
Package ‘limorhyde2’
January 20, 2026

Type Package

Title Quantify Rhythmicity and Differential Rhythmicity in Genomic
Data

Version 0.1.1

Description Fit linear models based on periodic splines, moderate model
coefficients using multivariate adaptive shrinkage, then compute properties of
the moderated curves.

URL https://limorhyde2.hugheylab.org,

https://github.com/hugheylab/limorhyde2

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Depends R (>= 3.6)

Imports abind (>= 1.4-5), ashr (>= 2.2-54), checkmate (>= 2.0.0),
data.table (>= 1.12.8), DESeq2 (>= 1.30.0), foreach (>= 1.5.0),
HDInterval (>= 0.2.2), iterators (>= 1.0.12), limma (>=
3.42.2), mashr (>= 0.2.50), pbs (>= 1.1), zeallot (>= 0.1.0)

Suggests cowplot (>= 1.1.1), knitr, doParallel (>= 1.0.15), ggplot2
(>= 3.3.5), glue (>= 1.6.1), rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Jake Hughey [aut, cre],
Dora Obodo [aut],
Elliot Outland [aut]

Maintainer Jake Hughey <jakejhughey@gmail.com>

Repository CRAN

Date/Publication 2026-01-20 10:50:02 UTC

1

https://limorhyde2.hugheylab.org
https://github.com/hugheylab/limorhyde2

2 getDiffRhythmStats

Contents
getDiffRhythmStats . 2
getExpectedMeas . 3
getExpectedMeasIntervals . 5
getModelFit . 6
getPosteriorFit . 8
getPosteriorSamples . 10
getRhythmStats . 11
getStatsIntervals . 12
GSE34018 . 13
GSE54650 . 14
mergeMeasMeta . 15

Index 16

getDiffRhythmStats Compute differential rhythm statistics from fitted models

Description

This function computes differences in rhythmicity between fitted curves for a given pair of condi-
tions.

Usage

getDiffRhythmStats(fit, rhyStats, conds = fit$conds, dopar = TRUE)

Arguments

fit A limorhyde2 object containing data from multiple conditions.

rhyStats A data.table of rhythmic statistics, as returned by getRhythmStats(), for
fitted models in fit.

conds A character vector indicating the conditions to compare pairwise, by default all
conditions in fit.

dopar Logical indicating whether to run calculations in parallel if a parallel backend
is already set up, e.g., using doParallel::registerDoParallel(). Recom-
mended to minimize runtime.

Value

A data.table containing the following differential rhythm statistics:

• mean_mesor

• mean_peak_trough_amp

• mean_rms_amp (only calculated if rms to getRhythmStats() was TRUE)

• diff_mesor

getExpectedMeas 3

• diff_peak_trough_amp

• diff_rms_amp (only calculated if rms to getRhythmStats() was TRUE)

• diff_peak_phase: circular difference between -fit$period/2 and fit$period/2

• diff_trough_phase: circular difference between -fit$period/2 and fit$period/2

• diff_rhy_dist: Euclidean distance between polar coordinates (peak_trough_amp, peak_phase)

• rms_diff_rhy: root mean square difference in mean-centered fitted curves (only calculated
if rms to getRhythmStats() was TRUE)

The stats will be based on the value for cond2 minus the value for cond1. The rows of the
data.table depend on the ’fitType’ attribute of rhyStats:

• ’fitType’ is ’posterior_mean’ or ’raw’: one row per feature per pair of conditions.

• ’fitType’ is ’posterior_samples’: one row per feature per posterior sample per pair of condi-
tions.

See Also

getRhythmStats(), getStatsIntervals()

Examples

library('data.table')

rhythmicity in one condition
y = GSE54650$y
metadata = GSE54650$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)
rhyStats = getRhythmStats(fit, features = c('13170', '13869'))

rhythmicity and differential rhythmicity in multiple conditions
y = GSE34018$y
metadata = GSE34018$metadata

fit = getModelFit(y, metadata, nKnots = 3L, condColname = 'cond')
fit = getPosteriorFit(fit)
rhyStats = getRhythmStats(fit, features = c('13170', '12686'))
diffRhyStats = getDiffRhythmStats(fit, rhyStats)

getExpectedMeas Compute expected measurements from fitted models

Description

This function computes expected measurements (corresponding to the fitted curves) for the specified
times and features in all combinations of conditions and covariates (if they exist).

4 getExpectedMeas

Usage

getExpectedMeas(
fit,
times,
fitType = c("posterior_mean", "posterior_samples", "raw"),
features = NULL,
dopar = TRUE

)

Arguments

fit A ’limorhyde2’ object.

times Numeric vector of times, in units of fit$metadata[[fit$timeColname]].

fitType String indicating which fitted models to use to compute the expected measure-
ments. A typical analysis using limorhyde2 will be based on ’posterior_mean’,
the default.

features Vector of names, row numbers, or logical values for subsetting the features.
NULL indicates all features.

dopar Logical indicating whether to run calculations in parallel if a parallel backend
is already set up, e.g., using doParallel::registerDoParallel(). Recom-
mended to minimize runtime.

Value

A data.table.

See Also

getModelFit(), getPosteriorFit(), getPosteriorSamples(), getExpectedMeasIntervals()

Examples

library('data.table')

y = GSE34018$y
metadata = GSE34018$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)

measObs = mergeMeasMeta(y, metadata, features = c('13170', '12686'))
measFitMean = getExpectedMeas(

fit, times = seq(0, 24, 0.5), features = c('13170', '12686'))

getExpectedMeasIntervals 5

getExpectedMeasIntervals

Compute credible intervals for expected measurements

Description

This functions uses posterior samples to quantify uncertainty in the expected measurements from
fitted models.

Usage

getExpectedMeasIntervals(expectedMeas, mass = 0.9, method = c("eti", "hdi"))

Arguments

expectedMeas A data.table of expected measurements for posterior samples, as returned by
getExpectedMeas().

mass Number between 0 and 1 indicating the probability mass for which to calculate
the intervals.

method String indicating the type of interval: ’eti’ for equal-tailed using stats::quantile(),
or ’hdi’ for highest density using HDInterval::hdi().

Value

A data.table containing lower and upper bounds of the expected measurement for each combina-
tion of feature, time, and possibly condition and covariate.

See Also

getExpectedMeas(), getStatsIntervals()

Examples

library('data.table')

y = GSE34018$y
metadata = GSE34018$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)
fit = getPosteriorSamples(fit, nPosteriorSamples = 10L)

measFitSamps = getExpectedMeas(
fit, times = seq(0, 24, 0.5), fitType = 'posterior_samples',
features = c('13170', '12686'))

measFitInts = getExpectedMeasIntervals(measFitSamps)

6 getModelFit

getModelFit Fit linear models for rhythmicity in one or more conditions

Description

This is the first step in an analysis using limorhyde2, the second is to moderate the fits using
getPosteriorFit().

Usage

getModelFit(
y,
metadata,
period = 24,
nKnots = 3L,
degree = if (nKnots > 2) 3L else 2L,
sinusoid = FALSE,
timeColname = "time",
condColname = NULL,
covarColnames = NULL,
sampleColname = "sample",
nShifts = 3L,
method = c("trend", "voom", "deseq2"),
lmFitArgs = list(),
eBayesArgs = if (method == "trend") list(trend = TRUE) else list(),
DESeqArgs = list(),
keepLmFits = FALSE

)

Arguments

y Matrix-like object of measurements, with rows corresponding to features and
columns to samples.

metadata data.frame containing experimental design information for each sample. Rows
of metadata must correspond to columns of y. Row names are ignored.

period Number specifying the period for the time variable, in the same units as the
values in the timeColname column.

nKnots Number of internal knots for the periodic spline for the time variable.

degree Integer indicating degree of the piecewise polynomial for the spline.

sinusoid Logical indicating whether to fit a cosinor-based model instead of a spline-based
model.

timeColname String indicating the column in metadata containing the time at which each
sample was acquired.

getModelFit 7

condColname String indicating the column in metadata containing the condition in which
each sample was acquired. NULL indicates all samples came from the same con-
dition. If not NULL, the model will include main effects and interactions with the
terms for time.

covarColnames Character vector indicating the columns in metadata containing covariates to
include in the model. NULL indicates no covariates.

sampleColname String indicating the column in metadata containing the name of each sample,
which must correspond to the column names of y.

nShifts Number of shifted models to fit. Only used for periodic splines, not for cosinor.
Do not change from the default unless you know what you’re doing.

method String indicating method to estimate model coefficients. For microarray data,
use ’trend’. For RNA-seq count data, use ’voom’ or ’deseq2’.

lmFitArgs List of arguments passed to limma::lmFit().

eBayesArgs List of arguments passed to limma::eBayes().

DESeqArgs List of arguments passed to DESeq2::DESeq().

keepLmFits Logical indicating whether to keep the complete fit objects from limma or DESeq2.
Not needed by any functions in limorhyde2.

Value

A limorhyde2 object with elements:

• metadata: As supplied above, converted to a data.table.

• timeColname: As supplied above.

• condColname: As supplied above.

• covarColnames: As supplied above.

• coefficients: Matrix with rows corresponding to features and columns to model terms,
including all shifted models.

• shifts: Numeric vector indicating amount by which timepoints were shifted for each shifted
model.

• period: As supplied above.

• conds: If condColname is not NULL, a vector of unique values of the condition variable.

• nKnots: Number of knots.

• degree: As supplied above.

• sinusoid: As supplied above.

• nConds: Number of conditions.

• nCovs: Number of covariates.

• lmFits: If keepLmFits is TRUE, a list of objects from limma or DESeq2, with length equal to
length of the shifts element.

See Also

getPosteriorFit()

8 getPosteriorFit

Examples

library('data.table')

rhythmicity in one condition
y = GSE54650$y
metadata = GSE54650$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)
rhyStats = getRhythmStats(fit, features = c('13170', '13869'))

rhythmicity and differential rhythmicity in multiple conditions
y = GSE34018$y
metadata = GSE34018$metadata

fit = getModelFit(y, metadata, nKnots = 3L, condColname = 'cond')
fit = getPosteriorFit(fit)
rhyStats = getRhythmStats(fit, features = c('13170', '12686'))
diffRhyStats = getDiffRhythmStats(fit, rhyStats)

getPosteriorFit Compute posterior fit for linear models for rhythmicity

Description

This is the second step in an analysis using limorhyde2, the first is to fit linear models using
getModelFit(). This function obtains posterior estimates of coefficients using multivariate adap-
tive shrinkage (mash), which learns patterns in the data and accounts for noise in the original fits.
The defaults for arguments should work well in most cases, so only change them if you know what
you’re doing.

Usage

getPosteriorFit(
fit,
covMethod = c("data-driven", "canonical", "both"),
getSigResArgs = list(),
npc = fit$nKnots,
covEdArgs = list(),
overwrite = FALSE,
...

)

Arguments

fit A limorhyde2 object.

covMethod String indicating the type(s) of covariance matrices to use for the mash fit.

getPosteriorFit 9

getSigResArgs List of arguments passed to mashr::get_significant_results(). Only used
if covMethod is ’data-driven’ or ’both’.

npc Number of principal components passed to mashr::cov_pca(). Only used if
covMethod is ’data-driven’ or ’both’.

covEdArgs List of arguments passed to mashr::cov_ed(). Only used if covMethod is
’data-driven’ or ’both’.

overwrite Logical for whether to recompute the mash fit if it already exists.

... Additional arguments passed to mashr::mash().

Value

A limorhyde2 object containing everything in fit with added or updated elements:

• mashData: list of mash data objects

• mashFits: list of mash fit objects

• mashCoefficients: Matrix of posterior mean coefficients, with rows corresponding to fea-
tures and columns to model terms.

• mashIdx: Vector indicating which model terms were included in the mash fit.

See Also

getModelFit(), getRhythmStats(), getExpectedMeas()

Examples

library('data.table')

rhythmicity in one condition
y = GSE54650$y
metadata = GSE54650$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)
rhyStats = getRhythmStats(fit, features = c('13170', '13869'))

rhythmicity and differential rhythmicity in multiple conditions
y = GSE34018$y
metadata = GSE34018$metadata

fit = getModelFit(y, metadata, nKnots = 3L, condColname = 'cond')
fit = getPosteriorFit(fit)
rhyStats = getRhythmStats(fit, features = c('13170', '12686'))
diffRhyStats = getDiffRhythmStats(fit, rhyStats)

10 getPosteriorSamples

getPosteriorSamples Draw samples from posterior distributions of fitted models

Description

This is an optional step in an analysis using limorhyde2, and is useful for quantifying uncertainty in
posterior estimates of fitted curves and rhythmic statistics. The function calls mashr::mash_compute_posterior_matrices().

Usage

getPosteriorSamples(fit, nPosteriorSamples = 200L, overwrite = FALSE)

Arguments

fit A ‘limorhyde2’ object containing posterior fits.
nPosteriorSamples

Number of samples to draw from each posterior distribution.

overwrite Logical indicating whether to recompute posterior samples if they already exist.

Value

A limorhyde2 object containing everything in fit with added or updated element:

• mashPosteriorSamples: a three-dimensional array of coefficients, with dim 1 corresponding
to features, dim 2 to model terms, and dim 3 to posterior samples.

See Also

getPosteriorFit(), getRhythmStats(), getExpectedMeas(), getStatsIntervals()

Examples

library('data.table')

y = GSE54650$y
metadata = GSE54650$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)
fit = getPosteriorSamples(fit, nPosteriorSamples = 10L)

rhyStatsSamps = getRhythmStats(
fit, features = c('13170', '13869'), fitType = 'posterior_samples')

rhyStatsInts = getStatsIntervals(rhyStatsSamps)

getRhythmStats 11

getRhythmStats Compute rhythm statistics from fitted models

Description

This function uses stats::optim() to compute various properties of fitted curves with respect to
time, potentially in each condition and for each posterior sample, and adjusting for any covariates.

Usage

getRhythmStats(
fit,
fitType = c("posterior_mean", "posterior_samples", "raw"),
features = NULL,
dopar = TRUE,
rms = FALSE

)

Arguments

fit A limorhyde2 object.

fitType String indicating which fitted models to use to compute the rhythmic statistics.
A typical analysis using limorhyde2 will be based on ’posterior_mean’, the
default.

features Vector of names, row numbers, or logical values for subsetting the features.
NULL indicates all features.

dopar Logical indicating whether to run calculations in parallel if a parallel backend
is already set up, e.g., using doParallel::registerDoParallel(). Recom-
mended to minimize runtime.

rms Logical indicating whether to calculate rms_amp.

Value

A data.table containing the following rhythm statistics:

• peak_phase: time between 0 and fit$period at which the peak or maximum value occurs

• peak_value

• trough_phase: time between 0 and fit$period at which the trough or minimum value oc-
curs

• trough_value

• peak_trough_amp: peak_value - trough_value

• rms_amp: root mean square difference between fitted curve and mean value between time 0
and fit$period (only calculated if rms is TRUE)

• mesor: mean value between time 0 and fit$period

12 getStatsIntervals

The rows of the data.table depend on the fit object and fitType:

• fit contains data from one condition and fitType is posterior_mean’ or ’raw’: one row per
feature.

• fit contains data from one condition and fitType is ’posterior_samples’: one row per feature
per posterior sample.

• fit contains data from multiple conditions and fitType is ’posterior_mean’ or ’raw’: one
row per feature per condition.

• fit contains data from multiple conditions and fitType is ’posterior_samples’: one row per
feature per condition per posterior sample.

See Also

getModelFit(), getPosteriorFit(), getPosteriorSamples(), getDiffRhythmStats(), getStatsIntervals()

Examples

library('data.table')

rhythmicity in one condition
y = GSE54650$y
metadata = GSE54650$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)
rhyStats = getRhythmStats(fit, features = c('13170', '13869'))

rhythmicity and differential rhythmicity in multiple conditions
y = GSE34018$y
metadata = GSE34018$metadata

fit = getModelFit(y, metadata, nKnots = 3L, condColname = 'cond')
fit = getPosteriorFit(fit)
rhyStats = getRhythmStats(fit, features = c('13170', '12686'))
diffRhyStats = getDiffRhythmStats(fit, rhyStats)

getStatsIntervals Compute credible intervals for rhythm or differential rhythm statistics

Description

This function uses posterior samples to quantify uncertainty in the properties of fitted curves.

Usage

getStatsIntervals(posteriorStats, mass = 0.9, method = c("eti", "hdi"))

GSE34018 13

Arguments

posteriorStats A data.table of statistics for posterior samples, as returned by getRhythmStats()
or getDiffRhythmStats().

mass Number between 0 and 1 indicating the probability mass for which to calculate
the intervals.

method String indicating the type of interval: ’eti’ for equal-tailed using stats::quantile(),
or ’hdi’ for highest density using HDInterval::hdi().

Value

A data.table containing lower and upper bounds of various statistics for each feature or each
feature-condition pair. For peak_trough_amp and rms_amp, a negative lower bound indicates a
rhythm of the opposite phase.

See Also

getRhythmStats(), getDiffRhythmStats(), getExpectedMeasIntervals()

Examples

library('data.table')

y = GSE54650$y
metadata = GSE54650$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)
fit = getPosteriorSamples(fit, nPosteriorSamples = 10L)

rhyStatsSamps = getRhythmStats(
fit, features = c('13170', '13869'), fitType = 'posterior_samples')

rhyStatsInts = getStatsIntervals(rhyStatsSamps)

GSE34018 Gene expression data for GSE34018

Description

Data are based on total RNA, measured by microarray, obtained from livers of wild-type and liver-
specific Reverb alpha/beta double knockout mice at various times in a 12h:12h light:dark cycle. To
save space and time, the data include only a subset of genes, and so are mainly useful for examples
of how to use limorhyde2.

Usage

GSE34018

14 GSE54650

Format

A list with two elements:

• y: Matrix of normalized, log-transformed expression values. Rows correspond to genes (row-
names are Entrez Gene IDs) and columns to samples.

• metadata: data.table with one row per sample. time is in hours.

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34018

See Also

GSE54650, getModelFit()

GSE54650 Gene expression data for GSE54650

Description

Data are based on total RNA, measured by microarray, obtained from livers of wild-type mice at
various times after transfer to constant darkness. To save space and time, the data include only a
subset of genes, and so are mainly useful for examples of how to use limorhyde2.

Usage

GSE54650

Format

A list with two elements:

• y: Matrix of normalized, log-transformed expression values. Rows correspond to genes (row-
names are Entrez Gene IDs) and columns to samples.

• metadata: data.table with one row per sample. time is in hours.

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54650

See Also

GSE34018, getModelFit()

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34018
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54650

mergeMeasMeta 15

mergeMeasMeta Merge measurements and metadata

Description

This function is useful for plotting time-courses for individual features.

Usage

mergeMeasMeta(y, metadata, features = NULL, sampleColname = "sample")

Arguments

y Matrix-like object of measurements, with rows corresponding to features and
columns to samples.

metadata data.frame containing experimental design information for each sample. Rows
of metadata must correspond to columns of y. Row names are ignored.

features Vector of names, row numbers, or logical values for subsetting the features.
NULL indicates all features.

sampleColname String indicating the column in metadata containing the name of each sample,
which must correspond to the column names of y.

Value

A data.table with one row for each sample-feature pair.

See Also

getExpectedMeas()

Examples

library('data.table')

y = GSE34018$y
metadata = GSE34018$metadata

fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)

measObs = mergeMeasMeta(y, metadata, features = c('13170', '12686'))
measFitMean = getExpectedMeas(

fit, times = seq(0, 24, 0.5), features = c('13170', '12686'))

Index

∗ datasets
GSE34018, 13
GSE54650, 14

DESeq2::DESeq(), 7
doParallel::registerDoParallel(), 2, 4,

11

getDiffRhythmStats, 2
getDiffRhythmStats(), 12, 13
getExpectedMeas, 3
getExpectedMeas(), 5, 9, 10, 15
getExpectedMeasIntervals, 5
getExpectedMeasIntervals(), 4, 13
getModelFit, 6
getModelFit(), 4, 8, 9, 12, 14
getPosteriorFit, 8
getPosteriorFit(), 4, 6, 7, 10, 12
getPosteriorSamples, 10
getPosteriorSamples(), 4, 12
getRhythmStats, 11
getRhythmStats(), 2, 3, 9, 10, 13
getStatsIntervals, 12
getStatsIntervals(), 3, 5, 10, 12
GSE34018, 13, 14
GSE54650, 14, 14

HDInterval::hdi(), 5, 13

limma::eBayes(), 7
limma::lmFit(), 7

mashr::cov_ed(), 9
mashr::cov_pca(), 9
mashr::get_significant_results(), 9
mashr::mash(), 9
mashr::mash_compute_posterior_matrices(),

10
mergeMeasMeta, 15

stats::optim(), 11
stats::quantile(), 5, 13

16

	getDiffRhythmStats
	getExpectedMeas
	getExpectedMeasIntervals
	getModelFit
	getPosteriorFit
	getPosteriorSamples
	getRhythmStats
	getStatsIntervals
	GSE34018
	GSE54650
	mergeMeasMeta
	Index

