Package ‘fable’

January 23, 2026
Title Forecasting Models for Tidy Time Series
Version 0.5.0
Description Provides a collection of commonly used univariate and multivariate
time series forecasting models including automatically selected exponential
smoothing (ETS) and autoregressive integrated moving average (ARIMA) models.
These models work within the 'fable' framework provided by the 'fabletools'

package, which provides the tools to evaluate, visualise, and combine models
in a workflow consistent with the tidyverse.

License GPL-3
URL https://fable.tidyverts.org, https://github.com/tidyverts/fable

BugReports https://github.com/tidyverts/fable/issues

Depends R (>= 3.4.0), fabletools (>= 0.3.0)

Imports Rcpp (>=0.11.0), rlang (>= 0.4.6), stats, dplyr (>= 1.0.0),
tsibble (>= 0.9.0), tibble, tidyr, utils, distributional, cli

Suggests covr, feasts, forecast, fracdiff, knitr, MTS, nnet,
rmarkdown, spelling, testthat, tsibbledata (>= 0.2.0), urca

LinkingTo Rcpp (>=0.11.0)

VignetteBuilder knitr

ByteCompile true

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.3

NeedsCompilation yes

Author Mitchell O'Hara-Wild [aut, cre],
Rob Hyndman [aut],
Earo Wang [aut],
Gabriel Caceres [ctb] (NNETAR implementation),
Christoph Bergmeir [ctb] (ORCID:

<https://orcid.org/0000-0002-3665-9021>),

Tim-Gunnar Hensel [ctb],
Timothy Hyndman [ctb]

https://fable.tidyverts.org
https://github.com/tidyverts/fable
https://github.com/tidyverts/fable/issues
https://orcid.org/0000-0002-3665-9021

2 Contents

Maintainer Mitchell O'Hara-Wild <mail@mitchelloharawild.com>
Repository CRAN
Date/Publication 2026-01-23 11:10:02 UTC

Contents
AR . e 4
ARFIMA e e e e e 5
ARIMA . . . e e 7
breusch_godfrey 11
components.ETS 11
CROSTON . . . e e e e 12
ETS . . e 14
fitted. AR e e e e e 16
fitted. ARIMA e e e e 17
fitted.croston L. e 17
fitted.ETS e e e e e e e 18
fitted.fable_theta e 19
fitted.model_mean 19
fitted. NNETAR e e e e 20
fittedRW e e e 21
fitted. TSLM e 21
fitted. VAR e 22
forecast. AR L e e 23
forecast ARIMA e 24
forecast.croston e e e e 25
forecast ETS e e e 25
forecast.fable_theta e 26
forecast.model mean L. 27
forecast NNETAR e 28
forecast RW e e 29
forecast TSLM e 31
forecast. VAR L. e e e e e 32
generate. AR 33
generate. ARIMA oL 33
generate. ETS e 34
generate.model_mean 35
generate NNETAR o 36
generate. RW L L 36
generate. TSLM 37
generate. VAR L 38
generate. VECM oL 39
glance. AR L e 40
glance. ARIMA e 40
glance. ETS e 41
glance.fable theta 42

glancemodel_mean Lo 43

Contents

3
glance NNETAR e e 43
glance RW L 44
glance. TSLM e 45
glance. VAR e 45
glance. VECM e 46
interpolate. ARIMA e 47
interpolate. ETS 47
interpolate.model_mean. L 48
interpolate. TSLM 49
IREARIMA . . . e 50
IREVAR . . e e e e 50
IREVECM e e e 51
MEAN . . . e 51
NNETAR e 52
refit AR e 54
refit ARIMA e 55
refit ETS e 56
refitmodel_mean e 57
refit NNETAR e 57
refit RW e 58
refit TSLM e 59
residuals. AR L 60
residuals. ARIMA e 61
residuals.croston L e 61
residuals.ETS 62
residuals.fable_theta 63
residuals.model_mean L L 63
residuals. NNETAR e 64
residuals. RW L 65
residuals. TSLM e e 65
residuals. VAR 66
RW e e e e e 67
THETA e e e e 68
tidy. AR . . . e 70
tidy. ARIMA e 70
tdy.CTOStON L e e e e e e e e 71
tidy.ETS . . . o o e 72
tidyfable_theta 72
tidymodel_mean e 73
tidy NNETAR e 74
tidy.RW . . o e 74
tidy. TSLM e e e e e 75
tidy. VAR . . . e e e 76
TSLM . . . e 76
UNItIOOE_OPLIONS« o o v v vt v e e e e e e e e e 77
VAR . e e e e e 78
VARIMA . . . e 79

Index 85

AR Estimate a AR model

Description

Searches through the vector of lag orders to find the best AR model which has lowest AIC, AICc or
BIC value. It is implemented using OLS, and behaves comparably to stats::ar.ols().

Usage
AR(formula, ic = c("aicc”, "aic", "bic"), ...)
Arguments
formula Model specification (see "Specials" section).
ic The information criterion used in selecting the model.
Further arguments for arima
Details

Exogenous regressors and common_xregs can be specified in the model formula.

Value

A model specification.

Specials
pdq: The order special is used to specify the lag order for the auto-regression.

order(p = 0:15, fixed = list())

p The order of the auto-regressive (AR) terms. If multiple values are provided, the one which minimises ic will be cho
fixed A named list of fixed parameters for coefficients. The names identify the coefficient, beginning with ar, and then foll

xreg: Exogenous regressors can be included in an AR model without explicitly using the xreg()
special. Common exogenous regressor specials as specified in common_xregs can also be used.
These regressors are handled using stats: :model.frame(), and so interactions and other func-
tionality behaves similarly to stats: :1m().

The inclusion of a constant in the model follows the similar rules to stats: : 1m(), where includ-
ing 1 will add a constant and @ or -1 will remove the constant. If left out, the inclusion of a
constant will be determined by minimising ic.

xreg(..., fixed = list())

ARFIMA 5

. Bare expressions for the exogenous regressors (such as log(x))
f ixed A named list of fixed parameters for coefficients. The names identify the coefficient, and should match the name of tl

See Also

Forecasting: Principles and Practices, Vector autoregressions (section 11.2)

Examples

luteinizing_hormones <- as_tsibble(1lh)
fit <- luteinizing_hormones %>%
model (AR(value ~ order(3)))

report(fit)
fit %>%

forecast() %>%
autoplot(luteinizing_hormones)

ARFIMA Estimate an ARFIMA model

Description

Searches through the model space specified in the specials to identify a suitable ARFIMA model.
ARFIMA (AutoRegressive Fractionally Integrated Moving Average) models extend ARIMA mod-
els by allowing fractional differencing, which is useful for modeling long memory processes. The
model is implemented using fracdiff::fracdiff() and allows ARFIMA models to be used in
the fable framework.

Usage

ARFIMA(
formula,
ic = c¢("aicc”, "aic", "bic"),
selection_metric = function(x) x[[icl],
stepwise = TRUE,
greedy = TRUE,
order_constraint = p + q <= 6,
trace = FALSE,

n

Arguments

formula Model specification (see "Specials" section).

ic The information criterion used in selecting the model.

https://otexts.com/fpp3/AR.html

6 ARFIMA

selection_metric
A function used to compute a metric from the fitted object which is minimised
to select the best model.

stepwise, greedy, order_constraint, trace
Arguments kept for API compatibility with ARIMA(). Currently not fully imple-
mented for ARFIMA.

Further arguments passed to fracdiff::fracdiff ().

Value

A model specification.

Parameterisation

An ARFIMA(p,d,q) model is defined as:

(1=¢1B—---=¢,B")(1 = B)(y: —p) = (1 + 1B + - + 6, Bz,

where p is the mean of the series, and d can take fractional values (typically between -0.5 and 0.5),
allowing the model to capture long memory behavior. When d is an integer, the model reduces to a
standard ARIMA model.

Note: This uses a mean form parameterisation where the data is de-meaned before fitting. This
differs from ARIMA() which uses a constant form parameterisation.

The fractional differencing operator (1 — B)¢ is computed using the fast algorithm of Jensen and
Nielsen (2014), which is implemented in the fracdiff package.

Specials

The specials define the space over which ARFIMA will search for the model that best fits the data.
If the RHS of formula is left blank, the default search space is given by pdq(): a model with
candidate non-seasonal terms and fractional differencing, but no exogenous regressors.

Note that ARFIMA does not support seasonal differencing (PDQ terms). For seasonal data, consider
using ARIMA() instead, or pre-process your data to remove seasonality.

pdq: The pdq special is used to specify the components of the ARFIMA model.

pdg(p = @:5, d = NULL, g = 0:5,
d_range = c(0, 0.5),
p_init = 2, g_init = 2, fixed = list())

p The order of the auto-regressive (AR) terms. If multiple values are provided, the one which minimises ic will be ¢
d The fractional differencing parameter. If NULL (default), it will be estimated. If a single numeric value is provided,
q The order of the moving average (MA) terms. If multiple values are provided, the one which minimises ic will be
d_range A numeric vector of length 2 specifying the range for estimating d. Only used when d = NULL. Typical values are b
p_init If stepwise = TRUE, p_init provides the initial value for p for the stepwise search procedure.
g_init If stepwise = TRUE, q_init provides the initial value for g for the stepwise search procedure.
fixed A named list of fixed parameters for coefficients. The names identify the coefficient, beginning with either ar or m

ARIMA 7

xreg: Exogenous regressors can be included in an ARFIMA model without explicitly using the
xreg() special. Common exogenous regressor specials as specified in common_xregs can also be
used. These regressors are handled using stats: :model. frame(), and so interactions and other
functionality behaves similarly to stats::1m().

The inclusion of a constant in the model follows similar rules to stats: :1m(), where including
1 will add a constant and @ or -1 will remove the constant. If left out, the inclusion of a constant
will be determined by minimising ic.

xreg(..., fixed = list())

.. Bare expressions for the exogenous regressors (such as log(x))
fixed A named list of fixed parameters for coefficients. The names identify the coefficient, and should match the name of tl

References

Jensen, A. N. and Nielsen, M. @. (2014) A Fast Fractional Difference Algorithm. Journal of Time
Series Analysis 35(5), 428-436. doi:10.1111/jtsa.12074

See Also

ARIMA() for standard ARIMA models with integer differencing.
Forecasting: Principles and Practices, ARIMA models (chapter 9)
fracdiff::fracdiff() for the underlying fitting function.

Examples

library(tsibble)
library(dplyr)

Automatic ARFIMA specification
as_tsibble(sunspot.year) %>%
model(arfima = ARFIMA(value)) %>%
report()

Manual ARFIMA specification with fixed d
as_tsibble(sunspot.year) %>%
model(arfima = ARFIMA(value ~ pdg(p =1, d = 0.3, g = 1))) %%
report()

ARIMA Estimate an ARIMA model

Description

Searches through the model space specified in the specials to identify the best ARIMA model, with
the lowest AIC, AICc or BIC value. It is implemented using stats: :arima() and allows ARIMA
models to be used in the fable framework.

https://doi.org/10.1111/jtsa.12074
https://otexts.com/fpp3/arima.html

Usage

ARIMA(
formula,

ic = c("aicc”,

ARIMA

aiC", "biC"),

selection_metric = function(x) x[[icl],
stepwise = TRUE,
greedy = TRUE,

approximation

= NULL,

order_constraint = p + q+ P + Q <= 6 & (constant + d + D <= 2),

unitroot_spec

= unitroot_options(),

trace = FALSE,

)
Arguments
formula Model specification (see "Specials" section).
ic The information criterion used in selecting the model.

selection_metric

A function used to compute a metric from an Arima object which is minimised
to select the best model.

stepwise Should stepwise be used? (Stepwise can be much faster)
greedy Should the stepwise search move to the next best option immediately?
approximation Should CSS (conditional sum of squares) be used during model selection? The

default (NULL) will use the approximation if there are more than 150 observations
or if the seasonal period is greater than 12.

order_constraint

unitroot_spec

A logical predicate on the orders of p, d, g, P, D, Q and constant to consider in
the search. See "Specials" for the meaning of these terms.

A specification of unit root tests to use in the selection of d and D. See unitroot_options()
for more details.

trace If TRUE, the selection_metric of estimated models in the selection procedure will
be outputted to the console.
Further arguments for stats: :arima()
Value

A model specification.

Parameterisation

The fable ARIMA() function uses an alternative parameterisation of constants to stats::arima()
and forecast: :Arima(). While the parameterisations are equivalent, the coefficients for the con-
stant/mean will differ.

In fable, if there are no exogenous regressors, the parameterisation used is:

ARIMA 9

(1—=¢1B—-—¢,BP)1—B)lyy=c+(1+6B+ - +0,BYe

In stats and forecast, an ARIMA model is parameterised as:

(L=¢1B—- =B)(y; —p) = (L+ 1B+ -+ +0,B%)e,

where 4 is the mean of (1 — B)4y, and ¢ = p(1 — ¢1 — -+ - —).

If there are exogenous regressors, fable uses the same parameterisation as used in stats and fore-
cast. That is, it fits a regression with ARIMA(p,d,q) errors:

yr=c+Ba + 2z

where [is a vector of regression coefficients, z; is a vector of exogenous regressors at time ¢, and
z¢ is an ARIMA(p,d,q) error process:

(1—¢1B—---—¢,B")(1—B)2 = (1+6,B+---+6,BYe,

For details of the estimation algorithm, see the arima function in the stats package.

Specials

The specials define the space over which ARIMA will search for the model that best fits the data.
If the RHS of formula is left blank, the default search space is given by pdq() + PDQ(): that is,
a model with candidate seasonal and nonseasonal terms, but no exogenous regressors. Note that a
seasonal model requires at least 2 full seasons of data; if this is not available, ARIMA will revert to a
nonseasonal model with a warning.

To specify a model fully (avoid automatic selection), the intercept and pdq()/PDQ() values must
be specified. For example, formula = response ~ 1 + pdq(1, 1, 1) + PDQ(1, @, 0).

pdq: The pdq special is used to specify non-seasonal components of the model.

pdq(p = @:5, d = 0:2, g = 0:5,
p_init = 2, g_init = 2, fixed = list())

p The order of the non-seasonal auto-regressive (AR) terms. If multiple values are provided, the one which minimises
d The order of integration for non-seasonal differencing. If multiple values are provided, one of the values will be sele
q The order of the non-seasonal moving average (MA) terms. If multiple values are provided, the one which minimise
p_init If stepwise = TRUE, p_init provides the initial value for p for the stepwise search procedure.
g_init If stepwise = TRUE, q_init provides the initial value for q for the stepwise search procedure.
fixed A named list of fixed parameters for coefficients. The names identify the coefficient, beginning with either ar or ma,

PDQ: The PDQ special is used to specify seasonal components of the model. To force a non-
seasonal fit, specify PDQ(@, @, @) in the RHS of the model formula. Note that simply omitting
PDQ from the formula will not result in a non-seasonal fit.

PDQ(P = 0:2, D = 0:1, Q = 0:2, period = NULL,
P_init = 1, Q_init = 1, fixed = list())

10 ARIMA

P The order of the seasonal auto-regressive (SAR) terms. If multiple values are provided, the one which minimises ic
D The order of integration for seasonal differencing. If multiple values are provided, one of the values will be selected
Q The order of the seasonal moving average (SMA) terms. If multiple values are provided, the one which minimises i
period The periodic nature of the seasonality. This can be either a number indicating the number of observations in each se
P_init If stepwise = TRUE, P_init provides the initial value for P for the stepwise search procedure.

Q_init If stepwise = TRUE, Q_init provides the initial value for Q for the stepwise search procedure.

fixed A named list of fixed parameters for coefficients. The names identify the coefficient, beginning with either sar or si

xreg: Exogenous regressors can be included in an ARIMA model without explicitly using the
xreg() special. Common exogenous regressor specials as specified in common_xregs can also be
used. These regressors are handled using stats: :model. frame(), and so interactions and other
functionality behaves similarly to stats: :1m().

The inclusion of a constant in the model follows the similar rules to stats: : 1m(), where includ-
ing 1 will add a constant and @ or -1 will remove the constant. If left out, the inclusion of a
constant will be determined by minimising ic.

xreg(..., fixed = list())

. Bare expressions for the exogenous regressors (such as log(x))
fixed A named list of fixed parameters for coefficients. The names identify the coefficient, and should match the name of tl

See Also

Forecasting: Principles and Practices, ARIMA models (chapter 9) Forecasting: Principles and Prac-
tices, Dynamic regression models (chapter 10)

Examples

The feasts package is required for automatic ARIMA model selection.
Install it with: install.packages("feasts"”)

The urca package is required for ARIMA models to automatically select ~d°
Install it with: install.packages("urca")

Manual ARIMA specification

USAccDeaths %>%
as_tsibble() %>%
model(arima = ARIMA(log(value) ~ @ + pdq(@, 1, 1) + PDQ(@, 1, 1))) %>%
report()

Automatic ARIMA specification

library(tsibble)

library(dplyr)

library(feasts)

library(urca)

tsibbledata: :global_economy %>%
filter(Country == "Australia”) %>%
model (ARIMA(log(GDP) ~ Population))

https://otexts.com/fpp3/arima.html
https://otexts.com/fpp3/dynamic.html
https://otexts.com/fpp3/dynamic.html

breusch_godfrey 11

breusch_godfrey Breusch-Godfrey Test

Description

Breusch-Godfrey test for higher-order serial correlation.

Usage
breusch_godfrey(x, ...)

S3 method for class 'TSLM'

breusch_godfrey(x, order = 1, type = c("Chisq”, "F"), ...)
Arguments
X A model object to be tested.
Further arguments for methods.
order The maximum order of serial correlation to test for.
type The type of test statistic to use.
See Also

Imtest::bgtest()

components.ETS Extract estimated states from an ETS model.

Description

Extract estimated states from an ETS model.

Usage
S3 method for class 'ETS'
components(object, ...)
Arguments
object An estimated model.
Unused.
Value

A fabletools: :dable() containing estimated states.

12 CROSTON

Examples

as_tsibble(USAccDeaths) %>%
model (ets = ETS(log(value) ~ season("A"))) %>%
components()

CROSTON Croston’s method

Description

Based on Croston’s (1972) method for intermittent demand forecasting, also described in Shenstone
and Hyndman (2005). Croston’s method involves using simple exponential smoothing (SES) on the
non-zero elements of the time series and a separate application of SES to the times between non-
zero elements of the time series.

Usage

CROSTON(
formula,
opt_crit = c("mse"”, "mae"),
type = c("croston”, "sba", "sbj"),

)
Arguments
formula Model specification (see "Specials" section).
opt_crit The optimisation criterion used to optimise the parameters.
type Which variant of Croston’s method to use. Defaults to "croston” for Croston’s
method, but can also be set to "sba” for the Syntetos-Boylan approximation,
and "sbj" for the Shale-Boylan-Johnston method.
Not used.
Details

Note that forecast distributions are not computed as Croston’s method has no underlying stochastic
model. In a later update, we plan to support distributions via the equivalent stochastic models that
underly Croston’s method (Shenstone and Hyndman, 2005)

There are two variant methods available which apply multiplicative correction factors to the fore-
casts that result from the original Croston’s method. For the Syntetos-Boylan approximation (type
= "sha"), this factor is 1 — «/2, and for the Shale-Boylan-Johnston method (type = "sbj"), this
factoris 1 — /(2 — «), where « is the smoothing parameter for the interval SES application.

Value

A model specification.

CROSTON 13

Specials
demand: The demand special specifies parameters for the demand SES application.

demand(initial = NULL, param = NULL, param_range = c(@, 1))

initial The initial value for the demand application of SES.
param The smoothing parameter for the demand application of SES.
param_range If param = NULL, the range of values over which to search for the smoothing parameter.

interval: The interval special specifies parameters for the interval SES application.

interval(initial = NULL, param = NULL, param_range = c(@, 1))

initial The initial value for the interval application of SES.
param The smoothing parameter for the interval application of SES.
param_range If param = NULL, the range of values over which to search for the smoothing parameter.

References

Croston, J. (1972) "Forecasting and stock control for intermittent demands", Operational Research
Quarterly, 23(3), 289-303.

Shenstone, L., and Hyndman, R.J. (2005) "Stochastic models underlying Croston’s method for
intermittent demand forecasting". Journal of Forecasting, 24, 389-402.

Kourentzes, N. (2014) "On intermittent demand model optimisation and selection". International
Journal of Production Economics, 156, 180-190. doi:10.1016/j.ijpe.2014.06.007.

Examples

library(tsibble)

sim_poisson <- tsibble(
time = yearmonth("”2012 Dec") + seq_len(24),
count = rpois(24, lambda = 0.3),
index = time

)

sim_poisson %>%
autoplot(count)

sim_poisson %>%
model (CROSTON(count)) %>%
forecast(h = "2 years") %>%
autoplot(sim_poisson)

https://doi.org/10.1016/j.ijpe.2014.06.007

14 ETS

ETS Exponential smoothing state space model

Description

Returns ETS model specified by the formula.

Usage
ETS(
formula,
opt_crit = c("1ik"”, "amse"”, "mse”, "sigma", "mae"),
nmse = 3,
bounds = c("both”, "usual”, "admissible"),
ic = c¢("aicc", "aic", "bic"),

restrict = TRUE,

Arguments
formula Model specification (see "Specials" section).
opt_crit The optimization criterion. Defaults to the log-likelihood "1ik", but can also
be set to "mse” (Mean Square Error), "amse” (Average MSE over first nmse
forecast horizons), "sigma" (Standard deviation of residuals), or "mae” (Mean
Absolute Error).
nmse If opt_crit == "amse"”, nmse provides the number of steps for average multi-
step MSE (1<=nmse<=30).
bounds Type of parameter space to impose: "usual” indicates all parameters must lie
between specified lower and upper bounds; "admissible"” indicates parameters
must lie in the admissible space; "both"” (default) takes the intersection of these
regions.
ic The information criterion used in selecting the model.
restrict If TRUE (default), the models with infinite variance will not be allowed. These
restricted model components are AMM, AAM, AMA, and MMA.
Other arguments
Details

Based on the classification of methods as described in Hyndman et al (2008).

The methodology is fully automatic. The model is chosen automatically if not specified. This
methodology performed extremely well on the M3-competition data. (See Hyndman, et al, 2002,
below.)

ETS 15

Value

A model specification.

Specials

The specials define the methods and parameters for the components (error, trend, and seasonality)
of an ETS model. If more than one method is specified, ETS will consider all combinations of the
specified models and select the model which best fits the data (minimising ic). The method argu-
ment for each specials have reasonable defaults, so if a component is not specified an appropriate
method will be chosen automatically.

There are a couple of limitations to note about ETS models:

* It does not support exogenous regressors.

* It does not support missing values. You can complete missing values in the data with im-
puted values (e.g. with tidyr::fill(), or by fitting a different model type and then calling
fabletools::interpolate()) before fitting the model.

error: The error special is used to specify the form of the error term.

error(method = c("A", "M"))

method The form of the error term: either additive ("A") or multiplicative ("M"). If the error is multiplicative, the data must |

trend: The trend special is used to specify the form of the trend term and associated parameters.

trend(method = c(”"N", "A", "Ad"),
alpha = NULL, alpha_range = c(1e-04, 0.9999),
beta = NULL, beta_range = c(1e-04, 0.9999),
phi = NULL, phi_range = c(0.8, 0.98))

method The form of the trend term: either none ("N"), additive ("A"), multiplicative ("M") or damped variants ("Ad",
alpha The value of the smoothing parameter for the level. If alpha = 9, the level will not change over time. Convers
alpha_range If alpha=NULL, alpha_range provides bounds for the optimised value of alpha.

beta The value of the smoothing parameter for the slope. If beta = 9, the slope will not change over time. Convers
beta_range If beta=NULL, beta_range provides bounds for the optimised value of beta.

phi The value of the dampening parameter for the slope. If phi = @, the slope will be dampened immediately (no

phi_range If phi=NULL, phi_range provides bounds for the optimised value of phi.
season: The season special is used to specify the form of the seasonal term and associated
parameters. To specify a nonseasonal model you would include season(method = "N").

season(method = c("N", "A", "M"), period = NULL,
gamma = NULL, gamma_range = c(1e-04, 0.9999))

method The form of the seasonal term: either none ("N"), additive ("A") or multiplicative ("M"). All specified methoc
period The periodic nature of the seasonality. This can be either a number indicating the number of observations in e
gamma The value of the smoothing parameter for the seasonal pattern. If gamma = @, the seasonal pattern will not char

gamma_range If gamma=NULL, gamma_range provides bounds for the optimised value of gamma.

16 fitted. AR

References

Hyndman, R.J., Koehler, A.B., Snyder, R.D., and Grose, S. (2002) "A state space framework for
automatic forecasting using exponential smoothing methods", International J. Forecasting, 18(3),
439-454.

Hyndman, R.J., Akram, Md., and Archibald, B. (2008) "The admissible parameter space for expo-
nential smoothing models". Annals of Statistical Mathematics, 60(2), 407—426.

Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponential
smoothing: the state space approach, Springer-Verlag. https://robjhyndman.com/expsmooth/.
See Also

Forecasting: Principles and Practices, Exponential smoothing (chapter 8)

Examples

as_tsibble(USAccDeaths) %>%
model (ETS(log(value) ~ season("A")))

fitted.AR Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'AR'
fitted(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted values.

Examples

as_tsibble(lh) %>%
model (AR(value ~ order(3))) %>%
fitted()

https://robjhyndman.com/expsmooth/
https://otexts.com/fpp3/expsmooth.html

fitted. ARIMA

17

fitted.ARIMA Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'ARIMA'
fitted(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted values.

Examples

USAccDeaths %>%
as_tsibble() %>%
model(arima = ARIMA(log(value) ~ pdq(@, 1, 1) + PDQ(Q, 1, 1))) %>%
fitted()

fitted.croston Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'croston'
fitted(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

18

Value

A vector of fitted values.

Examples

library(tsibble)

sim_poisson <- tsibble(
time = yearmonth("2012 Dec”) + seq_len(24),
count = rpois(24, lambda = 0.3),
index = time

)

sim_poisson %>%
model (CROSTON(count)) %>%
tidy()

fitted. ETS

fitted.ETS Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'ETS'
fitted(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted values.

Examples

as_tsibble(USAccDeaths) %>%
model (ets = ETS(log(value) ~ season("A"))) %>%
fitted()

fitted.fable_theta 19

fitted.fable_theta Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'fable_theta'
fitted(object, ...)

Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted values.

Examples

library(tsibbledata)

vic_elec %>%
model (avg = MEAN(Demand)) %>%
fitted()

fitted.model_mean Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'model_mean'
fitted(object, ...)

Arguments
object A model for which forecasts are required.

Other arguments passed to methods

20

Value

A vector of fitted values.

Examples

library(tsibbledata)

vic_elec %>%
model (avg = MEAN(Demand)) %>%
fitted()

fitted. NNETAR

fitted.NNETAR Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'NNETAR'
fitted(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted values.

Examples

as_tsibble(airmiles) %>%
model (nn = NNETAR(box_cox(value, 0.15))) %>%
fitted()

fitted. RW 21

fitted.RW Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'RW'
fitted(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted values.

Examples

as_tsibble(Nile) %>%
model (NAIVE(value)) %>%
fitted()

library(tsibbledata)

aus_production %>%
model (snaive = SNAIVE(Beer ~ lag("year"))) %>%
fitted()

fitted.TSLM Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage

S3 method for class 'TSLM'
fitted(object, ...)

22 fitted. VAR

Arguments
object A model for which forecasts are required.
Other arguments passed to methods
Value

A vector of fitted values.

Examples

as_tsibble(USAccDeaths) %>%
model (1m = TSLM(log(value) ~ trend() + season())) %>%
fitted()

fitted.VAR Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage
S3 method for class 'VAR'
fitted(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted values.

Examples

lung_deaths <- cbind(mdeaths, fdeaths) %>%
as_tsibble(pivot_longer = FALSE)

lung_deaths %>%
model (VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
fitted()

forecast. AR 23

forecast.AR Forecast a model from the fable package

Description

Produces forecasts from a trained model.

Usage
S3 method for class 'AR'
forecast(
object,
new_data = NULL,
specials = NULL,
bootstrap = FALSE,
times = 5000,
)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.
times The number of sample paths to use in estimating the forecast distribution when
bootstrap = TRUE.
Other arguments passed to methods
Value

A list of forecasts.

Examples

as_tsibble(lh) %>%
model (AR(value ~ order(3))) %>%
forecast()

24 forecast. ARIMA

forecast.ARIMA Forecast a model from the fable package

Description

Produces forecasts from a trained model.

Usage
S3 method for class 'ARIMA'
forecast(
object,
new_data = NULL,
specials = NULL,
bootstrap = FALSE,
times = 5000,
)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.
times The number of sample paths to use in estimating the forecast distribution when
bootstrap = TRUE.
Other arguments passed to methods
Value

A list of forecasts.

Examples

USAccDeaths %>%
as_tsibble() %>%
model (arima = ARIMA(log(value) ~ pdq(@, 1, 1) + PDQ(@, 1, 1))) %>%
forecast()

forecast.croston 25

forecast.croston Forecast a model from the fable package

Description

Produces forecasts from a trained model.

Usage
S3 method for class 'croston'
forecast(object, new_data, specials = NULL, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).

Other arguments passed to methods

Value

A list of forecasts.

Examples

library(tsibble)

sim_poisson <- tsibble(
time = yearmonth("2012 Dec”) + seq_len(24),
count = rpois(24, lambda = 0.3),
index = time

)

sim_poisson %>%
model (CROSTON(count)) %>%
forecast()

forecast.ETS Forecast a model from the fable package

Description

Produces forecasts from a trained model.

26

Usage

forecast.fable_theta

S3 method for class 'ETS'

forecast(
object,
new_data,

specials = NULL,
simulate = FALSE,
bootstrap = FALSE,

times = 5000,

Arguments

object

new_data

specials

simulate

bootstrap

times

Value

A list of forecasts.

Examples

A model for which forecasts are required.

A tsibble containing the time points and exogenous regressors to produce fore-
casts for.

(passed by fabletools: :forecast.mdl_df()).

If TRUE, prediction intervals are produced by simulation rather than using ana-
lytic formulae.

If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.

The number of sample paths to use in estimating the forecast distribution if
simulated intervals are used.

Other arguments passed to methods

as_tsibble(USAccDeaths) %>%
model (ets = ETS(log(value) ~ season("A"))) %>%

forecast()

forecast.fable_theta Forecast a model from the fable package

Description

Produces forecasts from a trained model.

forecast.model _mean 27

Usage

S3 method for class 'fable_theta'
forecast(

object,

new_data,

specials = NULL,

bootstrap = FALSE,

times = 5000,
)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.
times The number of sample paths to use in estimating the forecast distribution when
bootstrap = TRUE.
Other arguments passed to methods
Value

A list of forecasts.

Examples

USAccDeaths %>%
as_tsibble() %>%
model(arima = ARIMA(log(value) ~ pdq(@, 1, 1) + PDQ(Q, 1, 1))) %>%
forecast()

forecast.model_mean Forecast a model from the fable package

Description

Produces forecasts from a trained model.

28 forecast NNETAR
Usage
S3 method for class 'model_mean'
forecast(
object,
new_data,
specials = NULL,
bootstrap = FALSE,
times = 5000,
)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.
times The number of sample paths to use in estimating the forecast distribution when
bootstrap = TRUE.
Other arguments passed to methods
Value

A list of forecasts.

Examples

library(tsibbledata)

vic_elec %>%
model (avg = MEAN(Demand)) %>%
forecast()

forecast.NNETAR Forecast a model from the fable package

Description

Produces forecasts from a trained model.

forecast. RW

Usage

29

S3 method for class 'NNETAR'

forecast(
object,
new_data,

specials = NULL,
simulate = TRUE,
bootstrap = FALSE,

times = 5000,

Arguments

object

new_data

specials

simulate

bootstrap

times

Value

A list of forecasts.

Examples

A model for which forecasts are required.

A tsibble containing the time points and exogenous regressors to produce fore-
casts for.

(passed by fabletools: :forecast.mdl_df()).

If TRUE, forecast distributions are produced by sampling from a normal distribu-
tion. Without simulation, forecast uncertainty cannot be estimated for this model
and instead a degenerate distribution with the forecast mean will be produced.

If TRUE, forecast distributions are produced by sampling from the model’s train-
ing residuals.

The number of sample paths to use in producing the forecast distribution. Setting
simulate = FALSE or times = @ will produce degenerate forecast distributions
of the forecast mean.

Other arguments passed to methods

as_tsibble(airmiles) %>%
model (nn = NNETAR(box_cox(value, 0.15))) %>%

forecast(times

= 10)

forecast.RW

Forecast a model from the fable package

Description

Produces forecasts from a trained model.

30 forecast. RW

Usage

S3 method for class 'RW'
forecast(
object,
new_data,
specials = NULL,
simulate = FALSE,
bootstrap = FALSE,

times = 5000,
)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
simulate If TRUE, prediction intervals are produced by simulation rather than using ana-
lytic formulae.
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.
times The number of sample paths to use in estimating the forecast distribution when
bootstrap = TRUE.
Other arguments passed to methods
Value

A list of forecasts.

Examples

as_tsibble(Nile) %>%
model (NAIVE(value)) %>%
forecast()

library(tsibbledata)

aus_production %>%
model(snaive = SNAIVE(Beer ~ lag("year"))) %>%
forecast()

forecast. TSLM 31

forecast.TSLM Forecast a model from the fable package

Description

Produces forecasts from a trained model.

Usage

S3 method for class 'TSLM'
forecast(
object,
new_data,
specials = NULL,
bootstrap = FALSE,
approx_normal = TRUE,

times = 5000,
)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-

pled errors.

approx_normal Should the resulting forecast distributions be approximated as a Normal distri-
bution instead of a Student’s T distribution. Returning Normal distributions (the
default) is a useful approximation to make it easier for using TSLM models in
model combinations or reconciliation processes.

times The number of sample paths to use in estimating the forecast distribution when
bootstrap = TRUE.

Other arguments passed to methods

Value

A list of forecasts.

Examples

as_tsibble(USAccDeaths) %>%
model (Im = TSLM(log(value) ~ trend() + season())) %>%
forecast()

32

forecast. VAR

forecast.VAR

Forecast a model from the fable package

Description

Produces forecasts from a trained model.

Usage

S3 method

forecast(
object,
new_data
specials

for class 'VAR'

NULL,
NULL,

bootstrap = FALSE,

times =

Arguments

object

new_data

specials

bootstrap

times

Value

5000,

A model for which forecasts are required.

A tsibble containing the time points and exogenous regressors to produce fore-
casts for.

(passed by fabletools: :forecast.mdl_df()).

If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.

The number of sample paths to use in estimating the forecast distribution when
bootstrap = TRUE.

Other arguments passed to methods

A list of forecasts.

Examples

lung_deaths <- cbind(mdeaths, fdeaths) %>%
as_tsibble(pivot_longer = FALSE)

lung_deaths %>%
model (VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%

forecast()

generate. AR 33

generate.AR Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage
S3 method for class 'AR'
generate(x, new_data = NULL, specials = NULL, bootstrap = FALSE, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.

Other arguments passed to methods

See Also

fabletools: :generate.mdl_df

Examples

as_tsibble(lh) %>%
model (AR(value ~ order(3))) %>%
generate()

generate.ARIMA Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

34 generate.ETS

Usage
S3 method for class 'ARIMA'
generate(x, new_data, specials, bootstrap = FALSE, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.

Other arguments passed to methods

See Also

fabletools: :generate.mdl_df

Examples

fable_fit <- as_tsibble(USAccDeaths) %>%
model (model = ARIMA(value ~ @ + pdq(@,1,1) + PDQ(Q,1,1)))
fable_fit %>% generate(times = 10)

generate.ETS Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage
S3 method for class 'ETS'
generate(x, new_data, specials, bootstrap = FALSE, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-

pled errors.

Other arguments passed to methods

generate.model_mean 35

See Also

fabletools: :generate.mdl_df

Examples

as_tsibble(USAccDeaths) %>%
model (ETS(log(value) ~ season("A"))) %>%
generate(times = 100)

generate.model_mean Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage
S3 method for class 'model_mean'
generate(x, new_data, bootstrap = FALSE, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.

Other arguments passed to methods

See Also

fabletools: :generate.mdl_df

Examples

library(tsibbledata)

vic_elec %>%
model (avg = MEAN(Demand)) %>%
generate()

36 generate. RW

generate.NNETAR Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage
S3 method for class 'NNETAR'
generate(x, new_data, specials = NULL, bootstrap = FALSE, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.

Other arguments passed to methods

See Also

fabletools: :generate.mdl_df

Examples

as_tsibble(airmiles) %>%
model(nn = NNETAR(box_cox(value, 0.15))) %>%
generate()

generate.RW Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

generate. TSLM 37

Usage
S3 method for class 'RW'
generate(x, new_data, bootstrap = FALSE, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.

Other arguments passed to methods

See Also

fabletools: :generate.mdl_df

Examples

as_tsibble(Nile) %>%
model (NAIVE(value)) %>%
generate()

library(tsibbledata)

aus_production %>%
model(snaive = SNAIVE(Beer ~ lag("year"))) %>%
generate()

generate.TSLM Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage

S3 method for class 'TSLM'
generate(x, new_data, specials, bootstrap = FALSE, ...)

38 generate. VAR

Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).
bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.
Other arguments passed to methods
See Also

fabletools: :generate.mdl_df

Examples

as_tsibble(USAccDeaths) %>%
model(1lm = TSLM(log(value) ~ trend() + season())) %>%
generate()

generate.VAR Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage
S3 method for class 'VAR'
generate(x, new_data, specials, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).

Other arguments passed to methods

See Also

fabletools: :generate.mdl_df

generate. VECM 39

Examples

as_tsibble(USAccDeaths) %>%
model (ETS(log(value) ~ season("A"))) %>%
generate(times = 100)

generate.VECM Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage
S3 method for class 'VECM'
generate(x, new_data, specials, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).

Other arguments passed to methods

See Also

fabletools: :generate.mdl_df

Examples

as_tsibble(USAccDeaths) %>%
model (ETS(log(value) ~ season("A"))) %>%
generate(times = 100)

40

glance. ARIMA

glance.AR Glance a AR

Description

Construct a single row summary of the AR model.

Usage
S3 method for class 'AR'
glance(x, ...)
Arguments
X model or other R object to convert to single-row data frame

other arguments passed to methods

Details

Contains the variance of residuals (sigma2), the log-likelihood (log_lik), and information criterion

(AIC, AICc, BIC).

Value

A one row tibble summarising the model’s fit.

Examples

as_tsibble(lh) %>%
model (AR(value ~ order(3))) %>%
glance()

glance.ARIMA Glance an ARIMA model

Description

Construct a single row summary of the ARIMA model.

Usage

S3 method for class 'ARIMA'
glance(x, ...)

glance.ETS 41

Arguments
X model or other R object to convert to single-row data frame
other arguments passed to methods
Format

A data frame with 1 row, with columns:

sigma2 The unbiased variance of residuals. Calculated as sum(residuals*2) / (num_observations
- num_pararameters + 1)

log_lik The log-likelihood

AIC Akaike information criterion

AICc Akaike information criterion, corrected for small sample sizes

BIC Bayesian information criterion

ar_roots, ma_roots The model’s characteristic roots

Value

A one row tibble summarising the model’s fit.

Examples

USAccDeaths %>%
as_tsibble() %>%
model(arima = ARIMA(log(value) ~ pdq(@, 1, 1) + PDQ(Q, 1, 1))) %>%
glance()

glance.ETS Glance an ETS model

Description

Construct a single row summary of the ETS model.

Usage
S3 method for class 'ETS'
glance(x, ...)
Arguments
X model or other R object to convert to single-row data frame

other arguments passed to methods

42 glance.fable_theta

Details

Contains the variance of residuals (sigma2), the log-likelihood (log_lik), and information criterion
(AIC, AICc, BIC).

Value

A one row tibble summarising the model’s fit.

Examples

as_tsibble(USAccDeaths) %>%
model(ets = ETS(log(value) ~ season("A"))) %>%
glance()

glance.fable_theta Glance a theta method

Description

Construct a single row summary of the average method model.

Usage
S3 method for class 'fable_theta'
glance(x, ...)
Arguments
X model or other R object to convert to single-row data frame

other arguments passed to methods

Details

Contains the variance of residuals (sigma?2).

Value

A one row tibble summarising the model’s fit.

glance.model_mean 43

glance.model_mean Glance a average method model

Description

Construct a single row summary of the average method model.

Usage
S3 method for class 'model_mean'
glance(x, ...)
Arguments
X model or other R object to convert to single-row data frame

other arguments passed to methods

Details

Contains the variance of residuals (sigma?2).

Value

A one row tibble summarising the model’s fit.

Examples

library(tsibbledata)

vic_elec %>%
model (avg = MEAN(Demand)) %>%
glance()

glance .NNETAR Glance a NNETAR model

Description

Construct a single row summary of the NNETAR model. Contains the variance of residuals (sigma2).

Usage

S3 method for class 'NNETAR'
glance(x, ...)

44

Arguments
X model or other R object to convert to single-row data frame
other arguments passed to methods
Value

A one row tibble summarising the model’s fit.

Examples

as_tsibble(airmiles) %>%
model(nn = NNETAR(box_cox(value, 0.15))) %>%
glance()

glance. RW

glance.RW Glance a lag walk model

Description

Construct a single row summary of the lag walk model. Contains the variance of residuals (sigma?2).

Usage
S3 method for class 'RW'
glance(x, ...)
Arguments
X model or other R object to convert to single-row data frame
other arguments passed to methods
Value

A one row tibble summarising the model’s fit.

Examples

as_tsibble(Nile) %>%
model (NAIVE (value)) %>%
glance()

library(tsibbledata)

aus_production %>%
model(snaive = SNAIVE(Beer ~ lag("year"))) %>%
glance()

glance. TSLM 45

glance.TSLM Glance a TSLM

Description

Construct a single row summary of the TSLM model.

Usage
S3 method for class 'TSLM'
glance(x, ...)
Arguments
X model or other R object to convert to single-row data frame
other arguments passed to methods
Details

Contains the R squared (r_squared), variance of residuals (sigma2), the log-likelihood (log_lik),
and information criterion (AIC, AICc, BIC).

Value

A one row tibble summarising the model’s fit.

Examples

as_tsibble(USAccDeaths) %>%
model (1m = TSLM(log(value) ~ trend() + season())) %>%
glance()

glance.VAR Glance a VAR

Description

Construct a single row summary of the VAR model.

Usage

S3 method for class 'VAR'
glance(x, ...)

46 glance. VECM

Arguments
X model or other R object to convert to single-row data frame
other arguments passed to methods
Details

Contains the variance of residuals (sigma2), the log-likelihood (log_1lik), and information criterion
(AIC, AICc, BIC).
Value

A one row tibble summarising the model’s fit.

Examples

lung_deaths <- cbind(mdeaths, fdeaths) %>%
as_tsibble(pivot_longer = FALSE)

lung_deaths %>%
model (VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
glance()

glance.VECM Glance a VECM

Description

Construct a single row summary of the VECM model.

Usage
S3 method for class 'VECM'
glance(x, ...)
Arguments
X model or other R object to convert to single-row data frame

other arguments passed to methods

Details
Contains the variance of residuals (sigma2), the log-likelihood (1og_lik), the cointegrating vector
(beta) and information criterion (AIC, AICc, BIC).

Value

A one row tibble summarising the model’s fit.

interpolate. ARIMA 47

interpolate.ARIMA Interpolate missing values from a fable model

Description

Applies a model-specific estimation technique to predict the values of missing values in a tsibble,
and replace them.

Usage
S3 method for class 'ARIMA'
interpolate(object, new_data, specials, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).

Other arguments passed to methods

Value

A tibble of the same dimension of new_data with missing values interpolated.

Examples
library(tsibbledata)
olympic_running %>%

model(arima = ARIMA(Time ~ trend())) %>%
interpolate(olympic_running)

interpolate.ETS Interpolate missing values from a fable model

Description
Applies a model-specific estimation technique to predict the values of missing values in a tsibble,
and replace them.

Usage

S3 method for class 'ETS'
interpolate(object, new_data, specials, ...)

48 interpolate.model_mean

Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
Other arguments passed to methods
Value

A tibble of the same dimension of new_data with missing values interpolated.

Examples

library(tsibbledata)
olympic_running %>%

model (mean = ETS(Time)) %>%
interpolate(olympic_running)

interpolate.model_mean
Interpolate missing values from a fable model

Description

Applies a model-specific estimation technique to predict the values of missing values in a tsibble,
and replace them.

Usage
S3 method for class 'model_mean'
interpolate(object, new_data, specials, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).

Other arguments passed to methods

Value

A tibble of the same dimension of new_data with missing values interpolated.

interpolate. TSLM 49

Examples

library(tsibbledata)

olympic_running %>%
model (mean = MEAN(Time)) %>%
interpolate(olympic_running)

interpolate.TSLM Interpolate missing values from a fable model

Description

Applies a model-specific estimation technique to predict the values of missing values in a tsibble,
and replace them.

Usage
S3 method for class 'TSLM'
interpolate(object, new_data, specials, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).

Other arguments passed to methods

Value

A tibble of the same dimension of new_data with missing values interpolated.

Examples

library(tsibbledata)

olympic_running %>%
model(1lm = TSLM(Time ~ trend())) %>%
interpolate(olympic_running)

50 IRE VAR

IRF.ARIMA Calculate impulse responses from a fable model

Description

Calculate impulse responses from a fable model

Usage
S3 method for class 'ARIMA'
IRF(x, new_data, specials, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).

Other arguments passed to methods

IRF.VAR Calculate impulse responses from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage
S3 method for class 'VAR'
IRF(x, new_data, specials, impulse = NULL, orthogonal = FALSE, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
impulse A character string specifying the name of the variable that is shocked (the im-

pulse variable).
orthogonal If TRUE, orthogonalised impulse responses will be computed.

Other arguments passed to methods

IREVECM 51

IRF.VECM Calculate impulse responses from a fable model

Description

Simulates future paths from a dataset using a fitted model. Innovations are sampled by the model’s
assumed error distribution. If bootstrap is TRUE, innovations will be sampled from the model’s
residuals. If new_data contains the . innov column, those values will be treated as innovations.

Usage
S3 method for class 'VECM'
IRF(x, new_data, specials, impulse = NULL, orthogonal = FALSE, ...)
Arguments
X A fitted model.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
impulse A character string specifying the name of the variable that is shocked (the im-

pulse variable).
orthogonal If TRUE, orthogonalised impulse responses will be computed.

Other arguments passed to methods

MEAN Mean models

Description

MEAN() returns an iid model applied to the formula’s response variable.

Usage
MEAN(formula, ...)
Arguments
formula Model specification.
Not used.
Value

A model specification.

52 NNETAR

Specials
window: The window special is used to specify a rolling window for the mean.

window(size = NULL)

size The size (number of observations) for the rolling window. If NULL (default), a rolling window will not be used.

See Also

Forecasting: Principles and Practices, Some simple forecasting methods (section 3.2)

Examples

library(tsibbledata)
vic_elec %>%
model (avg = MEAN(Demand))

NNETAR Neural Network Time Series Forecasts

Description

Feed-forward neural networks with a single hidden layer and lagged inputs for forecasting univariate
time series.

Usage
NNETAR(formula, n_nodes = NULL, n_networks = 20, scale_inputs = TRUE, ...)
Arguments
formula Model specification (see "Specials" section).
n_nodes Number of nodes in the hidden layer. Default is half of the number of input
nodes (including external regressors, if given) plus 1.
n_networks Number of networks to fit with different random starting weights. These are

then averaged when producing forecasts.

scale_inputs If TRUE, inputs are scaled by subtracting the column means and dividing by
their respective standard deviations. Scaling is applied after transformations.

Other arguments passed to nnet: :nnet().

https://otexts.com/fpp3/simple-methods.html

NNETAR 53

Details

A feed-forward neural network is fitted with lagged values of the response as inputs and a single
hidden layer with size nodes. The inputs are for lags 1 to p, and lags m to mP where m is the seasonal
period specified.

If exogenous regressors are provided, its columns are also used as inputs. Missing values are cur-
rently not supported by this model. A total of repeats networks are fitted, each with random
starting weights. These are then averaged when computing forecasts. The network is trained for
one-step forecasting. Multi-step forecasts are computed recursively.

For non-seasonal data, the fitted model is denoted as an NNAR(p,k) model, where k is the num-
ber of hidden nodes. This is analogous to an AR(p) model but with non-linear functions. For
seasonal data, the fitted model is called an NNAR(p,P,k)[m] model, which is analogous to an
ARIMA(p,0,0)(P,0,0)[m] model but with non-linear functions.

Value

A model specification.

Specials

AR: The AR special is used to specify auto-regressive components in each of the nodes of the
neural network.

AR(p = NULL, P = 1, period = NULL)

p The order of the non-seasonal auto-regressive (AR) terms. If p = NULL, an optimal number of lags will be selected fc
P The order of the seasonal auto-regressive (SAR) terms.
period The periodic nature of the seasonality. This can be either a number indicating the number of observations in each se

xreg: Exogenous regressors can be included in an NNETAR model without explicitly using the
xreg() special. Common exogenous regressor specials as specified in common_xregs can also be
used. These regressors are handled using stats: :model. frame(), and so interactions and other
functionality behaves similarly to stats: :1m().

xreg(...)

Bare expressions for the exogenous regressors (such as log(x))

See Also

Forecasting: Principles and Practices, Neural network models (section 11.3)

Examples

as_tsibble(airmiles) %>%
model (nn = NNETAR(box_cox(value, 0.15)))

https://otexts.com/fpp2/nnetar.html

54

refit. AR

refit.AR

Refit an AR model

Description

Applies a fitted AR model to a new dataset.

Usage
S3 method for class 'AR'
refit(object, new_data, specials = NULL, reestimate = FALSE, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).
reestimate If TRUE, the coefficients for the fitted model will be re-estimated to suit the new
data.
Other arguments passed to methods
Value
A refitted model.
Examples

lung_deaths_male <- as_tsibble(mdeaths)
lung_deaths_female <- as_tsibble(fdeaths)

fit <- lung_deaths_male %>%
model (AR(value ~ 1 + order(10)))

report(fit)

fit %>%

refit(lung_deaths_female) %>%

report()

refit ARIMA 55

refit.ARIMA Refit an ARIMA model

Description

Applies a fitted ARIMA model to a new dataset.

Usage
S3 method for class 'ARIMA'
refit(object, new_data, specials = NULL, reestimate = FALSE, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).
reestimate If TRUE, the coefficients for the fitted model will be re-estimated to suit the new
data.

Other arguments passed to methods

Value

A refitted model.

Examples

lung_deaths_male <- as_tsibble(mdeaths)
lung_deaths_female <- as_tsibble(fdeaths)

fit <- lung_deaths_male %>%
model (ARIMA(value ~ 1 + pdq(2, @, @) + PDQ(2, 1, 0)))

report(fit)
fit %>%

refit(lung_deaths_female) %>%
report()

56 refit. ETS
refit.ETS Refit an ETS model
Description
Applies a fitted ETS model to a new dataset.
Usage
S3 method for class 'ETS'
refit(
object,
new_data,
specials = NULL,
reestimate = FALSE,
reinitialise = TRUE,
)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools:: forecast.mdl_df()).
reestimate If TRUE, the coefficients for the fitted model will be re-estimated to suit the new
data.

reinitialise If TRUE, the initial parameters will be re-estimated to suit the new data.

Other arguments passed to methods

Examples

lung_deaths_male <- as_tsibble(mdeaths)
lung_deaths_female <- as_tsibble(fdeaths)

fit <- lung_deaths_male %>%
model (ETS(value))

report(fit)

fit %>%

refit(lung_deaths_female, reinitialise = TRUE) %>%

report()

refit. model_mean 57

refit.model_mean Refit a MEAN model

Description

Applies a fitted average method model to a new dataset.

Usage
S3 method for class 'model_mean'
refit(object, new_data, specials = NULL, reestimate = FALSE, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
reestimate If TRUE, the mean for the fitted model will be re-estimated to suit the new data.

Other arguments passed to methods

Examples

lung_deaths_male <- as_tsibble(mdeaths)
lung_deaths_female <- as_tsibble(fdeaths)

fit <- lung_deaths_male %>%
model (MEAN(value))

report(fit)
fit %>%

refit(lung_deaths_female) %>%
report()

refit.NNETAR Refit a NNETAR model

Description

Applies a fitted NNETAR model to a new dataset.

Usage

S3 method for class 'NNETAR'
refit(object, new_data, specials = NULL, reestimate = FALSE, ...)

58

Arguments

object
new_data

specials
reestimate

Value

A refitted model.

Examples

refit. RW

A model for which forecasts are required.

A tsibble containing the time points and exogenous regressors to produce fore-
casts for.

(passed by fabletools: :forecast.mdl_df()).

If TRUE, the networks will be initialized with random starting weights to suit the
new data. If FALSE, for every network the best individual set of weights found
in the pre-estimation process is used as the starting weight vector.

Other arguments passed to methods

lung_deaths_male <- as_tsibble(mdeaths)
lung_deaths_female <- as_tsibble(fdeaths)

fit <- lung_deaths_male %>%
model (NNETAR(value))

report(fit)

fit %>%

refit(new_data

report()

= lung_deaths_female, reestimate = FALSE) %>%

refit.RW

Refit a lag walk model

Description

Applies a fitted random walk model to a new dataset.

Usage
S3 method for class 'RW'
refit(object, new_data, specials = NULL, reestimate = FALSE, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
reestimate If TRUE, the lag walk model will be re-estimated to suit the new data.

Other arguments passed to methods

refit. TSLM 59

Details

The models NAIVE and SNAIVE have no specific model parameters. Using refit for one of these
models will provide the same estimation results as one would use fabletools: :model (NAIVE(...))
(or fabletools: :model (SNAIVE(...)).

Examples

lung_deaths_male <- as_tsibble(mdeaths)
lung_deaths_female <- as_tsibble(fdeaths)

fit <- lung_deaths_male %>%
model (RW(value ~ drift()))

report(fit)
fit %>%

refit(lung_deaths_female) %>%
report()

refit.TSLM Refit a TSLM

Description

Applies a fitted TSLM to a new dataset.

Usage
S3 method for class 'TSLM'
refit(object, new_data, specials = NULL, reestimate = FALSE, ...)
Arguments
object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.
specials (passed by fabletools: :forecast.mdl_df()).
reestimate If TRUE, the coefficients for the fitted model will be re-estimated to suit the new
data.

Other arguments passed to methods

60

Examples

lung_deaths_male <- as_tsibble(mdeaths)
lung_deaths_female <- as_tsibble(fdeaths)

fit <- lung_deaths_male %>%
model (TSLM(value ~ trend() + season()))

report(fit)
fit %>%

refit(lung_deaths_female) %>%
report()

residuals.AR

residuals.AR Extract residuals from a fable model

Description

Extracts the residuals.

Usage

S3 method for class 'AR'

residuals(object, type = c("innovation”, "regression"),
Arguments

object A model for which forecasts are required.

type The type of residuals to extract.

Other arguments passed to methods

Value

A vector of fitted residuals.

Examples

as_tsibble(lh) %>%
model (AR(value ~ order(3))) %>%
residuals()

residuals. ARIMA

61

residuals.ARIMA Extract residuals from a fable model

Description

Extracts the residuals.

Usage

S3 method for class 'ARIMA'

residuals(object, type = c("innovation”, "regression”), ...)
Arguments

object A model for which forecasts are required.

type The type of residuals to extract.

Other arguments passed to methods

Value

A vector of fitted residuals.

Examples

USAccDeaths %>%
as_tsibble() %>%
model(arima = ARIMA(log(value) ~ pdq(@, 1, 1) + PDQ(Q, 1, 1))) %>%
residuals()

residuals.croston Extract residuals from a fable model

Description

Extracts the residuals.

Usage
S3 method for class 'croston'
residuals(object, ...)

Arguments
object A model for which forecasts are required.

Other arguments passed to methods

62

Value

A vector of fitted residuals.

Examples

library(tsibble)

sim_poisson <- tsibble(
time = yearmonth("”2012 Dec"”) + seq_len(24),
count = rpois(24, lambda = 0.3),
index = time

)

sim_poisson %>%
model (CROSTON(count)) %>%
residuals()

residuals.ETS

residuals.ETS Extract residuals from a fable model

Description

Extracts the residuals.

Usage
S3 method for class 'ETS'
residuals(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted residuals.

Examples

as_tsibble(USAccDeaths) %>%
model (ets = ETS(log(value) ~ season("A"))) %>%
residuals()

residuals.fable_theta 63

residuals.fable_theta Extract residuals from a fable model

Description

Extracts the residuals.

Usage
S3 method for class 'fable_theta'
residuals(object, ...)

Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted residuals.

Examples

library(tsibbledata)

vic_elec %>%
model (avg = MEAN(Demand)) %>%
residuals()

residuals.model_mean Extract residuals from a fable model

Description

Extracts the residuals.

Usage
S3 method for class 'model_mean'
residuals(object, ...)

Arguments
object A model for which forecasts are required.

Other arguments passed to methods

64

Value

A vector of fitted residuals.

Examples

library(tsibbledata)

vic_elec %>%
model (avg = MEAN(Demand)) %>%
residuals()

residuals. NNETAR

residuals.NNETAR Extract residuals from a fable model

Description

Extracts the residuals.

Usage
S3 method for class 'NNETAR'
residuals(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted residuals.

Examples

as_tsibble(airmiles) %>%
model (nn = NNETAR(box_cox(value, 0.15))) %>%
residuals()

residuals. RW 65

residuals.RW Extract residuals from a fable model

Description

Extracts the residuals.

Usage
S3 method for class 'RW'
residuals(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted residuals.

Examples

as_tsibble(Nile) %>%
model (NAIVE(value)) %>%
residuals()

library(tsibbledata)

aus_production %>%
model (snaive = SNAIVE(Beer ~ lag("year"))) %>%
residuals()

residuals.TSLM Extract residuals from a fable model

Description

Extracts the residuals.

Usage

S3 method for class 'TSLM'
residuals(object, ...)

66 residuals. VAR

Arguments
object A model for which forecasts are required.
Other arguments passed to methods
Value

A vector of fitted residuals.

Examples

as_tsibble(USAccDeaths) %>%
model (Im = TSLM(log(value) ~ trend() + season())) %>%
residuals()

residuals.VAR Extract residuals from a fable model

Description

Extracts the residuals.

Usage
S3 method for class 'VAR'
residuals(object, ...)
Arguments
object A model for which forecasts are required.

Other arguments passed to methods

Value

A vector of fitted residuals.

Examples

lung_deaths <- cbind(mdeaths, fdeaths) %>%
as_tsibble(pivot_longer = FALSE)

lung_deaths %>%
model (VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
residuals()

RW 67

RW Random walk models

Description

RW() returns a random walk model, which is equivalent to an ARIMA(0,1,0) model with an optional
drift coefficient included using drift(). naive() is simply a wrapper to rwf () for simplicity.
snaive() returns forecasts and prediction intervals from an ARIMA(0,0,0)(0,1,0)m model where
m is the seasonal period.

Usage

RW(formula, ...)
NAIVE(formula, ...)

SNAIVE(formula, ...)

Arguments

formula Model specification (see "Specials" section).

Not used.

Details
The random walk with drift model is
Yi=c+Yi1+ 2
where Z; is a normal iid error. Forecasts are given by
Y, (h) =ch+Y,

. If there is no drift (as in naive), the drift parameter c=0. Forecast standard errors allow for
uncertainty in estimating the drift parameter (unlike the corresponding forecasts obtained by fitting
an ARIMA model directly).

The seasonal naive model is
Yi=Ym+2Z;

where Z; is a normal iid error.

Value

A model specification.

68 THETA

Specials

lag: The lag special is used to specify the lag order for the random walk process. If left out, this
special will automatically be included.

lag(lag = NULL)
lag The lag order for the random walk process. If 1ag = m, forecasts will return the observation from m time periods ago. Thi

drift: The drift special can be used to include a drift/trend component into the model. By
default, drift is not included unless drift() is included in the formula.

drift(drift = TRUE)
drift Ifdrift=TRUE, a drift term will be included in the model.

See Also

Forecasting: Principles and Practices, Some simple forecasting methods (section 3.2)

Examples

library(tsibbledata)
aus_production %>%
model (rw = RW(Beer ~ drift()))

as_tsibble(Nile) %>%
model (NAIVE(value))
library(tsibbledata)
aus_production %>%
model(snaive = SNAIVE(Beer ~ lag("year")))

THETA Theta method

Description

The theta method of Assimakopoulos and Nikolopoulos (2000) is equivalent to simple exponential
smoothing with drift. This is demonstrated in Hyndman and Billah (2003).

Usage
THETA(formula, ...)
Arguments
formula Model specification.

Not used.

https://otexts.com/fpp3/simple-methods.html

THETA 69

Details

The series is tested for seasonality using the test outlined in A&N. If deemed seasonal, the series is
seasonally adjusted using a classical multiplicative decomposition before applying the theta method.
The resulting forecasts are then reseasonalized.

More general theta methods are available in the forecTheta package.

Value

A model specification.

Specials

season: The season special is used to specify the parameters of the seasonal adjustment via
classical decomposition.

season(period = NULL, method = c("multiplicative”, "additive"))

period The periodic nature of the seasonality. This can be either a number indicating the number of observations in each se
method The type of classical decomposition to apply. The original Theta method always used multiplicative seasonal decon

Author(s)
Rob J Hyndman, Mitchell O’Hara-Wild

References

Assimakopoulos, V. and Nikolopoulos, K. (2000). The theta model: a decomposition approach to
forecasting. International Journal of Forecasting 16, 521-530.

Hyndman, R.J., and Billah, B. (2003) Unmasking the Theta method. International J. Forecasting,
19, 287-290.

Examples

Theta method with transform

deaths <- as_tsibble(USAccDeaths)

deaths %>%
model (theta = THETA(log(value))) %>%
forecast(h = "4 years") %>%
autoplot(deaths)

Compare seasonal specifications

library(tsibbledata)
library(dplyr)
aus_retail %>%
filter(Industry == "Clothing retailing”) %>%
model (theta_multiplicative = THETA(Turnover ~ season(method = "multiplicative”)),

theta_additive = THETA(Turnover ~ season(method = "additive"”))) %>%
accuracy()

70

tidy. ARIMA

tidy.AR Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.

Usage

S3 method for class 'AR'

tidy(x, ...)
Arguments

X An object to be converted into a tidy tibble::tibble().

Additional arguments to tidying method.

Value

The model’s coefficients in a tibble.
Examples

as_tsibble(lh) %>%

model (AR(value ~ order(3))) %>%
tidy ()
tidy.ARIMA Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.
Usage

S3 method for class 'ARIMA'

tidy(x, ...)
Arguments

X An object to be converted into a tidy tibble::tibble().

Additional arguments to tidying method.

tidy.croston

Value

The model’s coefficients in a tibble.

Examples

USAccDeaths %>%
as_tsibble() %>%
model(arima = ARIMA(log(value) ~ pdq(@, 1, 1) + PDQ(Q, 1, 1))) %>%
tidy()

71

tidy.croston Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.

Usage
S3 method for class 'croston'
tidy(x, ...)
Arguments
X An object to be converted into a tidy tibble::tibble().
Additional arguments to tidying method.
Value

The model’s coefficients in a tibble.

Examples

library(tsibble)

sim_poisson <- tsibble(
time = yearmonth("”2012 Dec") + seq_len(24),
count = rpois(24, lambda = 0.3),
index = time

)

sim_poisson %>%
model (CROSTON(count)) %>%
tidy()

72 tidy.fable_theta
tidy.ETS Tidy a fable model
Description
Returns the coefficients from the model in a tibble format.
Usage
S3 method for class 'ETS'
tidy(x, ...)
Arguments
X An object to be converted into a tidy tibble::tibble().
Additional arguments to tidying method.
Value
The model’s coefficients in a tibble.
Examples
as_tsibble(USAccDeaths) %>%
model (ets = ETS(log(value) ~ season("A"))) %>%
tidy()
tidy.fable_theta Tidy a fable model
Description
Returns the coefficients from the model in a tibble format.
Usage
S3 method for class 'fable_theta'
tidy(x, ...)
Arguments
X An object to be converted into a tidy tibble::tibble().

Additional arguments to tidying method.

tidy.model_mean

Value

The model’s coefficients in a tibble.

Examples

USAccDeaths %>%
as_tsibble() %>%
model (arima = ARIMA(log(value) ~ pdq(@, 1, 1) + PDQ(@, 1, 1))) %>%
tidy()

73

tidy.model_mean Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.

Usage
S3 method for class 'model_mean'
tidy(x, ...)
Arguments
X An object to be converted into a tidy tibble: :tibble().
Additional arguments to tidying method.
Value

The model’s coefficients in a tibble.

Examples

library(tsibbledata)

vic_elec %>%
model (avg = MEAN(Demand)) %>%
tidy()

74

tidy.RW

tidy.NNETAR Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.

Usage

S3 method for class 'NNETAR'

tidy(x, ...)
Arguments

X An object to be converted into a tidy tibble::tibble().

Additional arguments to tidying method.

Value

The model’s coefficients in a tibble.
Examples

as_tsibble(airmiles) %>%

model(nn = NNETAR(box_cox(value, 0.15))) %>%
tidy ()
tidy.RW Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.
Usage

S3 method for class 'RW'

tidy(x, ...)
Arguments

X An object to be converted into a tidy tibble::tibble().

Additional arguments to tidying method.

tidy. TSLM

Value

The model’s coefficients in a tibble.

Examples

as_tsibble(Nile) %>%
model (NAIVE(value)) %>%
tidy()

library(tsibbledata)

aus_production %>%
model (snaive = SNAIVE(Beer ~ lag("year"))) %>%
tidy()

75

tidy.TSLM Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.

Usage
S3 method for class 'TSLM'
tidy(x, ...)
Arguments
X An object to be converted into a tidy tibble
Additional arguments to tidying method.
Value

The model’s coefficients in a tibble.

Examples

as_tsibble(USAccDeaths) %>%
model(1lm = TSLM(log(value) ~ trend() + season())) %>%
tidy()

::tibble().

76 TSLM

tidy.VAR Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.

Usage
S3 method for class 'VAR'
tidy(x, ...)
Arguments
X An object to be converted into a tidy tibble: :tibble().
Additional arguments to tidying method.
Value

The model’s coefficients in a tibble.

Examples

lung_deaths <- cbind(mdeaths, fdeaths) %>%
as_tsibble(pivot_longer = FALSE)

lung_deaths %>%
model (VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
tidy()

TSLM Fit a linear model with time series components

Description

The model formula will be handled using stats::model.matrix(), and so the the same ap-
proach to include interactions in stats::1m() applies when specifying the formula. In addition
to stats::1m(), it is possible to include common_xregs in the model formula, such as trend(),
season(), and fourier().

Usage
TSLM(formula)

Arguments

formula Model specification.

unitroot_options 77

Value

A model specification.

Specials

xreg: Exogenous regressors can be included in a TSLM model without explicitly using the
xreg() special. Common exogenous regressor specials as specified in common_xregs can also be
used. These regressors are handled using stats: :model.frame(), and so interactions and other
functionality behaves similarly to stats: :1m().

xreg(...)

Bare expressions for the exogenous regressors (such as log(x))

See Also

stats::1m(), stats::model.matrix() Forecasting: Principles and Practices, Time series regres-
sion models (chapter 6)

Examples

as_tsibble(USAccDeaths) %>%
model (Im = TSLM(log(value) ~ trend() + season()))

library(tsibbledata)
olympic_running %>%
model (TSLM(Time ~ trend())) %>%
interpolate(olympic_running)

unitroot_options Options for the unit root tests for order of integration

Description

By default, a kpss test (via feasts::unitroot_kpss()) will be performed for testing the re-
quired first order differences, and a test of the seasonal strength (via feasts::feat_stl() sea-
sonal_strength) being above the 0.64 threshold is used for determining seasonal required differ-
ences.

Usage

unitroot_options(
ndiffs_alpha = 0.05,
nsdiffs_alpha = 0.05,
ndiffs_pvalue = ~feasts::unitroot_kpss(.)["kpss_pvalue"],
nsdiffs_pvalue = ur_seasonal_strength(@.64)

https://otexts.com/fpp3/regression.html
https://otexts.com/fpp3/regression.html

78 VAR

Arguments

ndiffs_alpha, nsdiffs_alpha
The level for the test specified in the pval functions. As long as pval < alpha,
differences will be added.

ndiffs_pvalue, nsdiffs_pvalue

A function (or lambda expression) that provides a p-value for the unit root test.
As long as pval < alpha, differences will be added.

For the function for the seasonal p-value, the seasonal period will be provided
as the . period argument to this function. A vector of data to test is available as
. Or .X.

Value

A list of parameters

VAR Estimate a VAR model

Description

Searches through the vector of lag orders to find the best VAR model which has lowest AIC, AICc
or BIC value. It is implemented using OLS per equation.

Usage
VAR(formula, ic = c("aicc”, "aic"”, "bic"), ...)
Arguments
formula Model specification (see "Specials" section).
ic The information criterion used in selecting the model.
Further arguments for arima
Details

Exogenous regressors and common_xregs can be specified in the model formula.

Value

A model specification.

VARIMA 79

Specials
AR: The AR special is used to specify the lag order for the auto-regression.

AR(p = 0:5)

p The order of the auto-regressive (AR) terms. If multiple values are provided, the one which minimises ic will be chosen.

xreg: Exogenous regressors can be included in an VAR model without explicitly using the
xreg() special. Common exogenous regressor specials as specified in common_xregs can also be
used. These regressors are handled using stats: :model. frame(), and so interactions and other
functionality behaves similarly to stats: :1m().

The inclusion of a constant in the model follows the similar rules to stats: : 1m(), where includ-
ing 1 will add a constant and @ or -1 will remove the constant. If left out, the inclusion of a
constant will be determined by minimising ic.

xreg(...)

Bare expressions for the exogenous regressors (such as log(x))

See Also

Forecasting: Principles and Practices, Vector autoregressions (section 11.2)

Examples

lung_deaths <- cbind(mdeaths, fdeaths) %>%
as_tsibble(pivot_longer = FALSE)

fit <- lung_deaths %>%
model (VAR(vars(mdeaths, fdeaths) ~ AR(3)))

report(fit)
fit %>%

forecast() %>%
autoplot (lung_deaths)

VARIMA Estimate a VARIMA model

Description

Estimates a VARIMA model of a given order.

https://otexts.com/fpp2/VAR.html

80

Usage

VARIMA(formula, identification = NULL,

S3 method for class 'VARIMA'
forecast(

object,

new_data = NULL,

specials = NULL,

bootstrap = FALSE,

times = 5000,
)
S3 method for class 'VARIMA'
fitted(object, ...)
S3 method for class 'VARIMA'
residuals(object, ...)
S3 method for class 'VARIMA'
tidy(x, ...)
S3 method for class 'VARIMA'
glance(x, ...)
S3 method for class 'VARIMA'
report(object, ...)
S3 method for class 'VARIMA'
generate(x, new_data, specials, ...)
S3 method for class 'VARIMA'

IRF(x, new_data, specials, impulse =

Arguments

formula Model specification (see "Specials" section).

.2

NULL, orthogonal = FALSE,

VARIMA

identification The identification technique used to estimate the model. Possible options in-
clude NULL (automatic selection), "kronecker_indices" (Kronecker index iden-
tification), and "scalar_components" (scalar component identification). More

details can be found in the "Identification" section below.

Further arguments for arima

object A model for which forecasts are required.
new_data A tsibble containing the time points and exogenous regressors to produce fore-
casts for.

specials (passed by fabletools:: forecast.mdl_df()).

VARIMA 81

bootstrap If TRUE, then forecast distributions are computed using simulation with resam-
pled errors.

times The number of sample paths to use in estimating the forecast distribution when
bootstrap = TRUE.

X A fitted model.

impulse A character string specifying the name of the variable that is shocked (the im-
pulse variable).

orthogonal If TRUE, orthogonalised impulse responses will be computed.

Details

Exogenous regressors and common_xregs can be specified in the model formula.

Value

A model specification.

A one row tibble summarising the model’s fit.

Specials

pdq: The pdq special is used to specify non-seasonal components of the model.

pdg(p = 0:5, d = 0:2, q = 0:5)

The order of the non-seasonal auto-regressive (AR) terms. If multiple values are provided, the one which minimises ic wi

The order of integration for non-seasonal differencing. If multiple values are provided, one of the values will be selected v
g The order of the non-seasonal moving average (MA) terms. If multiple values are provided, the one which minimises ic v

o ©

xreg: Exogenous regressors can be included in an VARIMA model without explicitly using the
xreg() special. Common exogenous regressor specials as specified in common_xregs can also be
used. These regressors are handled using stats: :model.frame(), and so interactions and other
functionality behaves similarly to stats: :1m().

The inclusion of a constant in the model follows the similar rules to stats: : 1m(), where includ-
ing 1 will add a constant and @ or -1 will remove the constant. If left out, the inclusion of a
constant will be determined by minimising ic.

xreg(...)

Bare expressions for the exogenous regressors (such as log(x))

Identification

Kronecker indices ("kronecker_indices”, the default): Determines the structural complexity
and degrees of freedom in a VARIMA model by analysing the singularities in the polynomial
matrices.

Kronecker indices represent the structural properties of the VARIMA system, focusing on the
relationship between system inputs and outputs. These indices define the minimal realisation

82

VARIMA

of the model, helping to determine the order and complexity of each equation in the system.
They are particularly suited for capturing dynamic dependencies in multivariate systems with
cointegrated processes. This is particularly useful for understanding system-wide dependencies
and cointegrating relationships, however it is computationally intensive for models with many
variables.

Scalar components ("scalar_components”): Simplifies VARIMA models by identifying uni-
variate "scalar components" that combine linear combinations of variables into simpler sub-
models. This uses canonical correlation analysis (CCA) to find linear combinations of variables
with minimal lag orders. These combinations are then modeled as simpler ARIMA processes re-
ducing the complexity and dimensionality of the full VARIMA model. This is particularly useful
for identifying models with many variables, however it assumes good separability of the compo-
nents.

No identification ("none”): Directly estimates the model as specified by p, d, and q. This allows
all coefficients up to lag p and q (for the AR and MA components) to be freely estimated. This
can be problematic as the estimation of parameters without identification is not unique.

Identification is necessary for VARIMA models to ensure that the model is parsimonious, unique,
and interpretable. Without proper identification, the model can become overly complex, redun-
dant, or ambiguous, making estimation and interpretation challenging.

For a more detailed comparison of identification methods, refer to Athanasopoulos et al (2012).

References

Athanasopoulos, George, D. S. Poskitt, and Farshid Vahid. "Two Canonical VARMA Forms: Scalar
Component Models Vis-a-Vis the Echelon Form." Econometric Reviews 31, no. 1 (January 2012):
60-83. https://doi.org/10.1080/07474938.2011.607088.

See Also

MTS: :VARMA(), MTS: :Kronfit().

Examples

The MTS package is required for VARIMA models
Install it with: install.packages("MTS")

library(tsibbledata)
library(MTS)

aus_production %>%
autoplot(vars(Beer, Cement))

fit <- aus_production %>%
model (VARIMA(vars(Beer, Cement) ~ pdq(4,1,1), identification = "none"))

fit

VECM 83

fit %>%
forecast(h = 50) %>%
autoplot(tail(aus_production, 100))

fitted(fit)

residuals(fit)

tidy(fit)

glance(fit)

report(fit)

generate(fit, h = 10)

IRF(fit, h = 10, impulse = "Beer")

VECM Estimate a VECM model

Description

Searches through the vector of lag orders to find the best VECM model which has lowest AIC, AICc
or BIC value. The model is estimated using the Johansen procedure (maximum likelihood).

Usage

VECM(formula, ic = c("aicc”, "aic”, "bic"), r =1L, ...)
Arguments

formula Model specification (see "Specials" section).

ic The information criterion used in selecting the model.

r The number of cointegrating relationships

Further arguments for arima

Details

Exogenous regressors and common_xregs can be specified in the model formula.

Value

A model specification.

Specials

AR: The AR special is used to specify the lag order for the auto-regression.
AR(p = 0:5)

p The order of the auto-regressive (AR) terms. If multiple values are provided, the one which minimises ic will be chosen.

84 VECM

xreg: Exogenous regressors can be included in an VECM model without explicitly using the
xreg() special. Common exogenous regressor specials as specified in common_xregs can also be
used. These regressors are handled using stats: :model. frame(), and so interactions and other
functionality behaves similarly to stats::1m().

The inclusion of a constant in the model follows the similar rules to stats: : 1m(), where includ-
ing 1 will add a constant and @ or -1 will remove the constant. If left out, the inclusion of a
constant will be determined by minimising ic.

xreg(...)

Bare expressions for the exogenous regressors (such as log(x))

Examples
lung_deaths <- cbind(mdeaths, fdeaths) %>%
as_tsibble(pivot_longer = FALSE)

fit <- lung_deaths %>%
model (VECM(vars(mdeaths, fdeaths) ~ AR(3)))

report(fit)
fit %>%

forecast() %>%
autoplot (lung_deaths)

Index

AR, 4
ARFIMA S5
ARIMA, 7
arima, 9
ARIMAQ), 6, 7

breusch_godfrey, 11

common_xregs, 4, 7, 10, 53, 76-79, 81, 83, 84
components.ETS, 11
CROSTON, 12

drift (RW), 67
ETS, 14

fabletools: :dable(), 1/
fabletools: : forecast.mdl_df (), 23-34,
36, 38, 39,47-51, 54-59, 80
fabletools: :generate.mdl_df, 33-39
fabletools::interpolate(), 15
feasts::feat_stl(), 77
feasts::unitroot_kpss(), 77
fitted.AR, 16
fitted.ARIMA, 17
fitted.croston, 17
fitted.ETS, 18
fitted.fable_theta, 19
fitted.model_mean, 19
fitted.NNETAR, 20
fitted.RW, 21
fitted.TSLM, 21
fitted.VAR, 22
fitted.VARIMA (VARIMA), 79
forecast.AR, 23
forecast.ARIMA, 24
forecast.croston, 25
forecast.ETS, 25
forecast.fable_theta, 26
forecast.model_mean, 27
forecast.NNETAR, 28

85

forecast.RW, 29
forecast.TSLM, 31
forecast.VAR, 32
forecast.VARIMA (VARIMA), 79
forecast::Arima(), 8
fracdiff::fracdiff(), 5-7

generate.AR, 33
generate.ARIMA, 33
generate.ETS, 34
generate.model_mean, 35
generate.NNETAR, 36
generate.RW, 36
generate.TSLM, 37
generate.VAR, 38
generate.VARIMA (VARIMA), 79
generate.VECM, 39

glance.
glance.
.ETS, 41
glance.
glance.
glance.
glance.
glance.
glance.
glance.
.VECM, 46

glance

glance

AR, 40
ARIMA, 40

fable_theta, 42
model_mean, 43
NNETAR, 43

RW, 44

TSLM, 45

VAR, 45

VARIMA (VARIMA), 79

interpolate.ARIMA, 47
interpolate.ETS, 47
interpolate.model_mean, 48
interpolate.TSLM, 49
IRF.ARIMA, 50

IRF.VAR, 50

IRF.VARIMA (VARIMA), 79
IRF.VECM, 51

Imtest:

MEAN, 51

:bgtest(), 11

86

MTS: :Kronfit(), 82
MTS: : VARMA(), 82

NAIVE (RW), 67

nnet::

nnet(), 52

NNETAR, 52

PDQ (ARIMA), 7
pdq (ARIMA), 7

refit.
.ARIMA, 55
refit.
refit.
refit.
refit.
refit.

refit

AR, 54

ETS, 56
model_mean, 57
NNETAR, 57
RW, 58

TSLM, 59

report.AR (AR), 4
report.ARIMA (ARIMA), 7
report.ETS (ETS), 14
report.fbl_ARFIMA (ARFIMA), 5
report.model_mean (MEAN), 51
report.NNETAR (NNETAR), 52
report.RW (RW), 67
report.TSLM (TSLM), 76
report.VAR (VAR), 78
report.VARIMA (VARIMA), 79
residuals. AR, 60
residuals.ARIMA, 61
residuals.croston, 61
residuals.ETS, 62
residuals.fable_theta, 63
residuals.model_mean, 63
residuals.NNETAR, 64
residuals.RW, 65
residuals.TSLM, 65
residuals. VAR, 66
residuals.VARIMA (VARIMA), 79

RW, 67

SNAIVE (RW), 67

stats:
stats:
stats::1m(), 4, 7, 10, 53,76, 77,79, 81, 84
stats::model.frame(), 4, 7, 10, 53,77, 79

stats: :model.matrix(), 76, 77

THETA,

:ar.ols(), 4
:arima(), 7, 8

81,84

68

tibble::tibble(), 70-76
tidy.AR, 70
tidy.ARIMA, 70
tidy.croston, 71
tidy.ETS, 72
tidy.fable_theta, 72
tidy.model_mean, 73
tidy.NNETAR, 74
tidy.RW, 74
tidy.TSLM, 75
tidy.VAR, 76
tidy.VARIMA (VARIMA), 79
tidyr::fill(), 15

TSLM, 76

unitroot_options, 77
unitroot_options(), 8

VAR, 78
VARIMA, 79
VECM, 83

INDEX

	AR
	ARFIMA
	ARIMA
	breusch_godfrey
	components.ETS
	CROSTON
	ETS
	fitted.AR
	fitted.ARIMA
	fitted.croston
	fitted.ETS
	fitted.fable_theta
	fitted.model_mean
	fitted.NNETAR
	fitted.RW
	fitted.TSLM
	fitted.VAR
	forecast.AR
	forecast.ARIMA
	forecast.croston
	forecast.ETS
	forecast.fable_theta
	forecast.model_mean
	forecast.NNETAR
	forecast.RW
	forecast.TSLM
	forecast.VAR
	generate.AR
	generate.ARIMA
	generate.ETS
	generate.model_mean
	generate.NNETAR
	generate.RW
	generate.TSLM
	generate.VAR
	generate.VECM
	glance.AR
	glance.ARIMA
	glance.ETS
	glance.fable_theta
	glance.model_mean
	glance.NNETAR
	glance.RW
	glance.TSLM
	glance.VAR
	glance.VECM
	interpolate.ARIMA
	interpolate.ETS
	interpolate.model_mean
	interpolate.TSLM
	IRF.ARIMA
	IRF.VAR
	IRF.VECM
	MEAN
	NNETAR
	refit.AR
	refit.ARIMA
	refit.ETS
	refit.model_mean
	refit.NNETAR
	refit.RW
	refit.TSLM
	residuals.AR
	residuals.ARIMA
	residuals.croston
	residuals.ETS
	residuals.fable_theta
	residuals.model_mean
	residuals.NNETAR
	residuals.RW
	residuals.TSLM
	residuals.VAR
	RW
	THETA
	tidy.AR
	tidy.ARIMA
	tidy.croston
	tidy.ETS
	tidy.fable_theta
	tidy.model_mean
	tidy.NNETAR
	tidy.RW
	tidy.TSLM
	tidy.VAR
	TSLM
	unitroot_options
	VAR
	VARIMA
	VECM
	Index

