object.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

12 get_catalog

na_by (character())
Columns where NA should match with NA.

... Further arguments passed to dplyr::inner_join().

Value

An object of same class as .data

Examples

Filtering with null means no filtering is done
filter <- NULL
identical(filter_keys(mtcars, filter), mtcars) # TRUE

Filtering by vs = 0
filter <- data.frame(vs = 0)
identical(filter_keys(mtcars, filter), dplyr::filter(mtcars, vs == 0)) # TRUE

Filtering by the specific combinations of vs = 0 and am = 1
filter <- dplyr::distinct(mtcars, vs, am)
filter_keys(mtcars, filter)

get_catalog Get the current schema/catalog of a database-related objects

Description

Get the current schema/catalog of a database-related objects

Usage

get_catalog(obj, ...)

S3 method for class '`Microsoft SQL Server`'
get_catalog(obj, temporary = FALSE, ...)

get_schema(obj, ...)

S3 method for class 'PqConnection'
get_schema(obj, temporary = FALSE, ...)

S3 method for class 'SQLiteConnection'
get_schema(obj, temporary = FALSE, ...)

get_catalog 13

Arguments

obj (DBIConnection(1), tbl_dbi(1), Id(1))
The object from which to retrieve a schema/catalog.

... Further arguments passed to methods.

temporary (logical(1))
Should the reference be to the temporary schema/catalog?

Value

The catalog is extracted from obj depending on the type of input:

• For get_catalog.Microsoft SQL Server, the current database context of the connection or
"tempdb" if temporary = TRUE.

• For get_schema.tbl_dbi the catalog is determined via id().

• For get_catalog.*, NULL is returned.

The schema is extracted from obj depending on the type of input:

• For get_schema.DBIConnection(), the current schema of the connection if temporary =
FALSE. See "Default schema" for more. If temporary = TRUE, the temporary schema of the
connection is returned.

• For get_schema.tbl_dbi() the schema is determined via id().

• For get_schema.Id(), the schema is extracted from the Id specification.

Default schema

In some backends, it is possible to modify settings so that when a schema is not explicitly stated in
a query, the backend searches for the table in this schema by default. For Postgres databases, this can
be shown with SELECT CURRENT_SCHEMA() (defaults to public) and modified with SET search_path TO { schema }.

For SQLite databases, a temp schema for temporary tables always exists as well as a main schema
for permanent tables. Additional databases may be attached to the connection with a named schema,
but as the attachment must be made after the connection is established, get_schema will never
return any of these, as the default schema will always be main.

Examples

conn <- get_connection()

dplyr::copy_to(conn, mtcars, name = "mtcars", temporary = FALSE)

get_schema(conn)
get_schema(get_table(conn, id("mtcars", conn = conn)))

get_catalog(conn)
get_catalog(get_table(conn, id("mtcars", conn = conn)))

close_connection(conn)

14 get_connection

get_connection Opens connection to the database

Description

This is a convenience wrapper for DBI::dbConnect() for different database backends.

Connects to the specified dbname of host:port using user and password from given arguments (if
applicable). Certain drivers may use credentials stored in a file, such as ~/.pgpass (PostgreSQL).

Usage

get_connection(drv, ...)

S3 method for class 'SQLiteDriver'
get_connection(
drv,
dbname = ":memory:",
...,
bigint = c("integer", "bigint64", "numeric", "character")

)

S3 method for class 'PqDriver'
get_connection(
drv,
dbname = NULL,
host = NULL,
port = NULL,
password = NULL,
user = NULL,
...,
bigint = c("integer", "bigint64", "numeric", "character"),
check_interrupts = TRUE,
timezone = Sys.timezone(),
timezone_out = Sys.timezone()

)

S3 method for class 'OdbcDriver'
get_connection(
drv,
dsn = NULL,
...,
bigint = c("integer", "bigint64", "numeric", "character"),
timezone = Sys.timezone(),
timezone_out = Sys.timezone()

)

get_connection 15

S3 method for class 'duckdb_driver'
get_connection(
drv,
dbdir = ":memory:",
...,
bigint = c("numeric", "character"),
timezone_out = Sys.timezone()

)

Default S3 method:
get_connection(drv, ...)

Arguments

drv (DBIDriver(1) or DBIConnection(1))
The driver for the connection (defaults to SQLiteDriver).

... Additional parameters sent to DBI::dbConnect().

dbname (character(1))
Name of the database located at the host.

bigint (character(1))
The datatype to convert integers to. Support depends on the database backend.

host (character(1))
The ip of the host to connect to.

port (numeric(1) or character(1))
Host port to connect to.

password (character(1))
Password to login with.

user (character(1))
Username to login with.

check_interrupts

(logical(1))
Should user interrupts be checked during the query execution?

timezone (character(1))
Sets the timezone of DBI::dbConnect(). Must be in OlsonNames().

timezone_out (character(1))
Sets the timezone_out of DBI::dbConnect(). Must be in OlsonNames().

dsn (character(1))
The data source name to connect to.

dbdir (character(1))
The directory where the database is located.

Value

An object that inherits from DBIConnection driver specified in drv.

16 get_table

See Also

RSQLite::SQLite

RPostgres::Postgres

odbc::odbc

duckdb::duckdb

Examples

conn <- get_connection(drv = RSQLite::SQLite(), dbname = ":memory:")

DBI::dbIsValid(conn) # TRUE

close_connection(conn)

DBI::dbIsValid(conn) # FALSE

get_table Retrieves a named table from a given schema on the connection

Description

Retrieves a named table from a given schema on the connection

Usage

get_table(conn, db_table = NULL, slice_ts = NA, include_slice_info = FALSE)

Arguments

conn (DBIConnection(1))
Connection object.

db_table (id-like object(1))
A table specification (coercible by id()). If missing, a list of available tables is
printed.

slice_ts (POSIXct(1), Date(1), or character(1))
If set different from NA (default), the returned data looks as on the given date. If
set as NULL, all data is returned.

include_slice_info

(logical(1))
Should the history columns "checksum", "from_ts", "until_ts" are also be re-
turned?

get_tables 17

Value

A "lazy" data.frame (tbl_lazy) generated using dbplyr.

Note that a temporary table will be preferred over ordinary tables in the default schema (see
get_schema()) with an identical name.

Examples

conn <- get_connection()

dplyr::copy_to(conn, mtcars, name = "mtcars", temporary = FALSE)

get_table(conn)
if (table_exists(conn, "mtcars")) {

get_table(conn, "mtcars")
}

close_connection(conn)

get_tables List the available tables on the connection

Description

List the available tables on the connection

Usage

get_tables(conn, pattern = NULL, show_temporary = TRUE)

Arguments

conn (DBIConnection(1))
Connection object.

pattern (character(1))
Regex pattern with which to subset the returned tables.

show_temporary (logical(1))
Should temporary tables be listed?

Value

A data.frame containing table names including schema (and catalog when available) in the database.

18 id

Examples

conn <- get_connection()

dplyr::copy_to(conn, mtcars, name = "my_test_table_1", temporary = FALSE)
dplyr::copy_to(conn, mtcars, name = "my_test_table_2")

get_tables(conn, pattern = "my_[th]est")
get_tables(conn, pattern = "my_[th]est", show_temporary = FALSE)

close_connection(conn)

id Convenience function for DBI::Id

Description

Convenience function for DBI::Id

Usage

id(db_table, ...)

S3 method for class 'Id'
id(db_table, conn = NULL, ...)

S3 method for class 'character'
id(db_table, conn = NULL, allow_table_only = TRUE, ...)

S3 method for class 'data.frame'
id(db_table, ...)

Arguments

db_table (id-like object(1))
A table specification (coercible by id()).

... Further arguments passed to methods.

conn (DBIConnection(1))
Connection object.

allow_table_only

(logical(1))
If TRUE, allows for returning an DBI::Id with table = "myschema.table" if
schema "myschema" is not found in conn. If FALSE, the function will raise an
error if the implied schema cannot be found in conn.

interlace 19

Details

The given db_table is parsed to a DBI::Id depending on the type of input:

• character: db_table is parsed to a DBI::Id object using an assumption of "schema.table"
syntax with corresponding schema (if found in conn) and table values. If no schema is implied,
the default schema of conn will be used.

• DBI::Id: if schema is not specified in Id, the schema is set to the default schema for conn (if
given).

• tbl_sql: the remote name is used to resolve the table identification.
• data.frame: A Id is built from the data.frame (columns catalog, schema, and table). Can

be used in conjunction with get_tables(conn, pattern).

Value

A DBI::Id object parsed from db_table (see details).

See Also

DBI::Id which this function wraps.

Examples

id("schema.table")

interlace Combine any number of tables, where each has their own time axis of
validity

Description

The function "interlaces" the queries and combines their validity time axes (valid_from and valid_until)
onto a single time axis.

Usage

interlace(tables, by = NULL, colnames = NULL)

Arguments

tables (list(tbl_dbi(1)))
The historical tables to combine.

by (character())
The variable to merge by.

colnames (named list())
If the time axes of validity is not called "valid_to" and "valid_until" inside each
tbl_dbi, you can specify their names by supplying the arguments as a list: e.g.
c(t1.from = "\<colname\>", t2.until = "\<colname\>"). colnames must be named
in same order as as given in tables (i.e. t1, t2, t3, ...).

20 is.historical

Value

The combination of input queries with a single, interlaced valid_from / valid_until time axis.

The combination of input queries with a single, interlaced
valid_from / valid_until time axis

Examples

conn <- get_connection()

t1 <- data.frame(key = c("A", "A", "B"),
obs_1 = c(1, 2, 2),
valid_from = as.Date(c("2021-01-01", "2021-02-01", "2021-01-01")),
valid_until = as.Date(c("2021-02-01", "2021-03-01", NA)))

t1 <- dplyr::copy_to(conn, df = t1, name = "t1")

t2 <- data.frame(key = c("A", "B"),
obs_2 = c("a", "b"),
valid_from = as.Date(c("2021-01-01", "2021-01-01")),
valid_until = as.Date(c("2021-04-01", NA)))

t2 <- dplyr::copy_to(conn, df = t2, name = "t2")

interlace(list(t1, t2), by = "key")

close_connection(conn)

is.historical Checks if table contains historical data

Description

Checks if table contains historical data

Usage

is.historical(.data)

Arguments

.data (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
Data object.

Value

TRUE if .data contains the columns: "checksum", "from_ts", and "until_ts". FALSE otherwise.

joins 21

Examples

conn <- get_connection()

dplyr::copy_to(conn, mtcars, name = "mtcars", temporary = FALSE)
create_table(mtcars, conn, db_table = id("mtcars_historical", conn))

is.historical(get_table(conn, "mtcars")) # FALSE
is.historical(get_table(conn, "mtcars_historical")) # TRUE

close_connection(conn)

joins SQL Joins

Description

Overloads the dplyr *_join to accept an na_by argument. By default, joining using SQL does
not match on NA / NULL. dbplyr *_joins has the option "na_matches = na" to match on NA / NULL
but this is very inefficient in some cases. This function does the matching more efficiently: If a
column contains NA / NULL, the names of these columns can be passed via the na_by argument and
efficiently match as if "na_matches = na". If no na_by argument is given is given, the function
defaults to using dplyr::*_join.

Usage

S3 method for class 'tbl_sql'
inner_join(x, y, by = NULL, ...)

S3 method for class 'tbl_sql'
left_join(x, y, by = NULL, ...)

S3 method for class 'tbl_sql'
right_join(x, y, by = NULL, ...)

S3 method for class 'tbl_sql'
full_join(x, y, by = NULL, ...)

S3 method for class 'tbl_sql'
semi_join(x, y, by = NULL, ...)

S3 method for class 'tbl_sql'
anti_join(x, y, by = NULL, ...)

Arguments

x, y A pair of lazy data frames backed by database queries.

22 joins

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

... Other parameters passed onto methods.

Value

Another tbl_lazy. Use show_query() to see the generated query, and use collect() to execute
the query and return data to R.

See Also

dplyr::mutate-joins which this function wraps.

dbplyr::join.tbl_sql which this function wraps.

dplyr::show_query

Examples

library(dplyr, warn.conflicts = FALSE)
library(dbplyr, warn.conflicts = FALSE)

band_db <- tbl_memdb(dplyr::band_members)
instrument_db <- tbl_memdb(dplyr::band_instruments)

left_join(band_db, instrument_db) %>%
show_query()

Can join with local data frames by setting copy = TRUE
left_join(band_db, dplyr::band_instruments, copy = TRUE)

Unlike R, joins in SQL don't usually match NAs (NULLs)
db <- memdb_frame(x = c(1, 2, NA))
label <- memdb_frame(x = c(1, NA), label = c("one", "missing"))
left_join(db, label, by = "x")

Logger 23

But you can activate R's usual behaviour with the na_matches argument
left_join(db, label, by = "x", na_matches = "na")

By default, joins are equijoins, but you can use `sql_on` to
express richer relationships
db1 <- memdb_frame(x = 1:5)
db2 <- memdb_frame(x = 1:3, y = letters[1:3])

left_join(db1, db2) %>% show_query()
left_join(db1, db2, sql_on = "LHS.x < RHS.x") %>% show_query()

Logger Logger: Complete logging to console, file and database

Description

The Logger class facilitates logging to a database and/or file and to console.

A Logger is associated with a specific table and timestamp which must be supplied at initialization.
This information is used to create the log file (if a log_path is given) and the log entry in the
database (if a log_table_id and log_conn is given).

Logging to the database must match the fields in the log table.

Value

A new instance of the Logger R6 class.

Active bindings

output_to_console (logical(1))
Should the Logger output to console? Read only. This can always be overridden by Log-
ger$log_info(..., output_to_console = FALSE).

log_path (character(1))
The location log files are written (if this is not NULL). Defaults to getOption("SCDB.log_path").
Read only.

log_tbl (tbl_dbi(1))
The database table used for logging. Class is connection-specific, but inherits from tbl_dbi.
Read only.

start_time (POSIXct(1))
The time at which data processing was started. Read only.

log_filename (character(1))
The filename (basename) of the file that the Logger instance will output to. Read only.

log_realpath (character(1))
The full path to the logger’s log file. Read only.

24 Logger

Methods

Public methods:
• Logger$new()

• Logger$set_timestamp()

• Logger$log_info()

• Logger$log_warn()

• Logger$log_error()

• Logger$log_to_db()

• Logger$finalize_db_entry()

• Logger$clone()

Method new(): Create a new Logger object

Usage:
Logger$new(
db_table = NULL,
timestamp = NULL,
output_to_console = TRUE,
log_table_id = getOption("SCDB.log_table_id"),
log_conn = NULL,
log_path = getOption("SCDB.log_path"),
start_time = Sys.time(),
warn = TRUE

)

Arguments:

db_table (id-like object(1))
A table specification (coercible by id()) specifying the table being updated.

timestamp (POSIXct(1), Date(1), or character(1))
A timestamp describing the data being processed (not the current time).

output_to_console (logical(1))
Should the Logger output to console?

log_table_id (id-like object(1))
A table specification (coercible by id()) specifying the location of the log table.

log_conn (DBIConnection(1))
A database connection where log table should exist.

log_path (character(1))
The path where logs are stored. If NULL, no file logs are created.

start_time (POSIXct(1))
The time at which data processing was started (defaults to Sys.time()).

warn (logical(1))
Should a warning be produced if no logging will be done?

Method set_timestamp(): Update the timestamp being logged

Usage:
Logger$set_timestamp(timestamp)

Logger 25

Arguments:
timestamp (POSIXct(1), Date(1), or character(1))

A timestamp describing the data being processed (not the current time).

Method log_info(): Write a line to log (console / file).

Usage:
Logger$log_info(
...,
tic = Sys.time(),
output_to_console = self$output_to_console,
log_type = "INFO",
timestamp_format = getOption("SCDB.log_timestamp_format", "%F %R:%OS3")

)

Arguments:
... (character())

Character strings to be concatenated as log message.
tic (POSIXct(1))

The timestamp used by the log entry.
output_to_console (logical(1))

Should the line be written to console?
log_type (character(1))

The severity of the log message.
timestamp_format (character(1))

The format of the timestamp used in the log message (parsable by strftime()).

Returns: Returns the log message invisibly

Method log_warn(): Write a warning to log file and generate warning.

Usage:
Logger$log_warn(..., log_type = "WARNING")

Arguments:
... (character())

Character strings to be concatenated as log message.
log_type (character(1))

The severity of the log message.

Method log_error(): Write an error to log file and stop execution.

Usage:
Logger$log_error(..., log_type = "ERROR")

Arguments:
... (character())

Character strings to be concatenated as log message.
log_type (character(1))

The severity of the log message.

Method log_to_db(): Write or update log table.

26 LoggerNull

Usage:
Logger$log_to_db(...)

Arguments:

... (Name-value pairs)
Structured data written to database log table. Name indicates column and value indicates
value to be written.

Method finalize_db_entry(): Auto-fills "end_time" and "duration" for the log entry and
clears the "log_file" field if no file is being written.

Usage:
Logger$finalize_db_entry(end_time = Sys.time())

Arguments:

end_time (POSIXct(1), Date(1), or character(1))
The end time for the log entry.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Logger$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

logger <- Logger$new(
db_table = "test.table",
timestamp = "2020-01-01 09:00:00"

)

logger$log_info("This is an info message")
logger$log_to_db(message = "This is a message")

try(logger$log_warn("This is a warning!"))
try(logger$log_error("This is an error!"))

LoggerNull LoggerNull: The no-logging Logger

Description

The LoggerNull class overwrites the functions of the Logger so no logging is produced. Errors
and warnings are still produced.

Value

A new instance of the LoggerNull R6 class.

LoggerNull 27

Super class

SCDB::Logger -> LoggerNull

Methods

Public methods:
• LoggerNull$new()

• LoggerNull$log_to_db()

• LoggerNull$finalize_db_entry()

• LoggerNull$clone()

Method new(): Create a new LoggerNull object

Usage:
LoggerNull$new(...)

Arguments:
... Captures arguments given, but does nothing

Method log_to_db(): Matches the signature of Logger$log_to_db(), but does nothing.

Usage:
LoggerNull$log_to_db(...)

Arguments:
... Captures arguments given, but does nothing

Method finalize_db_entry(): Matches the signature of Logger$finalize_db_entry(), but
does nothing.

Usage:
LoggerNull$finalize_db_entry(...)

Arguments:
... Captures arguments given, but does nothing

Method clone(): The objects of this class are cloneable with this method.

Usage:
LoggerNull$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

logger <- LoggerNull$new()

logger$log_info("This message will not print!")
logger$log_to_db(message = "This message will no be written in database!")
try(logger$log_warn("This is a warning!"))
try(logger$log_error("This is an error!"))

28 schema_exists

nrow nrow() but also works on remote tables

Description

nrow() but also works on remote tables

Usage

nrow(.data)

Arguments

.data (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
Data object.

Value

The number of records in the object.

Examples

conn <- get_connection()

m <- dplyr::copy_to(conn, mtcars)
nrow(m) == nrow(mtcars) # TRUE

close_connection(conn)

schema_exists Test if a schema exists in given connection

Description

Test if a schema exists in given connection

Usage

schema_exists(conn, schema)

Arguments

conn (DBIConnection(1))
Connection object.

schema (character(1))
The schema name to test existence for.

slice_time 29

Value

TRUE if the given schema is found on conn.

Examples

conn <- get_connection()

schema_exists(conn, "test")

close_connection(conn)

slice_time Slices a data object based on time / date

Description

Slices a data object based on time / date

Usage

slice_time(.data, slice_ts, from_ts = "from_ts", until_ts = "until_ts")

Arguments

.data (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
Data object.

slice_ts (POSIXct(1), Date(1), or character(1))
The time / date to slice by.

from_ts, until_ts
(character(1))
The name of the columns in .data specifying valid from and valid until time.

Value

An object of same class as .data

Examples

conn <- get_connection()

m <- mtcars %>%
dplyr::mutate(

"from_ts" = dplyr::if_else(dplyr::row_number() > 10,
as.Date("2020-01-01"),
as.Date("2021-01-01")),

"until_ts" = as.Date(NA))

30 table_exists

dplyr::copy_to(conn, m, name = "mtcars", temporary = FALSE)

q <- dplyr::tbl(conn, id("mtcars", conn))

nrow(slice_time(q, "2020-01-01")) # 10
nrow(slice_time(q, "2021-01-01")) # nrow(mtcars)

close_connection(conn)

table_exists Test if a table exists in database

Description

This functions attempts to determine the existence of a given table. If a character input is given,
matching is done heuristically assuming a "schema.table" notation. If no schema is implied in this
case, the default schema is assumed.

Usage

table_exists(conn, db_table)

S3 method for class 'DBIConnection'
table_exists(conn, db_table)

Arguments

conn (DBIConnection(1))
Connection object.

db_table (id-like object(1))
A table specification (coercible by id()).

Value

TRUE if db_table can be parsed to a table found in conn.

Examples

conn <- get_connection()

dplyr::copy_to(conn, mtcars, name = "mtcars", temporary = FALSE)
dplyr::copy_to(conn, iris, name = "iris")

table_exists(conn, "mtcars") # TRUE
table_exists(conn, "iris") # FALSE
table_exists(conn, "temp.iris") # TRUE

close_connection(conn)

unique_table_name 31

unique_table_name Create a name for a temporary table

Description

This function is heavily inspired by the unexported dbplyr function unique_table_name

Usage

unique_table_name(scope = "SCDB")

Arguments

scope (character(1))
A naming scope to generate the table name within.

Value

A character string for a table name based on the given scope parameter

Examples

print(unique_table_name()) # SCDB_<10 alphanumerical letters>
print(unique_table_name()) # SCDB_<10 alphanumerical letters>

print(unique_table_name("test")) # test_<10 alphanumerical letters>
print(unique_table_name("test")) # test_<10 alphanumerical letters>

unite.tbl_dbi tidyr::unite for tbl_dbi

Description

Convenience function to paste together multiple columns into one.

Usage

unite.tbl_dbi(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

32 update_snapshot

Arguments

data A data frame.

col The name of the new column, as a string or symbol.

This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang::ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).

... <tidy-select> Columns to unite

sep Separator to use between values.

remove If TRUE, remove input columns from output data frame.

na.rm If TRUE, missing values will be removed prior to uniting each value.

Value

A tbl_dbi with the specified columns united into a new column named according to "col".

See Also

separate(), the complement.

Examples

library(tidyr, warn.conflicts = FALSE)

df <- expand_grid(x = c("a", NA), y = c("b", NA))

unite(df, "z", x:y, remove = FALSE)

To remove missing values:
unite(df, "z", x:y, na.rm = TRUE, remove = FALSE)

Separate is almost the complement of unite
unite(df, "xy", x:y) %>%

separate(xy, c("x", "y"))
(but note `x` and `y` contain now "NA" not NA)

update_snapshot Update a historical table

update_snapshot 33

Description

update_snapshot() makes it easy to create and update a historical data table on a remote (SQL)
server. The function takes the data (.data) as it looks on a given point in time (timestamp) and then
updates (or creates) an remote table identified by db_table. This update only stores the changes
between the new data (.data) and the data currently stored on the remote. This way, the data can
be reconstructed as it looked at any point in time while taking as little space as possible.

See vignette("basic-principles") for further introduction to the function.

Usage

update_snapshot(
.data,
conn,
db_table,
timestamp,
filters = NULL,
message = NULL,
tic = Sys.time(),
logger = NULL,
enforce_chronological_order = TRUE,
collapse_continuous_records = FALSE

)

Arguments

.data (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
Data object.

conn (DBIConnection(1))
Connection object.

db_table (id-like object(1))
A table specification (coercible by id()).

timestamp (POSIXct(1), Date(1), or character(1))
The timestamp describing the data being processed (not the current time).

filters (data.frame(1), tibble(1), data.table(1), or tbl_dbi(1))
A object subset data by. If filters is NULL, no filtering occurs. Otherwise, an
inner_join() is performed using all columns of the filter object.

message (character(1))
A message to add to the log-file (useful for supplying metadata to the log).

tic (POSIXct(1))
A timestamp when computation began. If not supplied, it will be created at
call-time (used to more accurately convey the runtime of the update process).

logger (Logger(1))
A configured logging object. If none is given, one is initialized with default
arguments.

34 update_snapshot

enforce_chronological_order

(logical(1))
Are updates allowed if they are chronologically earlier than latest update?

collapse_continuous_records

(logical(1))
Check for records where from/until time stamps are equal and delete? Forced
TRUE when enforce_chronological_order is FALSE.

Details

The most common use case is having consecutive snapshots of a dataset and wanting to store the
changes between them. If you have a special case where you want to insert data that is not consec-
utive, you can set the enforce_chronological_order to FALSE. This will allow you to insert data
that is earlier than the latest time stamp.

If you have more updates in a single day and use Date() rather than POSIXct(), as your time stamp,
you may end up with records where from_ts and until_ts are equal. These records not normally
accessible with get_table() and you may want to prevent these records using collapse_continuous_records
= TRUE.

Value

No return value, called for side effects.

See Also

filter_keys

Examples

conn <- get_connection()

data <- dplyr::copy_to(conn, mtcars)

Copy the first 3 records
update_snapshot(

head(data, 3),
conn = conn,
db_table = "test.mtcars",
timestamp = Sys.time()

)

Update with the first 5 records
update_snapshot(

head(data, 5),
conn = conn,
db_table = "test.mtcars",
timestamp = Sys.time()

)

dplyr::tbl(conn, "test.mtcars")

update_snapshot 35

close_connection(conn)

Index

?join_by, 11, 22

anti_join.tbl_sql (joins), 21

close_connection, 3
collect(), 22
create_index, 3
create_logs_if_missing, 4
create_table, 5
cross_join(), 11, 22

db_locks, 5
db_timestamp, 6
DBI::dbCreateTable(), 5
DBI::Id, 19
dbplyr::join.tbl_sql, 22
defer_db_cleanup, 7
delta_export (delta_loading), 8
delta_load (delta_loading), 8
delta_loading, 8
digest_to_checksum, 10
dplyr::mutate-joins, 22
dplyr::show_query, 22
duckdb::duckdb, 16

filter_keys, 11
full_join.tbl_sql (joins), 21

get_catalog, 12
get_connection, 14
get_schema (get_catalog), 12
get_schema(), 17
get_table, 16
get_tables, 17

id, 18
inner_join.tbl_sql (joins), 21
interlace, 19
is.historical, 20

join_by(), 11, 22

joins, 21

left_join.tbl_sql (joins), 21
lock_table (db_locks), 5
Logger, 23
LoggerNull, 26

nrow, 28

odbc::odbc, 16
OlsonNames(), 15

quasiquotation, 32

R6, 23, 26
right_join.tbl_sql (joins), 21
rlang::ensym(), 32
RPostgres::Postgres, 16
RSQLite::SQLite, 16

SCDB::Logger, 27
schema_exists, 28
semi_join.tbl_sql (joins), 21
separate(), 32
show_query(), 22
slice_time, 29
strftime(), 25
Sys.time(), 24

table_exists, 30

unique_table_name, 31
unite.tbl_dbi, 31
unlock_table (db_locks), 5
update_snapshot, 32

36

	close_connection
	create_index
	create_logs_if_missing
	create_table
	db_locks
	db_timestamp
	defer_db_cleanup
	delta_loading
	digest_to_checksum
	filter_keys
	get_catalog
	get_connection
	get_table
	get_tables
	id
	interlace
	is.historical
	joins
	Logger
	LoggerNull
	nrow
	schema_exists
	slice_time
	table_exists
	unique_table_name
	unite.tbl_dbi
	update_snapshot
	Index

