
Package ‘modsem’
January 23, 2026

Type Package

Title Latent Interaction (and Moderation) Analysis in Structural
Equation Models (SEM)

Version 1.0.16

Maintainer Kjell Solem Slupphaug <slupphaugkjell@gmail.com>

Description Estimation of interaction (i.e., moderation) effects between latent variables
in structural equation models (SEM).
The supported methods are:
The constrained approach (Algina & Moulder, 2001).
The unconstrained approach (Marsh et al., 2004).
The residual centering approach (Little et al., 2006).
The double centering approach (Lin et al., 2010).
The latent moderated structural equations (LMS) approach (Klein & Moosbrugger, 2000).
The quasi-maximum likelihood (QML) approach (Klein & Muthén, 2007)

The constrained- unconstrained, residual- and double centering- approaches
are estimated via 'lavaan' (Rosseel, 2012), whilst the LMS- and QML- approaches
are estimated via 'modsem' it self. Alternatively model can be
estimated via 'Mplus' (Muthén & Muthén, 1998-2017).
References:
Algina, J., & Moulder, B. C. (2001).

<doi:10.1207/S15328007SEM0801_3>.
``A note on estimating the Jöreskog-

Yang model for latent variable interaction using 'LISREL' 8.3.''
Klein, A., & Moosbrugger, H. (2000).

<doi:10.1007/BF02296338>.
``Maximum likelihood estimation of latent interaction effects with the LMS method.''

Klein, A. G., & Muthén, B. O. (2007).
<doi:10.1080/00273170701710205>.
``Quasi-maximum likelihood estimation of structural equation models with multiple interac-

tion and quadratic effects.''
Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010).

<doi:10.1080/10705511.2010.488999>.
``Structural equation models of latent interactions: Clarification of orthogonalizing and double-

mean-centering strategies.''
Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006).

1

https://doi.org/10.1207/S15328007SEM0801_3
https://doi.org/10.1007/BF02296338
https://doi.org/10.1080/00273170701710205
https://doi.org/10.1080/10705511.2010.488999

2 Contents

<doi:10.1207/s15328007sem1304_1>.
``On the merits of orthogonalizing powered and product terms: Implications for modeling in-

teractions among latent variables.''
Marsh, H. W., Wen, Z., & Hau, K. T. (2004).

<doi:10.1037/1082-989X.9.3.275>.
``Structural equation models of latent interactions: evaluation of alternative estimation strate-

gies and indicator construction.''
Muthén, L.K. and Muthén, B.O. (1998-2017).
``'Mplus' User’s Guide. Eighth Edition.''
<https://www.statmodel.com/>.

Rosseel Y (2012).
<doi:10.18637/jss.v048.i02>.
``'lavaan': An R Package for Structural Equation Modeling.''

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp, purrr, stringr, lavaan, rlang, MplusAutomation, nlme,
dplyr, mvnfast, stats, fastGHQuad, mvtnorm, ggplot2, parallel,
plotly, Deriv, MASS, Amelia, grDevices, cli, RhpcBLASctl

Depends R (>= 4.1.0)

URL https://modsem.org

Suggests knitr, rmarkdown, ggpubr, RColorBrewer

VignetteBuilder knitr

NeedsCompilation yes

Author Kjell Solem Slupphaug [aut, cre] (ORCID:
<https://orcid.org/0009-0005-8324-2834>),

Mehmet Mehmetoglu [ctb] (ORCID:
<https://orcid.org/0000-0002-6092-8551>),

Matthias Mittner [ctb] (ORCID: <https://orcid.org/0000-0003-0205-7353>)

Repository CRAN

Date/Publication 2026-01-23 13:10:02 UTC

Contents
bootstrap_modsem . 3
centered_estimates . 6
colorize_output . 8
compare_fit . 10
default_settings_da . 11
default_settings_pi . 11
estimate_h0 . 12

https://doi.org/10.1207/s15328007sem1304_1
https://doi.org/10.1037/1082-989X.9.3.275
https://www.statmodel.com/
https://doi.org/10.18637/jss.v048.i02
https://modsem.org
https://orcid.org/0009-0005-8324-2834
https://orcid.org/0000-0002-6092-8551
https://orcid.org/0000-0003-0205-7353

bootstrap_modsem 3

extract_lavaan . 13
fit_modsem_da . 14
get_pi_data . 15
get_pi_syntax . 16
is_interaction_model . 17
jordan . 18
modsem . 19
modsemify . 21
modsem_coef . 22
modsem_da . 23
modsem_inspect . 29
modsem_mimpute . 33
modsem_mplus . 34
modsem_nobs . 36
modsem_pi . 36
modsem_predict . 40
modsem_vcov . 42
oneInt . 42
parameter_estimates . 43
plot_interaction . 45
plot_jn . 47
plot_surface . 50
relcorr_single_item . 53
set_modsem_colors . 54
simple_slopes . 56
standardized_estimates . 59
standardize_model . 62
summarize_partable . 63
summary.modsem_da . 64
TPB . 67
TPB_1SO . 67
TPB_2SO . 68
TPB_UK . 69
trace_path . 69
twostep . 71
var_interactions . 72

Index 74

bootstrap_modsem Bootstrap a modsem Model

Description

A generic interface for parametric and non-parametric bootstrap procedures for structural equation
models estimated with the modsem ecosystem. The function dispatches on the class of model;
currently dedicated methods exist for modsem_pi (product-indicator approach) and modsem_da
(distributional-analytic approach).

4 bootstrap_modsem

Usage

bootstrap_modsem(model = modsem, FUN, ...)

S3 method for class 'modsem_pi'
bootstrap_modsem(model, FUN = "coef", ...)

S3 method for class 'modsem_da'
bootstrap_modsem(
model,
FUN = "coef",
R = 1000L,
P.max = 1e+05,
type = c("nonparametric", "parametric"),
verbose = interactive(),
calc.se = FALSE,
optimize = FALSE,
...

)

S3 method for class '`function`'
bootstrap_modsem(
model = modsem,
FUN = "coef",
data,
R = 1000L,
verbose = interactive(),
FUN.args = list(),
cluster.boot = NULL,
...

)

Arguments

model A fitted modsem object, or a function to be bootstrapped (e.g., modsem, modsem_da
and modsem_pi)

FUN A function that returns the statistic of interest when applied to a fitted model.
The function must accept a single argument, the model object, and should ideally
return a numeric vector; see Value.

... Additional arguments forwarded to lavaan::bootstrapLavaan for modsem_pi
objects, or modsem_da for modsem_da objects.

R number of bootstrap replicates.

P.max ceiling for the simulated population size.

type Bootstrap flavour, see Details.

verbose Should progress information be printed to the console?

calc.se Should standard errors for each replicate. Defaults to FALSE.

optimize Should starting values be re-optimized for each replicate. Defaults to FALSE.

bootstrap_modsem 5

data Dataset to be resampled.

FUN.args Arguments passed to FUN

cluster.boot Variable to cluster bootstrapping by

Details

A thin wrapper around lavaan::bootstrapLavaan() that performs the necessary book-keeping
so that FUN receives a fully-featured modsem_pi object—rather than a bare lavaan fit—at every
iteration.

The function internally resamples the observed data (non-parametric case) or simulates from the
estimated parameter table (parametric case), feeds the sample to modsem_da, evaluates FUN on the
refitted object and finally collates the results.

This is a more general version of boostrap_modsem for bootstrapping modsem functions, not mod-
sem objects. model is now a function to be boostrapped, and ... are now passed to the function
(model), not FUN. To pass arguments to FUN use FUN.args.

Value

Depending on the return type of FUN either

numeric A matrix with R rows (bootstrap replicates) and as many columns as length(FUN(model)).

other A list of length R; each element is the raw output of FUN. NOTE: Only applies for modsem_da
objects

Methods (by class)

• bootstrap_modsem(modsem_pi): Bootstrap a modsem_pi model by delegating to bootstrapLavaan.

• bootstrap_modsem(modsem_da): Parametric or non-parametric bootstrap for modsem_da mod-
els.

• bootstrap_modsem(`function`): Non-parametric bootstrap of modsem functions

See Also

bootstrapLavaan, modsem_pi, modsem_da

Examples

m1 <- '
X =~ x1 + x2
Z =~ z1 + z2
Y =~ y1 + y2

Y ~ X + Z + X:Z
'

fit_pi <- modsem(m1, oneInt)
bootstrap_modsem(fit_pi, FUN = coef, R = 10L)

6 centered_estimates

m1 <- '
X =~ x1 + x2
Z =~ z1 + z2
Y =~ y1 + y2

Y ~ X + Z + X:Z
'

Not run:
fit_lms <- modsem(m1, oneInt, method = "lms")
bootstrap_modsem(fit_lms, FUN = coef, R = 10L)

End(Not run)

tpb <- "
Outer Model (Based on Hagger et al., 2007)

ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2

Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC + INT:PBC

"

Not run:
boot <- bootstrap_modsem(model = modsem,

model.syntax = tpb, data = TPB,
method = "dblcent", rcs = TRUE,
rcs.scale.corrected = TRUE,
FUN = "coef", R = 50L)

coef <- apply(boot, MARGIN = 2, FUN = mean, na.rm = TRUE)
se <- apply(boot, MARGIN = 2, FUN = sd, na.rm = TRUE)

cat("Parameter Estimates:\n")
print(coef)

cat("Standard Errors: \n")
print(se)

End(Not run)

centered_estimates Get Centered Interaction Term Estimates

Description

Computes centered estimates of model parameters. This is relevant when there is an interaction term
in the model, as the simple main effects depend upon the mean structure of the structural model.

centered_estimates 7

Currenlty only available for modsem_da and lavaan object. It is not relevant for the PI approaches
(excluding the "pind" method, which is not recommended), since the indicators are centered before
computing the product terms. The centering can be applied to observed variable interactions in
lavaan models and latent interactions estimated using the sam function.

Usage

centered_estimates(object, ...)

S3 method for class 'lavaan'
centered_estimates(
object,
monte.carlo = FALSE,
mc.reps = 10000,
tolerance.zero = 1e-10,
...

)

S3 method for class 'modsem_da'
centered_estimates(
object,
monte.carlo = FALSE,
mc.reps = 10000,
tolerance.zero = 1e-10,
...

)

Arguments

object An object of class modsem_da

... Additional arguments passed to underlying methods. See specific method doc-
umentation for supported arguments, including:

monte.carlo Logical. If TRUE, use Monte Carlo simulation to estimate standard errors; if
FALSE, use the delta method (default).

mc.reps Number of Monte Carlo repetitions. Default is 10000.

tolerance.zero Threshold below which standard errors are set to NA.

Value

A data.frame with centered estimates in the est column.

Methods (by class)

• centered_estimates(lavaan): Method for lavaan objects

• centered_estimates(modsem_da): Method for modsem_da objects

8 colorize_output

Examples

m1 <- '
Outer Model
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

'
Not run:
est_lms <- modsem(m1, oneInt, method = "lms")
centered_estimates(est_lms)

End(Not run)

colorize_output Capture, colorise, and emit console text

Description

Capture, colorise, and emit console text

Usage

colorize_output(
expr,
positive = MODSEM_COLORS$positive,
negative = MODSEM_COLORS$negative,
true = MODSEM_COLORS$true,
false = MODSEM_COLORS$false,
nan = MODSEM_COLORS$nan,
na = MODSEM_COLORS$na,
inf = MODSEM_COLORS$inf,
string = MODSEM_COLORS$string,
split = FALSE,
append = "\n"

)

Arguments

expr Expression or object with output which should be colorized.

positive color of positive numbers.

negative color of negative numbers.

true color of TRUE.

false color of FALSE.

colorize_output 9

nan color of NaN.

na color of NA.

inf color of -Inf and Inf.

string color of quoted strings.

split Should output be splitted? If TRUE the output is printed normally (in real time)
with no colorization, and the colored output is printed after the code has finished
executing.

append String appended after the colored output (default ‘\n‘).

Value

Invisibly returns the *plain* captured text.

Examples

set_modsem_colors(positive = "red3",
negative = "red3",
true = "darkgreen",
false = "red3",
na = "purple",
string = "darkgreen")

m1 <- "
Outer Model
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

"

est <- modsem(m1, data = oneInt)
colorize_output(summary(est))
colorize_output(est) # same as colorize_output(print(est))
colorize_output(modsem_inspect(est, what = "coef"))

Not run:
colorize_output(split = TRUE, {

Get live (uncolored) output
And print colored output at the end of execution

est_lms <- modsem(m1, data = oneInt, method = "lms")
summary(est_lms)

})

colorize_output(modsem_inspect(est_lms))

End(Not run)

10 compare_fit

compare_fit compare model fit for modsem models

Description

Compare the fit of two models using the likelihood ratio test (LRT). est_h0 is the null hypoth-
esis model, and est_h1 the alternative hypothesis model. Importantly, the function assumes that
est_h0 does not have more free parameters (i.e., degrees of freedom) than est_h1 (the alternative
hypothesis model).

Usage

compare_fit(est_h1, est_h0, ...)

Arguments

est_h1 object of class modsem_da or modsem_pi representing the alternative hypothesis
model (with interaction terms).

est_h0 object of class modsem_da or modsem_pi representing the null hypothesis model
(without interaction terms).

... additional arguments passed to the underlying comparison function. E.g., for
modsem_pi models, this can be used to pass arguments to lavaan::lavTestLRT.
currently only used for modsem_pi models.

Examples

Not run:
m1 <- "
Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

"

LMS approach
est_h1 <- modsem(m1, oneInt, "lms")
est_h0 <- estimate_h0(est_h1, calc.se=FALSE) # std.errors are not needed
compare_fit(est_h1 = est_h1, est_h0 = est_h0)

Double centering approach
est_h1 <- modsem(m1, oneInt, method = "dblcent")
est_h0 <- estimate_h0(est_h1, oneInt)

compare_fit(est_h1 = est_h1, est_h0 = est_h0)

default_settings_da 11

Constrained approach
est_h1 <- modsem(m1, oneInt, method = "ca")
est_h0 <- estimate_h0(est_h1, oneInt)

compare_fit(est_h1 = est_h1, est_h0 = est_h0)

End(Not run)

default_settings_da default arguments fro LMS and QML approach

Description

This function returns the default settings for the LMS and QML approach.

Usage

default_settings_da(method = c("lms", "qml"))

Arguments

method which method to get the settings for

Value

list

Examples

library(modsem)
default_settings_da()

default_settings_pi default arguments for product indicator approaches

Description

This function returns the default settings for the product indicator approaches

Usage

default_settings_pi(method = c("rca", "uca", "pind", "dblcent", "ca"))

Arguments

method which method to get the settings for

12 estimate_h0

Value

list

Examples

library(modsem)
default_settings_pi()

estimate_h0 Estimate baseline model for modsem models

Description

Estimates a baseline model (H0) from a given model (H1). The baseline model is estimated by
removing all interaction terms from the model.

Usage

estimate_h0(object, warn_no_interaction = TRUE, ...)

S3 method for class 'modsem_da'
estimate_h0(object, warn_no_interaction = TRUE, ...)

S3 method for class 'modsem_pi'
estimate_h0(object, warn_no_interaction = TRUE, reduced = TRUE, ...)

Arguments

object An object of class modsem_da or modsem_pi.
warn_no_interaction

Logical. If ‘TRUE‘, a warning is issued if no interaction terms are found in the
model.

... Additional arguments passed to the ‘modsem_da‘ function, overriding the argu-
ments in the original model.

reduced Should the baseline model be a reduced version of the model? If TRUE, the
latent product term and its (product) indicators are kept in the model, but the
interaction coefficients are constrained to zero. If FALSE, the interaction terms
are removed completely from the model. Note that the models will no longer be
nested, if the interaction terms are removed from the model completely.

Methods (by class)

• estimate_h0(modsem_da): Estimate baseline model for modsem_da objects

• estimate_h0(modsem_pi): Estimate baseline model for modsem_pi objects

extract_lavaan 13

Examples

Not run:
m1 <- "
Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

"

LMS approach
est_h1 <- modsem(m1, oneInt, "lms")
est_h0 <- estimate_h0(est_h1, calc.se=FALSE) # std.errors are not needed
compare_fit(est_h1 = est_h1, est_h0 = est_h0)

Double centering approach
est_h1 <- modsem(m1, oneInt, method = "dblcent")
est_h0 <- estimate_h0(est_h1, oneInt)

compare_fit(est_h1 = est_h1, est_h0 = est_h0)

Constrained approach
est_h1 <- modsem(m1, oneInt, method = "ca")
est_h0 <- estimate_h0(est_h1, oneInt)

compare_fit(est_h1 = est_h1, est_h0 = est_h0)

End(Not run)

extract_lavaan extract lavaan object from modsem object estimated using product in-
dicators

Description

extract lavaan object from modsem object estimated using product indicators

Usage

extract_lavaan(object)

Arguments

object modsem object

Value

lavaan object

14 fit_modsem_da

Examples

library(modsem)
m1 <- '

Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'
est <- modsem_pi(m1, oneInt)
lav_est <- extract_lavaan(est)

fit_modsem_da Fit measures for QML and LMS models

Description

Calculates chi-sq test and p-value, as well as RMSEA for the LMS and QML models. Note that the
Chi-Square based fit measures should be calculated for the baseline model, i.e., the model without
the interaction effect

Usage

fit_modsem_da(
model,
chisq = TRUE,
lav.fit = FALSE,
drop.list.single.group = TRUE

)

Arguments

model fitted model. Thereafter, you can use ’compare_fit()’ to assess the comparative
fit of the models. If the interaction effect makes the model better, and e.g., the
RMSEA is good for the baseline model, the interaction model likely has a good
RMSEA as well.

chisq should Chi-Square based fit-measures be calculated?

lav.fit Should fit indices from the lavaan model used to optimize the starting param-
eters be included (if available)? This is usually only approprioate for linear
models (i.e., no interaction effects), where the parameter estimates for LMS and
QML are equivalent to ML estimates from lavaan.

drop.list.single.group

Logical. If FALSE, (some) results are returned as a list, where each element
corresponds to a group (even if there is only a single group). If TRUE, the list
will be unlisted if there is only a single group

get_pi_data 15

get_pi_data Get data with product indicators for different approaches

Description

get_pi_data() is a function for creating a dataset with product indiactors used for estimating latent
interaction models using one of the product indicator approaches.

Usage

get_pi_data(model.syntax, data, method = "dblcent", match = FALSE, ...)

Arguments

model.syntax lavaan syntax

data data to create product indicators from

method method to use: "rca" = residual centering approach, "uca" = unconstrained ap-
proach, "dblcent" = double centering approach, "pind" = prod ind approach,
with no constraints or centering, "custom" = use parameters specified in the
function call

match should the product indicators be created by using the match-strategy

... arguments passed to other functions (e.g., modsem_pi)

Value

data.frame

Examples

library(modsem)
library(lavaan)
m1 <- '

Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'
syntax <- get_pi_syntax(m1)
data <- get_pi_data(m1, oneInt)
est <- sem(syntax, data)
summary(est)

16 get_pi_syntax

get_pi_syntax Get lavaan syntax for product indicator approaches

Description

get_pi_syntax() is a function for creating the lavaan syntax used for estimating latent interaction
models using one of the product indicator approaches.

Usage

get_pi_syntax(
model.syntax,
method = "dblcent",
match = FALSE,
data = NULL,
...

)

Arguments

model.syntax lavaan syntax

method method to use: "rca" = residual centering approach, "uca" = unconstrained ap-
proach, "dblcent" = double centering approach, "pind" = prod ind approach,
with no constraints or centering, "custom" = use parameters specified in the
function call

match should the product indicators be created by using the match-strategy

data Optional. Dataset to use, usually not relevant.

... arguments passed to other functions (e.g., modsem_pi)

Value

character vector

Examples

library(modsem)
library(lavaan)
m1 <- '

Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'
syntax <- get_pi_syntax(m1)

is_interaction_model 17

data <- get_pi_data(m1, oneInt)
est <- sem(syntax, data)
summary(est)

is_interaction_model Check if model object has interaction terms

Description

Check if model object has interaction terms

Usage

is_interaction_model(object)

Arguments

object An object of class modsem_pi or modsem_da, respectively.

Value

Logical. TRUE if the model has an interaction term, otherwise it returns FALSE.

Examples

m1 <- '
Outer Model

X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

'

est_dca <- modsem(m1, oneInt, method = "dblcent")
is_interaction_model(est_dca)

Not run:
est_lms <- modsem(m1, oneInt, method = "lms")
is_interaction_model(est_lms)

End(Not run)

18 jordan

jordan Jordan subset of PISA 2006 data

Description

The data stem from the large-scale assessment study PISA 2006 (Organisation for Economic Co-
Operation and Development, 2009) where competencies of 15-year-old students in reading, math-
ematics, and science are assessed using nationally representative samples in 3-year cycles. In this
example, data from the student background questionnaire from the Jordan sample of PISA 2006
were used. Only data of students with complete responses to all 15 items (N = 6,038) were consid-
ered.

Format

A data frame of fifteen variables and 6,038 observations:

enjoy1 indicator for enjoyment of science, item ST16Q01: I generally have fun when I am learning
<broad science> topics.

enjoy2 indicator for enjoyment of science, item ST16Q02: I like reading about <broad science>.
enjoy3 indicator for enjoyment of science, item ST16Q03: I am happy doing <broad science>

problems.
enjoy4 indicator for enjoyment of science, item ST16Q04: I enjoy acquiring new knowledge in

<broad science>.
enjoy5 indicator for enjoyment of science, item ST16Q05: I am interested in learning about <broad

science>.
academic1 indicator for academic self-concept in science, item ST37Q01: I can easily understand

new ideas in <school science>.
academic2 indicator for academic self-concept in science, item ST37Q02: Learning advanced

<school science> topics would be easy for me.
academic3 indicator for academic self-concept in science, item ST37Q03: I can usually give good

answers to <test questions> on <school science> topics.
academic4 indicator for academic self-concept in science, item ST37Q04: I learn <school science>

topics quickly.
academic5 indicator for academic self-concept in science, item ST37Q05: <School science> top-

ics are easy for me.
academic6 indicator for academic self-concept in science, item ST37Q06: When I am being taught

<school science>, I can understand the concepts very well.
career1 indicator for career aspirations in science, item ST29Q01: I would like to work in a career

involving <broad science>.
career2 indicator for career aspirations in science, item ST29Q02: I would like to study <broad

science> after <secondary school>.
career3 indicator for career aspirations in science, item ST29Q03: I would like to spend my life

doing advanced <broad science>.
career4 indicator for career aspirations in science, item ST29Q04: I would like to work on <broad

science> projects as an adult.

modsem 19

Source

This version of the dataset, as well as the description was gathered from the documentation of the
’nlsem’ package (https://cran.r-project.org/package=nlsem), where the only difference is that the
names of the variables were changed

Originally the dataset was gathered by the Organisation for Economic Co-Operation and Develop-
ment (2009). Pisa 2006: Science competencies for tomorrow’s world (Tech. Rep.). Paris, France.
Obtained from: https://www.oecd.org/pisa/pisaproducts/database-pisa2006.htm

Examples

Not run:
m1 <- "

ENJ =~ enjoy1 + enjoy2 + enjoy3 + enjoy4 + enjoy5
CAREER =~ career1 + career2 + career3 + career4
SC =~ academic1 + academic2 + academic3 + academic4 + academic5 + academic6
CAREER ~ ENJ + SC + ENJ:ENJ + SC:SC + ENJ:SC

"

est <- modsem(m1, data = jordan, method = "qml")
summary(est)

End(Not run)

modsem Estimate interaction effects in structural equation models (SEMs)

Description

modsem() is a function for estimating interaction effects between latent variables in structural equa-
tion models (SEMs). Methods for estimating interaction effects in SEMs can basically be split into
two frameworks:

1. Product Indicator (PI) based approaches ("dblcent", "rca", "uca", "ca", "pind")

2. Distributionally (DA) based approaches ("lms", "qml").

For the product indicator-based approaches, modsem() is essentially a fancy wrapper for lavaan::sem()
which generates the necessary syntax and variables for the estimation of models with latent product
indicators.

The distributionally based approaches are implemented separately and are not estimated using
lavaan::sem(), but rather using custom functions (largely written in C++ for performance rea-
sons). For greater control, it is advised that you use one of the sub-functions (modsem_pi, mod-
sem_da, modsem_mplus) directly, as passing additional arguments to them via modsem() can lead
to unexpected behavior.

Usage

modsem(model.syntax = NULL, data = NULL, method = "dblcent", ...)

20 modsem

Arguments

model.syntax lavaan syntax

data dataframe

method method to use:

"dblcent" double centering approach (passed to lavaan).
"ca" constrained approach (passed to lavaan).
"rca" residual centering approach (passed to lavaan).
"uca" unconstrained approach (passed to lavaan).
"pind" prod ind approach, with no constraints or centering (passed to lavaan).
"lms" latent moderated structural equations (not passed to lavaan).
"qml" quasi maximum likelihood estimation (not passed to lavaan).
"custom" use parameters specified in the function call (passed to lavaan).
"mplus" estimate model through Mplus.

... arguments passed to other functions depending on the method (see modsem_pi,
modsem_da, and modsem_mplus)

Value

modsem object with class modsem_pi, modsem_da, or modsem_mplus

Examples

library(modsem)
For more examples, check README and/or GitHub.
One interaction
m1 <- '

Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'

Double centering approach
est1 <- modsem(m1, oneInt)
summary(est1)

Not run:
The Constrained Approach
est1_ca <- modsem(m1, oneInt, method = "ca")
summary(est1_ca)

LMS approach
est1_lms <- modsem(m1, oneInt, method = "lms")
summary(est1_lms)

modsemify 21

QML approach
est1_qml <- modsem(m1, oneInt, method = "qml")
summary(est1_qml)

End(Not run)

Theory Of Planned Behavior
tpb <- '
Outer Model (Based on Hagger et al., 2007)

ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2

Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ INT:PBC

'

Double centering approach
est_tpb <- modsem(tpb, data = TPB)
summary(est_tpb)

Not run:
The Constrained Approach
est_tpb_ca <- modsem(tpb, data = TPB, method = "ca")
summary(est_tpb_ca)

LMS approach
est_tpb_lms <- modsem(tpb, data = TPB, method = "lms", nodes = 32)
summary(est_tpb_lms)

QML approach
est_tpb_qml <- modsem(tpb, data = TPB, method = "qml")
summary(est_tpb_qml)

End(Not run)

modsemify Generate parameter table for lavaan syntax

Description

Generate parameter table for lavaan syntax

Usage

modsemify(syntax)

22 modsem_coef

Arguments

syntax model syntax

Value

data.frame with columns lhs, op, rhs, mod

Examples

library(modsem)
m1 <- '

Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'
modsemify(m1)

modsem_coef Wrapper for coef

Description

wrapper for coef, to be used with modsem::modsem_coef, since coef is not in the namespace of
modsem, but stats.

Usage

modsem_coef(object, ...)

Arguments

object fitted model to inspect

... additional arguments

modsem_da 23

modsem_da Interaction between latent variables using LMS and QML approaches

Description

modsem_da() is a function for estimating interaction effects between latent variables in structural
equation models (SEMs) using distributional analytic (DA) approaches. Methods for estimating in-
teraction effects in SEMs can basically be split into two frameworks: 1. Product Indicator-based ap-
proaches ("dblcent", "rca", "uca", "ca", "pind") 2. Distributionally based approaches ("lms",
"qml").

modsem_da() handles the latter and can estimate models using both QML and LMS, necessary
syntax, and variables for the estimation of models with latent product indicators.

NOTE: Run default_settings_da to see default arguments.

Usage

modsem_da(
model.syntax = NULL,
data = NULL,
group = NULL,
method = "lms",
verbose = NULL,
optimize = NULL,
nodes = NULL,
missing = NULL,
convergence.abs = NULL,
convergence.rel = NULL,
optimizer = NULL,
center.data = NULL,
standardize.data = NULL,
standardize.out = NULL,
standardize = NULL,
mean.observed = NULL,
cov.syntax = NULL,
double = NULL,
calc.se = NULL,
FIM = NULL,
EFIM.S = NULL,
OFIM.hessian = NULL,
EFIM.parametric = NULL,
robust.se = NULL,
R.max = NULL,
max.iter = NULL,
max.step = NULL,
start = NULL,
epsilon = NULL,

24 modsem_da

quad.range = NULL,
adaptive.quad = NULL,
adaptive.frequency = NULL,
adaptive.quad.tol = NULL,
n.threads = NULL,
algorithm = NULL,
em.control = NULL,
ordered = NULL,
ordered.probit.correction = FALSE,
cluster = NULL,
cr1s = FALSE,
sampling.weights = NULL,
sampling.weights.normalization = NULL,
rcs = FALSE,
rcs.choose = NULL,
rcs.scale.corrected = TRUE,
orthogonal.x = NULL,
orthogonal.y = NULL,
auto.fix.first = NULL,
auto.fix.single = NULL,
auto.split.syntax = NULL,
...

)

Arguments

model.syntax lavaan syntax

data A dataframe with observed variables used in the model.

group Character. A variable name in the data frame defining the groups in a multiple
group analysis

method method to use:

"lms" latent moderated structural equations (not passed to lavaan).
"qml" quasi maximum likelihood estimation (not passed to lavaan).

verbose should estimation progress be shown

optimize should starting parameters be optimized

nodes number of quadrature nodes (points of integration) used in lms, increased num-
ber gives better estimates but slower computation. How many are needed de-
pends on the complexity of the model. For simple models, somewhere between
16-24 nodes should be enough; for more complex models, higher numbers may
be needed. For models where there is an interaction effect between an endoge-
nous and exogenous variable, the number of nodes should be at least 32, but
practically (e.g., ordinal/skewed data), more than 32 is recommended. In cases
where data is non-normal, it might be better to use the qml approach instead.
You can also consider setting adaptive.quad = TRUE.

missing How should missing values be handled? If "listwise" (default) missing val-
ues are removed list-wise (alias: "complete" or "casewise"). If impute values

modsem_da 25

are imputed using Amelia::amelia. If "fiml" (alias: "ml" or "direct"), full
information maximum likelihood (FIML) is used. FIML can be (very) compu-
tationally intensive.

convergence.abs

Absolute convergence criterion. Lower values give better estimates but slower
computation. Not relevant when using the QML approach. For the LMS ap-
proach the EM-algorithm stops whenever the relative or absolute convergence
criterion is reached.

convergence.rel

Relative convergence criterion. Lower values give better estimates but slower
computation. For the LMS approach the EM-algorithm stops whenever the rel-
ative or absolute convergence criterion is reached.

optimizer optimizer to use, can be either "nlminb" or "L-BFGS-B". For LMS, "nlminb" is
recommended. For QML, "L-BFGS-B" may be faster if there is a large number
of iterations, but slower if there are few iterations.

center.data should data be centered before fitting model
standardize.data

should data be scaled before fitting model, will be overridden by standardize
if standardize is set to TRUE.

standardize.out

should output be standardized (note will alter the relationships of parameter con-
straints since parameters are scaled unevenly, even if they have the same label).
This does not alter the estimation of the model, only the output.
NOTE: It is recommended that you estimate the model normally and then stan-
dardize the output using standardize_model, standardized_estimates or
summary(<modsem_da-object>, standardize=TRUE).

standardize will standardize the data before fitting the model, remove the mean structure of
the observed variables, and standardize the output. Note that standardize.data,
mean.observed, and standardize.out will be overridden by standardize if
standardize is set to TRUE.
NOTE: It is recommended that you estimate the model normally and then stan-
dardize the output using standardized_estimates.

mean.observed should the mean structure of the observed variables be estimated? This will be
overridden by standardize, if standardize is set to TRUE.
NOTE: Not recommended unless you know what you are doing.

cov.syntax model syntax for implied covariance matrix of exogenous latent variables (see
vignette("interaction_two_etas", "modsem")).

double try to double the number of dimensions of integration used in LMS, this will be
extremely slow but should be more similar to mplus.

calc.se should standard errors be computed? NOTE: If FALSE, the information matrix
will not be computed either.

FIM should the Fisher information matrix be calculated using the observed or ex-
pected values? Must be either "observed" or "expected".

EFIM.S if the expected Fisher information matrix is computed, EFIM.S selects the num-
ber of Monte Carlo samples. Defaults to 100. NOTE: This number should

26 modsem_da

likely be increased for better estimates (e.g., 1000), but it might drasticly in-
crease computation time.

OFIM.hessian Logical. If TRUE (default), standard errors are based on the negative Hessian
(observed Fisher information). If FALSE, they come from the outer product of
individual score vectors (OPG). For correctly specified models, these two ma-
trices are asymptotically equivalent; yielding nearly identical standard errors in
large samples. The Hessian usually shows smaller finite-sample variance (i.e.,
it’s more consistent), and is therefore the default.
Note, that the Hessian is not always positive definite, and is more computation-
ally expensive to calculate. The OPG should always be positive definite, and a
lot faster to compute. If the model is correctly specified, and the sample size is
large, then the two should yield similar results, and switching to the OPG can
save a lot of time. Note, that the required sample size depends on the complexity
of the model.
A large difference between Hessian and OPG suggests misspecification, and
robust.se = TRUE should be set to obtain sandwich (robust) standard errors.

EFIM.parametric

should data for calculating the expected Fisher information matrix be simulated
parametrically (simulated based on the assumptions and implied parameters
from the model), or non-parametrically (stochastically sampled)? If you believe
that normality assumptions are violated, EFIM.parametric = FALSE might be
the better option.

robust.se should robust standard errors be computed, using the sandwich estimator?

R.max Maximum population size (not sample size) used in the calculated of the ex-
pected fischer information matrix.

max.iter maximum number of iterations.

max.step maximum steps for the M-step in the EM algorithm (LMS).

start starting parameters.

epsilon finite difference for numerical derivatives.

quad.range range in z-scores to perform numerical integration in LMS using, when using
quasi-adaptive Gaussian-Hermite Quadratures. By default Inf, such that f(t)
is integrated from -Inf to Inf, but this will likely be inefficient and pointless at a
large number of nodes. Nodes outside +/- quad.range will be ignored.

adaptive.quad should a quasi adaptive quadrature be used? If TRUE, the quadrature nodes will
be adapted to the data. If FALSE, the quadrature nodes will be fixed. Default
is FALSE. The adaptive quadrature does not fit an adaptive quadrature to each
participant, but instead tries to place more nodes where posterior distribution is
highest. Compared with a fixed Gauss Hermite quadrature this usually means
that less nodes are placed at the tails of the distribution.

adaptive.frequency

How often should the quasi-adaptive quadrature be calculated? Defaults to 3,
meaning that it is recalculated every third EM-iteration.

adaptive.quad.tol

Relative error tolerance for quasi adaptive quadrature. Defaults to 1e-12.

modsem_da 27

n.threads number of threads to use for parallel processing. If NULL, it will use <= 2 threads.
If an integer is specified, it will use that number of threads (e.g., n.threads = 4
will use 4 threads). If "default", it will use the default number of threads (2).
If "max", it will use all available threads, "min" will use 1 thread.

algorithm algorithm to use for the EM algorithm. Can be either "EM" or "EMA". "EM" is
the standard EM algorithm. "EMA" is an accelerated EM procedure that uses
Quasi-Newton and Fisher Scoring optimization steps when needed. Default is
"EM".

em.control a list of control parameters for the EM algorithm. See default_settings_da
for defaults.

ordered Variables to be treated as ordered. Categories for ordered variables are scored,
transforming them from ordinal scale to interval scale (Chen & Wang, 2014).
The underlying continous distributions are estimated analytically for indicators
of exogenous variables, and using an ordered probit regression for indicators
of endogenous variables. Factor scores are used as independent variables the
ordered probit regressions. Interaction effects between the factor scores are in-
cluded in the probit regression, if applicable. The estimates are more robust to
unequal intervals in ordinal variables. I.e., the estimates should be more consis-
tent, and less biased.

ordered.probit.correction

Should ordered indicators be transformed such that they reproduce their (probit)
polychoric correlation matrix? This can be useful for ordered variables with
only a few categories, or for linear models.

cluster Clusters used to compute standard errors robust to non-indepence of observa-
tions. Must be paired with robust.se = TRUE.

cr1s Logical; if TRUE, apply the CR1S small-sample correction factor to the cluster-
robust variance estimator. The CR1S factor is (G/(G−1)) ·((N−1)/(N−q)),
where G is the number of clusters, N is the total number of observations, and
q is the number of free parameters. This adjustment inflates standard errors
to reduce the small-sample downward bias present in the basic cluster-robust
(CR0) estimator, especially when G is small. If FALSE, the unadjusted CR0
estimator is used. Defaults to TRUE. Only relevant if cluster is specified.

sampling.weights

A variable name in the data frame containing sampling weight information. De-
pending on the sampling.weights.normalization argument, these weights may be
rescaled (or not) so that their sum equals the number of observations (total or
per group)

sampling.weights.normalization

If "none", the sampling weights (if provided) will not be transformed. If "total",
the sampling weights are normalized by dividing by the total sum of the weights,
and multiplying again by the total sample size. If "group", the sampling weights
are normalized per group: by dividing by the sum of the weights (in each group),
and multiplying again by the group size. The default is "total".

rcs Should latent variable indicators be replaced with reliability-corrected single
item indicators instead? See relcorr_single_item.

rcs.choose Which latent variables should get their indicators replaced with reliability-corrected
single items? It is passed to relcorr_single_item as the choose argument.

https://onlinelibrary.wiley.com/doi/10.1155/2014/304213

28 modsem_da

rcs.scale.corrected

Should reliability-corrected items be scale-corrected? If TRUE reliability-corrected
single items are corrected for differences in factor loadings between the items.
Default is TRUE.

orthogonal.x If TRUE, all covariances among exogenous latent variables only are set to zero.
Default is FALSE.

orthogonal.y If TRUE, all covariances among endogenous latent variables only are set to zero.
If FALSE residual covariances are added between pure endogenous variables;
those that are predicted by no other endogenous variable in the structural model.
Default is FALSE.

auto.fix.first If TRUE the factor loading of the first indicator, for a given latent variable is fixed
to 1. If FALSE no loadings are fixed (automatically). Note that that this might
make it such that the model no longer is identified. Default is TRUE. NOTE this
behaviour is overridden if the first loading is labelled, where it gets treated as a
free parameter instead. This differs from the default behaviour in lavaan.

auto.fix.single

If TRUE, the residual variance of an observed indicator is set to zero if it is the
only indicator of a latent variable. If FALSE the residual variance is not fixed to
zero, and treated as a free parameter of the model. Default is TRUE. NOTE this
behaviour is overridden if the first loading is labelled, where it gets treated as a
free parameter instead.

auto.split.syntax

Should the model syntax automatically be split into a linear and non-linear part?
This is done by moving the structural model for linear endogenous variables
(used in interaction terms) into the cov.syntax argument. This can potentially
allow interactions between two endogenous variables given that both are linear
(i.e., not affected by interaction terms). This is FALSE by default for the LMS
approach. When using the QML approach interation effects between exogenous
and endogenous variables can in some cases be biased, if the model is not split
beforehand. The default is therefore TRUE for the QML approach.

... additional arguments to be passed to the estimation function.

Value

modsem_da object

Examples

library(modsem)
For more examples, check README and/or GitHub.
One interaction
m1 <- "

Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model

modsem_inspect 29

Y ~ X + Z + X:Z
"

Not run:
QML Approach
est_qml <- modsem_da(m1, oneInt, method = "qml")
summary(est_qml)

Theory Of Planned Behavior
tpb <- "
Outer Model (Based on Hagger et al., 2007)

ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2

Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ INT:PBC

"

LMS Approach
est_lms <- modsem_da(tpb, data = TPB, method = "lms")
summary(est_lms)

End(Not run)

modsem_inspect Inspect model information

Description

function used to inspect fitted object. Similar to lavaan::lavInspect argument what decides what
to inspect

modsem_inspect.modsem_da Lets you pull matrices, optimiser diagnostics, expected moments, or
fit measures from a modsem_da object.

Usage

modsem_inspect(object, what = NULL, ...)

S3 method for class 'lavaan'
modsem_inspect(object, what = "free", ...)

S3 method for class 'modsem_da'
modsem_inspect(object, what = NULL, ...)

30 modsem_inspect

S3 method for class 'modsem_pi'
modsem_inspect(object, what = "free", ...)

Arguments

object A fitted object of class "modsem_da".

what Character scalar selecting what to return (see Details). If NULL the value "default"
is used.

... Passed straight to modsem_inspect_da().

Details

For modsem_pi objects, it is just a wrapper for lavaan::lavInspect. For modsem_da objects an
internal function is called, which takes different keywords for the what argument.

Below is a list of possible values for the what argument, organised in several sections. Keywords
are case-sensitive.

Presets

"default" Everything in Sample information, Optimiser diagnostics Parameter tables, Model ma-
trices, and Expected-moment matrices except the raw data slot

"coef" Coefficients and variance-covariance matrix of both free and constrained parameters (same
as "coef.all").

"coef.all" Coefficients and variance-covariance matrix of both free and constrained parameters
(same as "coef").

"coef.free" Coefficients and variance-covariance matrix of the free parameters.

"all" All items listed below, including data.

"matrices" The model matrices.

"optim" Only the items under Optimiser diagnostics.

"fit" A list with fit.h0, fit.h1, comparative.fit

Sample information:

"N" Number of analysed rows (integer).

"ngroups" Number of groups in model (integer).

"group" Group variable in model (character).

"group.label" Group labels (character).

"ovs" Observed variables used in model (character).

Parameter estimates and standard errors:

"coefficients.free" Free parameter values.

"coefficients.all" Both free and constrained parameter values.

"vcov.free" Variance–covariance of free coefficients only.

"vcov.all" Variance–covariance of both free and constrained coefficients.

modsem_inspect 31

Optimiser diagnostics:

"coefficients.free" Free parameter values.

"vcov.free" Variance–covariance of free coefficients only.

"information" Fisher information matrix.

"loglik" Log-likelihood.

"iterations" Optimiser iteration count.

"convergence" TRUE/FALSE indicating whether the model converged.

Parameter tables:

"partable" Parameter table with estimated parameters.

"partable.input" Parsed model syntax.

Model matrices:

"lambda" Λ – Factor loadings.

"tau" τ – Intercepts for indicators.

"theta" Θ – Residual (Co-)Variances for indicators.

"gamma.xi" Γξ – Structural coefficients between exogenous and endogenous variables.

"gamma.eta" Γη – Structural coefficients between endogenous variables.

"omega.xi.xi" Ωξξ – Interaction effects between exogenous variables

"omega.eta.xi" Ωηξ – Interaction effects between exogenous and endogenous variables

"phi" Φ – (Co-)Variances among exogenous variables.

"psi" Ψ – Residual (co-)variances among engoenous variables.

"alpha" α – Intercepts for endogenous variables

"beta0" β0 – Intercepts for exogenous variables

Model-implied matrices:

"cov.ov" Model-implied covariance of observed variables.

"cov.lv" Model-implied covariance of latent variables.

"cov.all" Joint covariance of observed + latent variables.

"cor.ov" Correlation counterpart of "cov.ov".

"cor.lv" Correlation counterpart of "cov.lv".

"cor.all" Correlation counterpart of "cov.all".

"mean.ov" Expected means of observed variables.

"mean.lv" Expected means of latent variables.

"mean.all" Joint mean vector.

R-squared and standardized residual variances:

"r2.all" R-squared values for both observed (i.e., indicators) and latent endogenous variables.

32 modsem_inspect

"r2.lv" R-squared values for latent endogenous variables.

"r2.ov" R-squared values for observed (i.e., indicators) variables.

"res.all" Standardized residuals (i.e., 1 - R^2) for both observed (i.e., indicators) and latent en-
dogenous variables.

"res.lv" Standardized residuals (i.e., 1 - R^2) for latent endogenous variables.

"res.ov" Standardized residuals (i.e., 1 - R^2) for observed variables (i.e., indicators).

Interaction-specific caveats:

• If the model contains an uncentred latent interaction term it is centred internally before any
cov.*, cor.*, or mean.* matrices are calculated.

• These matrices should not be used to compute fit-statistics (e.g., chi-square and RMSEA) if
there is an interaction term in the model.

Value

A named list with the extracted information. If a single piece of information is returned, it is
returned as is; not as a named element in a list.

Methods (by class)

• modsem_inspect(lavaan): Inspect a lavaan object

• modsem_inspect(modsem_da): Inspect a modsem_da object

• modsem_inspect(modsem_pi): Inspect a modsem_pi object

Examples

Not run:
m1 <- "
Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

"

est <- modsem(m1, oneInt, "lms")

modsem_inspect(est) # everything except "data"
modsem_inspect(est, what = "optim")
modsem_inspect(est, what = "phi")

End(Not run)

modsem_mimpute 33

modsem_mimpute Estimate a modsem model using multiple imputation

Description

Estimate a modsem model using multiple imputation

Usage

modsem_mimpute(
model.syntax,
data,
method = "lms",
m = 25,
verbose = interactive(),
se = c("simple", "full"),
...

)

Arguments

model.syntax lavaan syntax

data A dataframe with observed variables used in the model.

method Method to use:

"lms" latent moderated structural equations (not passed to lavaan).
"qml" quasi maximum likelihood estimation (not passed to lavaan).

m Number of imputations to perform. More imputations will yield better estimates
but can also be (a lot) slower.

verbose Should progress be printed to the console?

se How should corrected standard errors be computed? Alternatives are:

"simple" Uncorrected standard errors are only calculated once, in the first im-
putation. The standard errors are thereafter corrected using the distribution
of the estimated coefficients from the different imputations.

"full" Uncorrected standard errors are calculated and aggregated for each im-
putation. This can give more accurate results, but can be (a lot) slower.
The standard errors are thereafter corrected using the distribution of the
estimated coefficients from the different imputations.

... Arguments passed to modsem.

Details

modsem_impute is currently only available for the DA approaches (LMS and QML). It performs
multiple imputation using Amelia::amelia and returns aggregated coefficients from the multiple
imputations, along with corrected standard errors.

34 modsem_mplus

Examples

m1 <- '
Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'

oneInt2 <- oneInt

set.seed(123)
k <- 200
I <- sample(nrow(oneInt2), k, replace = TRUE)
J <- sample(ncol(oneInt2), k, replace = TRUE)
for (k_i in seq_along(I)) oneInt2[I[k_i], J[k_i]] <- NA

Not run:
est <- modsem_mimpute(m1, oneInt2, m = 25)
summary(est)

End(Not run)

modsem_mplus Estimation latent interactions through Mplus

Description

Estimation latent interactions through Mplus

Usage

modsem_mplus(
model.syntax,
data,
estimator = "ml",
cluster = NULL,
type = ifelse(is.null(cluster), yes = "random", no = "complex"),
algorithm = "integration",
processors = 2,
integration = 15,
rcs = FALSE,
rcs.choose = NULL,
rcs.scale.corrected = TRUE,
output.std = TRUE,
...

)

modsem_mplus 35

Arguments

model.syntax lavaan/modsem syntax

data dataset

estimator estimator argument passed to Mplus.

cluster cluster argument passed to Mplus.

type type argument passed to Mplus.

algorithm algorithm argument passed to Mplus.

processors processors argument passed to Mplus.

integration integration argument passed to Mplus.

rcs Should latent variable indicators be replaced with reliability-corrected single
item indicators instead? See relcorr_single_item.

rcs.choose Which latent variables should get their indicators replaced with reliability-corrected
single items? It is passed to relcorr_single_item as the choose argument.

rcs.scale.corrected

Should reliability-corrected items be scale-corrected? If TRUE reliability-corrected
single items are corrected for differences in factor loadings between the items.
Default is TRUE.

output.std Should STANDARDIZED be added to OUTPUT?

... arguments passed to other functions

Value

modsem_mplus object

Examples

Theory Of Planned Behavior
m1 <- '
Outer Model

X =~ x1 + x2
Z =~ z1 + z2
Y =~ y1 + y2

Inner model
Y ~ X + Z + X:Z

'

Not run:
Check if Mplus is installed
run <- tryCatch({MplusAutomation::detectMplus(); TRUE},

error = \(e) FALSE)

if (run) {
est_mplus <- modsem_mplus(m1, data = oneInt)
summary(est_mplus)

}

36 modsem_pi

End(Not run)

modsem_nobs Wrapper for nobs

Description

wrapper for nobs, to be used with modsem::modsem_nobs, since nobs is not in the namespace of
modsem, but stats.

Usage

modsem_nobs(object, ...)

Arguments

object fitted model to inspect

... additional arguments

modsem_pi Interaction between latent variables using product indicators

Description

modsem_pi() is a function for estimating interaction effects between latent variables, in struc-
tural equation models (SEMs), using product indicators. Methods for estimating interaction ef-
fects in SEMs can basically be split into two frameworks: 1. Product Indicator based approaches
("dblcent", "rca", "uca", "ca", "pind"), and 2. Distributionally based approaches ("lms",
"qml"). modsem_pi() is essentially a fancy wrapper for lavaan::sem() which generates the
necessary syntax and variables for the estimation of models with latent product indicators. Use
default_settings_pi() to get the default settings for the different methods.

Usage

modsem_pi(
model.syntax = NULL,
data = NULL,
method = "dblcent",
match = NULL,
match.recycle = NULL,
standardize.data = FALSE,
center.data = FALSE,
first.loading.fixed = FALSE,

modsem_pi 37

center.before = NULL,
center.after = NULL,
residuals.prods = NULL,
residual.cov.syntax = NULL,
constrained.prod.mean = NULL,
constrained.loadings = NULL,
constrained.var = NULL,
res.cov.method = NULL,
res.cov.across = NULL,
auto.scale = "none",
auto.center = "none",
estimator = "ML",
group = NULL,
cluster = NULL,
run = TRUE,
na.rm = FALSE,
suppress.warnings.lavaan = FALSE,
suppress.warnings.match = FALSE,
rcs = FALSE,
rcs.choose = NULL,
rcs.res.cov.xz = rcs,
rcs.mc.reps = 1e+05,
rcs.scale.corrected = TRUE,
LAVFUN = lavaan::sem,
...

)

Arguments

model.syntax lavaan syntax
data dataframe
method method to use:

"dblcent" double centering approach (passed to lavaan).
"ca" constrained approach (passed to lavaan).
"rca" residual centering approach (passed to lavaan).
"uca" unconstrained approach (passed to lavaan).
"pind" prod ind approach, with no constraints or centering (passed to lavaan).

match should the product indicators be created by using the match-strategy
match.recycle should the indicators be recycled when using the match-strategy? I.e., if one

of the latent variables have fewer indicators than the other, some indicators are
recycled to match the latent variable with the most indicators.

standardize.data

should data be scaled before fitting model
center.data should data be centered before fitting model
first.loading.fixed

Should the first factor loading in the latent product be fixed to one? Defaults
to FALSE, as this already happens in lavaan by default. If TRUE, the first factor

38 modsem_pi

loading in the latent product is fixed to one. Manually in the generated syntax
(e.g., XZ =~ 1*x1z1).’

center.before should indicators in products be centered before computing products.

center.after should indicator products be centered after they have been computed?
residuals.prods

should indicator products be centered using residuals.
residual.cov.syntax

should syntax for residual covariances be produced.
constrained.prod.mean

should syntax for product mean be produced.
constrained.loadings

should syntax for constrained loadings be produced.
constrained.var

should syntax for constrained variances be produced.

res.cov.method method for constraining residual covariances. Options are

"simple" Residuals of product indicators with variables in common are al-
lowed to covary freely. Defualt for most approches.

"ca" Residual covariances of product indicators are constrained according to
the constrained approach.

"equality" Residuals of product indicators with variables in common are con-
strained to have equal covariances". Can be useful for models where the
model is unidentifiable using res.cov.method == "simple", (e.g., when
there is an interaction between an observed and a latent variable).

"none" Residual covariances between product indicators are not specificed (i.e.,
constrained to zero). Produces the same results as constrained.cov.syntax
= FALSE. Can be useful for models where the model is unidentifiable using
res.cov.method == "simple", (e.g., when there is an interaction between
an observed and a latent variable).

res.cov.across Should residual covariances be specified/freed across different interaction terms.
For example if you have two interaction terms X:Z and X:W the residuals of the
generated product indicators x1:z1 and x1:w1 may be correlated. If TRUE resid-
ual covariances are allowed across different latent interaction terms. If FALSE
residual covariances are only allowed between product indicators which belong
to the same latent interaction term.

auto.scale methods which should be scaled automatically (usually not useful)

auto.center methods which should be centered automatically (usually not useful)

estimator estimator to use in lavaan

group group variable for multigroup analysis

cluster cluster variable for multilevel models

run should the model be run via lavaan, if FALSE only modified syntax and data is
returned

na.rm should missing values be removed (case-wise)? Defaults to FALSE. If TRUE,
missing values are removed case-wise. If FALSE they are not removed.

modsem_pi 39

suppress.warnings.lavaan

should warnings from lavaan be suppressed?
suppress.warnings.match

should warnings from match be suppressed?

rcs Should latent variable indicators be replaced with reliability-corrected single
item indicators instead? See relcorr_single_item.

rcs.choose Which latent variables should get their indicators replaced with reliability-corrected
single items? It is passed to relcorr_single_item as the choose argument.

rcs.res.cov.xz Should the residual (co-)variances of the product indicators created from the
reliability-corrected single items (created if rcs = TRUE) be specified and con-
strained before estimating the model? If TRUE the estimates for the constraints
are approximated using a monte carlo simulation (see the rcs.mc.reps argu-
ment). If FALSE the residual variances are not specified, which usually mean
that all are constrained to zero.

rcs.mc.reps Sample size used in monte-carlo simulation, when approximating the the esti-
mates of the residual (co-)variances between the product indicators formed by
reliabiliyt-corrected single items (see the rcs.res.cov.xz argument).

rcs.scale.corrected

Should reliability corrected items be scale-corrected? If TRUE reliability-corrected
single items are corrected for differences in factor loadings between the items.
Default is TRUE.

LAVFUN Function used to estimate the model. Defaults to lavaan::sem.

... arguments passed to LAVFUN

Value

modsem object

Examples

library(modsem)
For more examples, check README and/or GitHub.
One interaction
m1 <- '

Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'

Double centering approach
est <- modsem_pi(m1, oneInt)
summary(est)

Not run:

40 modsem_predict

The Constrained Approach
est_ca <- modsem_pi(m1, oneInt, method = "ca")
summary(est_ca)

End(Not run)

Theory Of Planned Behavior
tpb <- '
Outer Model (Based on Hagger et al., 2007)

ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2

Inner Model (Based on Steinmetz et al., 2011)
Covariances
ATT ~~ SN + PBC
PBC ~~ SN
Causal Relationships
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ INT:PBC

'

Double centering approach
est_tpb <- modsem_pi(tpb, data = TPB)
summary(est_tpb)

Not run:
The Constrained Approach
est_tpb_ca <- modsem_pi(tpb, data = TPB, method = "ca")
summary(est_tpb_ca)

End(Not run)

modsem_predict Predict From modsem Models

Description

A generic function (and corresponding methods) that produces predicted values or factor scores
from modsem models.

Usage

modsem_predict(object, ...)

S3 method for class 'modsem_da'
modsem_predict(

modsem_predict 41

object,
standardized = FALSE,
H0 = TRUE,
newdata = NULL,
center.data = TRUE,
...

)

S3 method for class 'modsem_pi'
modsem_predict(object, ...)

Arguments

object modsem_da object

... Further arguments passed to lavaan::predict; currently ignored by the modsem_da
method.

standardized Logical. If TRUE, return standardized factor scores.

H0 Logical. If TRUE (default), use the baseline model to compute factor scores.
If FALSE, use the model specified in object. Using H0 = FALSE is not recom-
mended!

newdata Compute factor scores based on a different dataset, than the one used in the
model estimation.

center.data Should data be centered before computing factor scores? Default is TRUE.

Value

* For modsem_pi: whatever lavaan::predict(), which usually returns a matrix of factor scores.
* For modsem_da: a numeric matrix n × p, where n is the number of (complete) observations in
the dataset, and p the number of latent variables. Each column contains either raw or standardised
factor scores, depending on the standardized argument.

Methods (by class)

• modsem_predict(modsem_da): Computes (optionally standardised) factor scores via the re-
gression method using the baseline model unless H0 = FALSE.

• modsem_predict(modsem_pi): Wrapper for lavaan::predict

Examples

m1 <- '
Outer Model

X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

'

42 oneInt

est_dca <- modsem(m1, oneInt, method = "dblcent")
head(modsem_predict(est_dca))

Not run:
est_lms <- modsem(m1, oneInt, method = "lms")
head(modsem_predict(est_lms))

End(Not run)

modsem_vcov Wrapper for vcov

Description

wrapper for vcov, to be used with modsem::modsem_vcov, since vcov is not in the namespace of
modsem, but stats.

Usage

modsem_vcov(object, ...)

Arguments

object fitted model to inspect
... additional arguments

oneInt oneInt

Description

A simulated dataset based on the elementary interaction model.

Examples

m1 <- "
Outer Model

X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

"

est <- modsem(m1, data = oneInt)
summary(est)

parameter_estimates 43

parameter_estimates Extract parameterEstimates from an estimated model

Description

Extract parameterEstimates from an estimated model

Usage

parameter_estimates(object, ...)

S3 method for class 'lavaan'
parameter_estimates(
object,
colon.pi = NULL,
high.order.as.measr = NULL,
rm.tmp.ov = NULL,
label.renamed.prod = NULL,
is.public = NULL,
...

)

S3 method for class 'modsem_da'
parameter_estimates(
object,
high.order.as.measr = TRUE,
is.public = TRUE,
rm.tmp.ov = is.public,
label.renamed.prod = NULL,
...

)

S3 method for class 'modsem_mplus'
parameter_estimates(
object,
colon.pi = NULL,
high.order.as.measr = NULL,
rm.tmp.ov = NULL,
label.renamed.prod = NULL,
is.public = NULL,
...

)

S3 method for class 'modsem_pi'
parameter_estimates(
object,
colon.pi = FALSE,

44 parameter_estimates

label.renamed.prod = FALSE,
high.order.as.measr = NULL,
rm.tmp.ov = NULL,
is.public = NULL,
...

)

Arguments

object An object of class modsem_pi, modsem_da, or modsem_mplus
... Additional arguments passed to other functions
colon.pi Should colons (:) be added to the interaction terms (E.g., ‘XZ‘ -> ‘X:Z‘)?
high.order.as.measr

Should higher order measurement model be denoted with the =~ operator? If
FALSE the ~ operator is used.

rm.tmp.ov Should temporary (hidden) variables be removed?
label.renamed.prod

Should renamed product terms keep their old (implicit) labels?
is.public Should public version of parameter table be returned? If FALSE, the internal

version of the parameter table is returned.

Methods (by class)

• parameter_estimates(lavaan): Get parameter estimates of a lavaan object
• parameter_estimates(modsem_da): Get parameter estimates of a modsem_da object
• parameter_estimates(modsem_mplus): Get parameter estimates of a modsem_mplus object
• parameter_estimates(modsem_pi): Get parameter estimates of a modsem_pi object

Examples

m1 <- '
Outer Model
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

'
Double centering approach
est_dca <- modsem(m1, oneInt)

pars <- parameter_estimates(est_dca) # no correction

Pretty summary
summarize_partable(pars)

Only print the data.frame
pars

plot_interaction 45

plot_interaction Plot Interaction Effects in a SEM Model

Description

This function creates an interaction plot of the outcome variable (y) as a function of a focal predictor
(x) at multiple values of a moderator (z). It is designed for use with structural equation modeling
(SEM) objects (e.g., those from modsem). Predicted means (or predicted individual values) are
calculated via simple_slopes, and then plotted with ggplot2 to display multiple regression lines
and confidence/prediction bands.

Usage

plot_interaction(
x,
z,
y,
model,
vals_x = seq(-3, 3, 0.001),
vals_z,
alpha_se = 0.15,
digits = 2,
ci_width = 0.95,
ci_type = "confidence",
rescale = TRUE,
standardized = FALSE,
xz = NULL,
greyscale = FALSE,
...

)

Arguments

x A character string specifying the focal predictor (x-axis variable).

z A character string specifying the moderator variable.

y A character string specifying the outcome (dependent) variable.

model An object of class modsem_pi, modsem_da, modsem_mplus, or possibly a lavaan
object. Must be a fitted SEM model containing paths for y ~ x + z + x:z.

vals_x A numeric vector of values at which to compute and plot the focal predictor
x. The default is seq(-3, 3, .001), which provides a relatively fine grid for
smooth lines. If rescale=TRUE, these values are in standardized (mean-centered
and scaled) units, and will be converted back to the original metric in the internal
computation of predicted means.

vals_z A numeric vector of values of the moderator z at which to draw separate re-
gression lines. Each distinct value in vals_z defines a separate group (plotted

46 plot_interaction

with a different color). If rescale=TRUE, these values are also assumed to be in
standardized units.

alpha_se A numeric value in [0, 1] specifying the transparency of the confidence/prediction
interval ribbon. Default is 0.15.

digits An integer specifying the number of decimal places to which the moderator
values (z) are rounded for labeling/grouping in the plot.

ci_width A numeric value in (0, 1) indicating the coverage of the confidence (or predic-
tion) interval. The default is 0.95 for a 95% interval.

ci_type A character string specifying whether to compute "confidence" intervals (for
the mean of the predicted values, default) or "prediction" intervals (which
include residual variance).

rescale Logical. If TRUE (default), vals_x and vals_z are interpreted as standardized
units, which are mapped back to the raw scale before computing predictions. If
FALSE, vals_x and vals_z are taken as raw-scale values directly.

standardized Should coefficients be standardized beforehand?

xz A character string specifying the interaction term (x:z). If NULL, the term is
created automatically as paste(x, z, sep = ":"). Some SEM backends may
handle the interaction term differently (for instance, by removing or modifying
the colon), and this function attempts to reconcile that internally.

greyscale Logical. If TRUE the plot is plotted in greyscale.

... Additional arguments passed on to simple_slopes.

Details

Computation Steps:

1. Calls simple_slopes to compute the predicted values of y at the specified grid of x and z
values.

2. Groups the resulting predictions by unique z-values (rounded to digits) to create colored
lines.

3. Plots these lines using ggplot2, adding ribbons for confidence (or prediction) intervals, with
transparency controlled by alpha_se.

Interpretation: Each line in the plot corresponds to the regression of y on x at a given level of
z. The shaded region around each line (ribbon) shows either the confidence interval for the pre-
dicted mean (if ci_type = "confidence") or the prediction interval for individual observations (if
ci_type = "prediction"). Where the ribbons do not overlap, there is evidence that the lines differ
significantly over that range of x.

Value

A ggplot object that can be further customized (e.g., with additional + theme(...) layers). By
default, it shows lines for each moderator value and a shaded region corresponding to the interval
type (confidence or prediction).

plot_jn 47

Examples

Not run:
library(modsem)

Example 1: Interaction of X and Z in a simple SEM
m1 <- "
Outer Model

X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

"
est1 <- modsem(m1, data = oneInt)

Plot interaction using a moderate range of X and two values of Z
plot_interaction(x = "X", z = "Z", y = "Y", xz = "X:Z",

vals_x = -3:3, vals_z = c(-0.2, 0), model = est1)

Example 2: Interaction in a theory-of-planned-behavior-style model
tpb <- "
Outer Model

ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2

Inner Model
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ PBC:INT

"
est2 <- modsem(tpb, data = TPB, method = "lms", nodes = 32)

Plot with custom Z values and a denser X grid
plot_interaction(x = "INT", z = "PBC", y = "BEH",

xz = "PBC:INT",
vals_x = seq(-3, 3, 0.01),
vals_z = c(-0.5, 0.5),
model = est2)

End(Not run)

plot_jn Plot Interaction Effect Using the Johnson-Neyman Technique

48 plot_jn

Description

This function plots the simple slopes of an interaction effect across different values of a moderator
variable using the Johnson-Neyman technique. It identifies regions where the effect of the predictor
on the outcome is statistically significant.

Usage

plot_jn(
x,
z,
y,
model,
min_z = -3,
max_z = 3,
sig.level = 0.05,
alpha = 0.2,
detail = 1000,
sd.line = 2,
standardized = FALSE,
xz = NULL,
greyscale = FALSE,
plot.jn.points = TRUE,
...

)

Arguments

x The name of the predictor variable (as a character string).

z The name of the moderator variable (as a character string).

y The name of the outcome variable (as a character string).

model A fitted model object of class modsem_da, modsem_mplus, modsem_pi, or lavaan.

min_z The minimum value of the moderator variable z to be used in the plot (default is
-3). It is relative to the mean of z.

max_z The maximum value of the moderator variable z to be used in the plot (default
is 3). It is relative to the mean of z.

sig.level The alpha-criterion for the confidence intervals (default is 0.05).

alpha alpha setting used in ggplot (i.e., the opposite of opacity)

detail The number of generated data points to use for the plot (default is 1000). You
can increase this value for smoother plots.

sd.line A thick black line showing +/- sd.line * sd(z). NOTE: This line will be
truncated by min_z and max_z if the sd.line falls outside of [min_z, max_z].

standardized Should coefficients be standardized beforehand?

xz The name of the interaction term. If not specified, it will be created using x and
z.

greyscale Logical. If TRUE the plot is plotted in greyscale.

plot_jn 49

plot.jn.points Logical. If TRUE, omit the numeric annotations for the JN-points from the plot.

... Additional arguments (currently not used).

Details

The function calculates the simple slopes of the predictor variable x on the outcome variable y at
different levels of the moderator variable z. It uses the Johnson-Neyman technique to identify the
regions of z where the effect of x on y is statistically significant.

It extracts the necessary coefficients and variance-covariance information from the fitted model
object. The function then computes the critical t-value and solves the quadratic equation derived
from the t-statistic equation to find the Johnson-Neyman points.

The plot displays:

• The estimated simple slopes across the range of z.

• Confidence intervals around the slopes.

• Regions where the effect is significant (shaded areas).

• Vertical dashed lines indicating the Johnson-Neyman points.

• Text annotations providing the exact values of the Johnson-Neyman points.

Value

A ggplot object showing the interaction plot with regions of significance.

Examples

Not run:
library(modsem)

m1 <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

visual ~ speed + textual + speed:textual
'

est <- modsem(m1, data = lavaan::HolzingerSwineford1939, method = "ca")
plot_jn(x = "speed", z = "textual", y = "visual", model = est, max_z = 6)

End(Not run)

50 plot_surface

plot_surface Plot Surface for Interaction Effects

Description

Generates a 3D surface plot to visualize the interaction effect of two variables (x and z) on an out-
come (y) using parameter estimates from a supported model object (e.g., lavaan or modsem). The
function allows specifying ranges for x and z in standardized z-scores, which are then transformed
back to the original scale based on their means and standard deviations.

Usage

plot_surface(
x,
z,
y,
model,
min_x = -3,
max_x = 3,
min_z = -3,
max_z = 3,
standardized = FALSE,
detail = 0.01,
xz = NULL,
colorscale = "Viridis",
reversescale = FALSE,
showscale = TRUE,
cmin = NULL,
cmax = NULL,
surface_opacity = 1,
grid = FALSE,
grid_nx = 12,
grid_ny = 12,
grid_color = "rgba(0,0,0,0.45)",
group = NULL,
...

)

Arguments

x A character string specifying the name of the first predictor variable.

z A character string specifying the name of the second predictor variable.

y A character string specifying the name of the outcome variable.

model A model object of class modsem_pi, modsem_da, modsem_mplus, or lavaan.
The model should include paths for the predictors (x, z, and xz) to the outcome
(y).

plot_surface 51

min_x Numeric. Minimum value of x in z-scores. Default is -3.

max_x Numeric. Maximum value of x in z-scores. Default is 3.

min_z Numeric. Minimum value of z in z-scores. Default is -3.

max_z Numeric. Maximum value of z in z-scores. Default is 3.

standardized Should coefficients be standardized beforehand?

detail Numeric. Step size for the grid of x and z values, determining the resolution of
the surface. Smaller values increase plot resolution. Default is 1e-2.

xz Optional. A character string or vector specifying the interaction term between x
and z. If NULL, the interaction term is constructed as paste(x, z, sep = ":")
and adjusted for specific model classes.

colorscale Character or list. Colorscale used to color the surface. - Default is "Viridis",
which matches the classic Plotly default. - Can be a built-in palette name (e.g.,
"Greys", "Plasma", "Turbo"), or a custom two-column list with numeric stops
(0–1) and color codes. Example custom scale: list(c(0, "white"), c(1,
"black")) for a black-and-white gradient.

reversescale Logical. If TRUE, reverses the color mapping so that low values become high
colors and vice versa. Default is FALSE.

showscale Logical. If TRUE, displays the colorbar legend alongside the plot. Default is
TRUE.

cmin Numeric or NULL. The minimum value for the colorscale mapping. If NULL, the
minimum of the data (proj_y) is used automatically. Use this to standardize the
color range across multiple plots.

cmax Numeric or NULL. The maximum value for the colorscale mapping. If NULL, the
maximum of the data (proj_y) is used automatically. Use this to standardize
the color range across multiple plots.

surface_opacity

Numeric (0–1). Controls the opacity of the surface. - 1 = fully opaque (default)
- 0 = fully transparent Useful when overlaying multiple surfaces or highlighting
gridlines.

grid Logical. If TRUE, draws gridlines (wireframe) directly on the surface using
Plotly’s contour features. Default is FALSE.

grid_nx Integer. Approximate number of gridlines to draw along the **x-axis** direc-
tion when grid = TRUE. Higher values create a denser grid. Default is 12.

grid_ny Integer. Approximate number of gridlines to draw along the **y-axis** direc-
tion when grid = TRUE. Higher values create a denser grid. Default is 12.

grid_color Character. Color of the gridlines drawn on the surface. Must be a valid CSS
color string, including rgba() for transparency. - Default is "rgba(0,0,0,0.45)"
(semi-transparent black). Example: "rgba(255,255,255,0.8)" for semi-transparent
white lines.

group Which group to create surface plot for. Only relevant for multigroup models.
Must be an integer index, representing the nth group.

... Additional arguments passed to plotly::plot_ly.

52 plot_surface

Details

The input min_x, max_x, min_z, and max_z define the range of x and z values in z-scores. These
are scaled by the standard deviations and shifted by the means of the respective variables, obtained
from the model parameter table. The resulting surface shows the predicted values of y over the grid
of x and z.

The function supports models of class modsem (with subclasses modsem_pi, modsem_da, modsem_mplus)
and lavaan. For lavaan models, it is not designed for multigroup models, and a warning will be
issued if multiple groups are detected.

Value

A plotly surface plot object displaying the predicted values of y across the grid of x and z values.
The color bar shows the values of y.

Note

The interaction term (xz) may need to be manually specified for some models. For non-lavaan
models, interaction terms may have their separator (:) removed based on circumstances.

Examples

m1 <- "
Outer Model

X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner model
Y ~ X + Z + X:Z

"
est1 <- modsem(m1, data = oneInt)
plot_surface("X", "Z", "Y", model = est1)

Not run:
tpb <- "
Outer Model (Based on Hagger et al., 2007)

ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2

Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ PBC:INT

"

est2 <- modsem(tpb, TPB, method = "lms", nodes = 32)
plot_surface(x = "INT", z = "PBC", y = "BEH", model = est2)

relcorr_single_item 53

End(Not run)

relcorr_single_item Reliability-Corrected Single-Item SEM

Description

Replace (some of) the first-order latent variables in a lavaan measurement model by single compos-
ite indicators whose error variances are fixed from Cronbach’s α. The function returns a modified
lavaan model syntax together with an augmented data set that contains the newly created composite
variables, so that you can fit the full SEM in a single step.

Usage

relcorr_single_item(
syntax,
data,
choose = NULL,
scale.corrected = TRUE,
warn.lav = TRUE,
group = NULL

)

Arguments

syntax A character string containing lavaan model syntax. Must at least include the
measurement relations (=~).

data A data.frame, tibble or object coercible to a data frame that holds the raw
observed indicators.

choose Optional. Character vector with the names of the latent variables you wish to
replace by single indicators. Defaults to all first-order latent variables in syntax.

scale.corrected

Should reliability-corrected items be scale-corrected? If TRUE reliability-corrected
single items are corrected for differences in factor loadings between the items.
Default is TRUE.

warn.lav Should warnings from lavaan::cfa be displayed? If FALSE, they are sup-
pressed.

group Character. A variable name in the data frame defining the groups in a multiple
group analysis

Details

The resulting object can be fed directly into modsem or lavaan::sem by supplying syntax = $syntax
and data = $data.

54 set_modsem_colors

Value

An object of S3 class ModsemRelcorr (a named list) with elements:

syntax Modified lavaan syntax string.

data Data frame with additional composite indicator columns.

parTable Parameter table corresponding to ‘syntax‘.

reliability Named numeric vector of reliabilities (one per latent variable).

AVE Named numeric vector with Average Variance Extracted values.

lVs Character vector of latent variables that were corrected.

single.items Character vector with names for the generated reliability corrected items

Examples

Not run:
tpb_uk <- "
Outer Model (Based on Hagger et al., 2007)
ATT =~ att3 + att2 + att1 + att4
SN =~ sn4 + sn2 + sn3 + sn1
PBC =~ pbc2 + pbc1 + pbc3 + pbc4
INT =~ int2 + int1 + int3 + int4
BEH =~ beh3 + beh2 + beh1 + beh4

Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ INT:PBC

"

corrected <- relcorr_single_item(syntax = tpb_uk, data = TPB_UK)
print(corrected)

syntax <- corrected$syntax
data <- corrected$data

est_dca <- modsem(syntax, data = data, method = "dblcent")
est_lms <- modsem(syntax, data = data, method="lms", nodes=32)
summary(est_lms)

End(Not run)

set_modsem_colors Define or disable the color theme used by modsem

Description

All arguments are optional; omitted ones fall back to the defaults below. Pass active = FALSE to
turn highlighting off (and reset the palette).

set_modsem_colors 55

Usage

set_modsem_colors(
positive = "green3",
negative = positive,
true = "green3",
false = "red",
nan = "purple",
na = "purple",
inf = "purple",
string = "cyan",
active = TRUE

)

Arguments

positive color of positive numbers.

negative color of negative numbers.

true color of TRUE.

false color of FALSE.

nan color of NaN.

na color of NA.

inf color of -Inf and Inf.

string color of quoted strings.

active Should color-theme be activated/deactived?

Value

TRUE if colors are active afterwards, otherwise FALSE.

Examples

set_modsem_colors(positive = "red3",
negative = "red3",
true = "darkgreen",
false = "red3",
na = "purple",
string = "darkgreen")

m1 <- "
Outer Model

X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

"

est <- modsem(m1, data = oneInt)

56 simple_slopes

colorize_output(summary(est))
colorize_output(est) # same as colorize_output(print(est))
colorize_output(modsem_inspect(est, what = "coef"))

Not run:
colorize_output(split = TRUE, {

Get live (uncolored) output
And print colored output at the end of execution

est_lms <- modsem(m1, data = oneInt, method = "lms")
summary(est_lms)

})

colorize_output(modsem_inspect(est_lms))

End(Not run)

simple_slopes Get the simple slopes of a SEM model

Description

This function calculates simple slopes (predicted values of the outcome variable) at user-specified
values of the focal predictor (x) and moderator (z) in a structural equation modeling (SEM) frame-
work. It supports interaction terms (xz), computes standard errors (SE), and optionally returns
confidence or prediction intervals for these predicted values. It also provides p-values for hypothe-
sis testing. This is useful for visualizing and interpreting moderation effects or to see how the slope
changes at different values of the moderator.

Usage

simple_slopes(
x,
z,
y,
model,
vals_x = -3:3,
vals_z = -1:1,
rescale = TRUE,
ci_width = 0.95,
ci_type = "confidence",
relative_h0 = TRUE,
standardized = FALSE,
xz = NULL,
...

)

simple_slopes 57

Arguments

x The name of the variable on the x-axis (focal predictor).

z The name of the moderator variable.

y The name of the outcome variable.

model An object of class modsem_pi, modsem_da, modsem_mplus, or a lavaan object.
This should be a fitted SEM model that includes paths for y ~ x + z + x:z.

vals_x Numeric vector of values of x at which to compute predicted slopes. Defaults
to -3:3. If rescale = TRUE, these values are taken relative to the mean and
standard deviation of x. A higher density of points (e.g., seq(-3, 3, 0.1)) will
produce smoother curves and confidence bands.

vals_z Numeric vector of values of the moderator z at which to compute predicted
slopes. Defaults to -1:1. If rescale = TRUE, these values are taken relative
to the mean and standard deviation of z. Each unique value of z generates a
separate regression line y ~ x | z.

rescale Logical. If TRUE (default), x and z are standardized according to their means
and standard deviations in the model. The values in vals_x and vals_z are
interpreted in those standardized units. The raw (unscaled) values corresponding
to these standardized points will be displayed in the returned table.

ci_width A numeric value between 0 and 1 indicating the confidence (or prediction) in-
terval width. The default is 0.95 (i.e., 95% interval).

ci_type A string indicating whether to compute a "confidence" interval for the pre-
dicted mean (i.e., uncertainty in the regression line) or a "prediction" interval
for individual outcomes. The default is "confidence". If "prediction", the
residual variance is added to the variance of the fitted mean, resulting in a wider
interval.

relative_h0 Logical. If TRUE (default), hypothesis tests for the predicted values (predicted
- h0) assume h0 is the model-estimated mean of y. If FALSE, the null hypothesis
is h0 = 0.

standardized Should coefficients be standardized beforehand?

xz The name of the interaction term (x:z). If NULL, it will be created by combining
x and z with a colon (e.g., "x:z"). Some backends may remove or alter the
colon symbol, so the function tries to account for that internally.

... Additional arguments passed to lower-level functions or other internal helpers.

Details

Computation Steps

1. The function extracts parameter estimates (and, if necessary, their covariance matrix) from the
fitted SEM model (model).

2. It identifies the coefficients for x, z, and x:z in the model’s parameter table, as well as the
variance of x, z and the residual variance of y.

3. If xz is not provided, it will be constructed by combining x and z with a colon (":"). De-
pending on the approach used to estimate the model, the colon may be removed or replaced
internally; the function attempts to reconcile that.

58 simple_slopes

4. A grid of x and z values is created from vals_x and vals_z. If rescale = TRUE, these values
are transformed back into raw metric units for display in the output.

5. For each point in the grid, a predicted value of y is computed via (beta0 + beta_x * x +
beta_z * z + beta_xz * x * z) and, if included, a mean offset.

6. The standard error (std.error) is derived from the covariance matrix of the relevant param-
eters, and if ci_type = "prediction", adds the residual variance.

7. Confidence (or prediction) intervals are formed using ci_width (defaulting to 95%). The
result is a table-like data frame with predicted values, CIs, standard errors, z-values, and p-
values.

Value

A data.frame (invisibly inheriting class "simple_slopes") with columns:

• vals_x, vals_z: The requested grid values of x and z.

• predicted: The predicted value of y at that combination of x and z.

• std.error: The standard error of the predicted value.

• z.value, p.value: The z-statistic and corresponding p-value for testing the null hypothesis
that predicted == h0.

• ci.lower, ci.upper: Lower and upper bounds of the confidence (or prediction) interval.

An attribute "variable_names" (list of x, z, y) is attached for convenience.

Examples

Not run:
library(modsem)

m1 <- "
Outer Model

X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner model
Y ~ X + Z + X:Z

"
est1 <- modsem(m1, data = oneInt)

Simple slopes at X in [-3, 3] and Z in [-1, 1], rescaled to the raw metric.
simple_slopes(x = "X", z = "Z", y = "Y", model = est1)

If the data or user wants unscaled values, set rescale = FALSE, etc.
simple_slopes(x = "X", z = "Z", y = "Y", model = est1, rescale = FALSE)

End(Not run)

standardized_estimates 59

standardized_estimates

Get Standardized Estimates

Description

Computes standardized estimates of model parameters for various types of modsem objects.

Usage

standardized_estimates(object, ...)

S3 method for class 'lavaan'
standardized_estimates(
object,
monte.carlo = FALSE,
mc.reps = 10000,
tolerance.zero = 1e-10,
...

)

S3 method for class 'modsem_da'
standardized_estimates(
object,
monte.carlo = FALSE,
mc.reps = 10000,
tolerance.zero = 1e-10,
rm.tmp.ov = TRUE,
...

)

S3 method for class 'modsem_mplus'
standardized_estimates(object, type = "stdyx", mc.reps = 1e+06, ...)

S3 method for class 'modsem_pi'
standardized_estimates(
object,
correction = FALSE,
std.errors = c("rescale", "delta", "monte.carlo"),
mc.reps = 10000,
colon.pi = FALSE,
...

)

Arguments

object An object of class modsem_da, modsem_mplus, modsem_pi, or a parameter table
(parTable) of class data.frame.

60 standardized_estimates

... Additional arguments passed on to lavaan::standardizedSolution().
monte.carlo Logical. If TRUE, use Monte Carlo simulation to estimate standard errors; if

FALSE, use the delta method (default).
mc.reps Integer. Number of Monte Carlo replications to use if std.errors = "monte.carlo".
tolerance.zero Threshold below which standard errors are set to NA.
rm.tmp.ov Should temporary (hidden) variables be removed?
type Type of standardized estimates to retrieve. Can be one of: "stdyx", "stdy",

"std", "un", "modsem".
correction Logical. Whether to apply a correction to the standardized estimates of the in-

teraction term. By default, FALSE, which standardizes the interaction term such
that σ2(XZ) = 1, consistent with lavaan’s treatment of latent interactions.
This is usually wrong, as it does not account for the fact that the interaction term
is a product of two variables, which means that the variance of the interaction
term of standardized variables (usually) is not equal to 1.
Hence the scale of the interaction effect changes, such that the standardized
interaction term does not correspond to one (standardized) unit change in the
moderating variables. If TRUE, a correction is applied by computing the interac-
tion term b3 = B3σ(X)σ(Z)

σ(Y) (where B3 is the unstandardized coefficient for the
interaction term), and solving for σ(XZ), which is used to correct the variance
of the interaction term, and its covariances.

std.errors Character string indicating the method used to compute standard errors when
correction = TRUE. Options include:
"rescale" Simply rescales the standard errors. Fastest option.
"delta" Uses the delta method to approximate standard errors.
"monte.carlo" Uses Monte Carlo simulation to estimate standard errors.
Ignored if correction = FALSE.

colon.pi Logical. If TRUE, the interaction terms in the output will be will be formatted us-
ing : to seperate the elements in the interaction term. Default is FALSE, using the
default formatting from lavaan. Only relevant if std.errors != "rescale"
and correction = TRUE.

Details

Standard errors can either be calculated using the delta method, or a monte.carlo simulation (monte.carlo
is not available for modsem_pi objects if correction == FALSE.). NOTE that the standard errors
of the standardized paramters change the assumptions of the model, and will in most cases yield
different z and p-values, compared to the unstandardized solution. In almost all cases, significance
testing should be based on the unstandardized solution. Since, the standardization process changes
the model assumptions, it also changes what the p-statistics measure. I.e., the test statistics for
the standardized and unstandardized solutions belong to different sets of hypothesis, which are not
exactly equivalent to each other.

For modsem_da and modsem_mplus objects, the interaction term is not a formal variable in the model
and therefore lacks a defined variance. Under assumptions of normality and zero-mean variables,
the interaction variance is estimated as:

var(xz) = var(x) ∗ var(z) + cov(x, z)2

standardized_estimates 61

This means the standardized estimate for the interaction differs from approaches like lavaan, which
treats the interaction as a latent variable with unit variance.

For modsem_pi objects, the interaction term is standardized by default assuming var(xz) = 1, but
this can be overridden using the correction argument.

NOTE: Standardized estimates are always placed in the est column, not est.std, regardless of
model type.

Value

A data.frame with standardized estimates in the est column.

Methods (by class)

• standardized_estimates(lavaan): Method for lavaan objects

• standardized_estimates(modsem_da): Method for modsem_da objects

• standardized_estimates(modsem_mplus): Retrieve standardized estimates from modsem_mplus
object.

• standardized_estimates(modsem_pi): Method for modsem_pi objects

Examples

m1 <- '
Outer Model
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

'
Double centering approach
est_dca <- modsem(m1, oneInt)

std1 <- standardized_estimates(est_dca) # no correction
summarize_partable(std1)

std2 <- standardized_estimates(est_dca, correction = TRUE) # apply correction
summarize_partable(std2)

Not run:
est_lms <- modsem(m1, oneInt, method = "lms")
standardized_estimates(est_lms) # correction not relevant for lms

End(Not run)

62 standardize_model

standardize_model Standardize a fitted modsem_da model

Description

standardize_model() post-processes the output of modsem_da() (or of modsem()) when method
= "lms" / method = "qml"), replacing the unstandardized coefficient vector ($coefs) and its vari-
ance–covariance matrix ($vcov) with fully standardized counterparts (including the measurement
model).The procedure is purely algebraic— no re-estimation is carried out —and is therefore fast
and deterministic.

Usage

standardize_model(model, monte.carlo = FALSE, mc.reps = 10000, ...)

Arguments

model A fitted object of class modsem_da. Passing any other object triggers an error.
monte.carlo Logical. If TRUE, the function will use Monte Carlo simulation to obtain the

standard errors of the standardized estimates. If FALSE, the delta method is used.
Default is FALSE.

mc.reps Number of Monte Carlo replications. Default is 10,000. Ignored if monte.carlo
= FALSE.

... Arguments passed on to other functions

Value

The same object (returned invisibly) with three slots overwritten

$parTable Parameter table whose columns est and std.error now hold standardized estimates
and their (delta-method) standard errors, as produced by standardized_estimates().

$coefs Named numeric vector of standardized coefficients. Intercepts (operator ~1) are removed,
because a standardized variable has mean 0 by definition.

$vcov Variance–covariance matrix corresponding to the updated coefficient vector. Rows/columns
for intercepts are dropped, and the sub-matrix associated with rescaled parameters is adjusted
so that its diagonal equals the squared standardized standard errors.

The object keeps its class attributes, allowing seamless use by downstream S3 methods such as
summary(), coef(), or vcov().

Because the function merely transforms existing estimates, parameter constraints imposed through
shared labels remain satisfied.

See Also

standardized_estimates() Obtains the fully standardized parameter table used here.
modsem() Fit model using LMS or QML approaches.
modsem_da() Fit model using LMS or QML approaches.

summarize_partable 63

Examples

Not run:
Latent interaction estimated with LMS and standardized afterwards
syntax <- "

X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3
Y ~ X + Z + X:Z

"
fit <- modsem_da(syntax, data = oneInt, method = "lms")
sfit <- standardize_model(fit, monte.carlo = TRUE)

Compare unstandardized vs. standardized summaries
summary(fit) # unstandardized
summary(sfit) # standardized

End(Not run)

summarize_partable Summarize a parameter table from a modsem model.

Description

Summarize a parameter table from a modsem model.

Usage

summarize_partable(
parTable,
scientific = FALSE,
ci = FALSE,
digits = 3,
loadings = TRUE,
regressions = TRUE,
covariances = TRUE,
intercepts = TRUE,
variances = TRUE

)

Arguments

parTable A parameter table, typically obtained from a modsem model using parameter_estimates
or standardized_estimates.

scientific Logical, whether to print p-values in scientific notation.

ci Logical, whether to include confidence intervals in the output.

digits Integer, number of digits to round the estimates to (default is 3).

64 summary.modsem_da

loadings Logical, whether to include factor loadings in the output.

regressions Logical, whether to include regression coefficients in the output.

covariances Logical, whether to include covariance estimates in the output.

intercepts Logical, whether to include intercepts in the output.

variances Logical, whether to include variance estimates in the output.

Value

A summary object containing the parameter table and additional information.

Examples

m1 <- '
Outer Model
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3

Inner Model
Y ~ X + Z + X:Z

'
Double centering approach
est_dca <- modsem(m1, oneInt)

std <- standardized_estimates(est_dca, correction = TRUE)
summarize_partable(std)

summary.modsem_da summary for modsem objects

Description

summary for modsem objects

summary for modsem objects

summary for modsem objects

Usage

S3 method for class 'modsem_da'
summary(
object,
H0 = is_interaction_model(object),
verbose = interactive(),
r.squared = TRUE,
fit = FALSE,
adjusted.stat = FALSE,
digits = 3,

summary.modsem_da 65

scientific = FALSE,
ci = FALSE,
standardized = FALSE,
centered = FALSE,
monte.carlo = FALSE,
mc.reps = 10000,
loadings = TRUE,
regressions = TRUE,
covariances = TRUE,
intercepts = TRUE,
variances = TRUE,
var.interaction = FALSE,
...

)

S3 method for class 'modsem_mplus'
summary(
object,
scientific = FALSE,
standardized = FALSE,
ci = FALSE,
digits = 3,
loadings = TRUE,
regressions = TRUE,
covariances = TRUE,
intercepts = TRUE,
variances = TRUE,
...

)

S3 method for class 'modsem_pi'
summary(
object,
H0 = is_interaction_model(object),
r.squared = TRUE,
adjusted.stat = FALSE,
digits = 3,
scientific = FALSE,
verbose = TRUE,
...

)

Arguments

object modsem object to summarized

H0 Should the baseline model be estimated, and used to produce comparative fit?

verbose Should messages be printed?

r.squared Calculate R-squared.

66 summary.modsem_da

fit Print additional fit measures.

adjusted.stat Should sample size corrected/adjustes AIC and BIC be reported?

digits Number of digits for printed numerical values

scientific Should scientific format be used for p-values?

ci print confidence intervals

standardized standardize estimates

centered Print mean centered estimates.

monte.carlo Should Monte Carlo bootstrapped standard errors be used? Only relevant if
standardized = TRUE. If FALSE delta method is used instead.

mc.reps Number of Monte Carlo repetitions. Only relevant if monte.carlo = TRUE, and
standardized = TRUE.

loadings print loadings

regressions print regressions

covariances print covariances

intercepts print intercepts

variances print variances

var.interaction

If FALSE variances for interaction terms will be removed from the output.

... arguments passed to lavaan::summary()

Examples

Not run:
m1 <- "
Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

"

est1 <- modsem(m1, oneInt, "qml")
summary(est1, ci = TRUE, scientific = TRUE)

End(Not run)

TPB 67

TPB TPB

Description

A simulated dataset based on the Theory of Planned Behaviour

Examples

tpb <- "
Outer Model (Based on Hagger et al., 2007)

ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2

Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC + INT:PBC

"

est <- modsem(tpb, data = TPB)
summary(est)

TPB_1SO TPB_1SO

Description

A simulated dataset based on the Theory of Planned Behaviour, where INT is a higher order con-
struct of ATT, SN, and PBC.

Examples

tpb <- '
First order constructs
ATT =~ att1 + att2 + att3
SN =~ sn1 + sn2 + sn3
PBC =~ pbc1 + pbc2 + pbc3
BEH =~ b1 + b2

Higher order constructs
INT =~ ATT + PBC + SN

Higher order interaction
INTxPBC =~ ATT:PBC + SN:PBC + PBC:PBC

68 TPB_2SO

Structural model
BEH ~ PBC + INT + INTxPBC

'

Not run:
est_ca <- modsem(tpb, data = TPB_1SO, method = "ca")
summary(est_ca)

est_dblcent <- modsem(tpb, data = TPB_1SO, method = "dblcent")
summary(est_dblcent)

End(Not run)

TPB_2SO TPB_2SO

Description

A simulated dataset based on the Theory of Planned Behaviour, where INT is a higher order con-
struct of ATT and SN, and PBC is a higher order construct of PC and PB.

Examples

tpb <- '
First order constructs
ATT =~ att1 + att2 + att3
SN =~ sn1 + sn2 + sn3
PB =~ pb1 + pb2 + pb3
PC =~ pc1 + pc2 + pc3
BEH =~ b1 + b2

Higher order constructs
INT =~ ATT + SN
PBC =~ PC + PB

Higher order interaction
INTxPBC =~ ATT:PC + ATT:PB + SN:PC + SN:PB

Structural model
BEH ~ PBC + INT + INTxPBC

'

Not run:
est <- modsem(tpb, data = TPB_2SO, method = "ca")
summary(est)

End(Not run)

TPB_UK 69

TPB_UK TPB_UK

Description

A dataset based on the Theory of Planned Behaviour from a UK sample. 4 variables with high
communality were selected for each latent variable (ATT, SN, PBC, INT, BEH), from two time
points (t1 and t2).

Source

Gathered from a replication study by Hagger et al. (2023).

Obtained from doi:10.23668/psycharchives.12187

Examples

tpb_uk <- "
Outer Model (Based on Hagger et al., 2007)
ATT =~ att3 + att2 + att1 + att4
SN =~ sn4 + sn2 + sn3 + sn1
PBC =~ pbc2 + pbc1 + pbc3 + pbc4
INT =~ int2 + int1 + int3 + int4
BEH =~ beh3 + beh2 + beh1 + beh4

Inner Model (Based on Steinmetz et al., 2011)
Causal Relationsships
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ INT:PBC

"

est <- modsem(tpb_uk, data = TPB_UK)
summary(est)

trace_path Estimate formulas for (co-)variance paths using Wright’s path tracing
rules

Description

This function estimates the path from x to y using the path tracing rules. Note that it only works
with structural parameters, so "=~" are ignored, unless measurement.model = TRUE. If you want to
use the measurement model, "~" should be in the mod column of pt.

https://doi.org/10.23668/psycharchives.12187

70 trace_path

Usage

trace_path(
pt,
x,
y,
parenthesis = TRUE,
missing.cov = FALSE,
measurement.model = TRUE,
maxlen = 100,
paramCol = "mod",
...

)

Arguments

pt A data frame with columns lhs, op, rhs, and mod, from modsemify

x Source variable

y Destination variable

parenthesis If TRUE, the output will be enclosed in parenthesis

missing.cov If TRUE, covariances missing from the model syntax will be added
measurement.model

If TRUE, the function will use the measurement model

maxlen Maximum length of a path before aborting

paramCol The column name in pt that contains the parameter labels

... Additional arguments passed to trace_path

Value

A string with the estimated path (simplified if possible)

Examples

library(modsem)
m1 <- '

Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'
pt <- modsemify(m1)
trace_path(pt, x = "Y", y = "Y", missing.cov = TRUE) # variance of Y

twostep 71

twostep Estimate interaction effects in structural equation models (SEMs) us-
ing a twostep procedure

Description

Estimate an interaction model using a twostep procedure. For the PI approaches, the lavaan::sam
function is used to optimize the models, instead of lavaan::sem. Note that the product indicators
are still used, and not the newly developed SAM approach to estimate latent interactions. For the
DA approaches (LMS and QML) the measurement model is estimated using a CFA (lavaan::cfa).
The structural model is estimated using modsem_da, where the estimates in the measurement model
are fixed, based on the CFA estimates. Note that standard errors are uncorrected (i.e., naive), and
do not account for the uncertainty in the CFA estimates. NOTE, this is an experimental feature!

Usage

twostep(model.syntax, data, method = "lms", ...)

Arguments

model.syntax lavaan syntax

data dataframe

method method to use:

"dblcent" double centering approach (passed to lavaan).
"ca" constrained approach (passed to lavaan).
"rca" residual centering approach (passed to lavaan).
"uca" unconstrained approach (passed to lavaan).
"pind" prod ind approach, with no constraints or centering (passed to lavaan).
"lms" latent moderated structural equations (not passed to lavaan).
"qml" quasi maximum likelihood estimation (not passed to lavaan).
"custom" use parameters specified in the function call (passed to lavaan).

... arguments passed to other functions depending on the method (see modsem_pi
and modsem_da)

Value

modsem object with class modsem_pi or modsem_da.

Examples

library(modsem)
m1 <- '

Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3

72 var_interactions

Z =~ z1 + z2 + z3

Inner model
Y ~ X + Z + X:Z

'

est_dblcent <- twostep(m1, oneInt, method = "dblcent")
summary(est_dblcent)

Not run:
est_lms <- twostep(m1, oneInt, method = "lms")
summary(est_lms)

est_qml <- twostep(m1, oneInt, method = "qml")
summary(est_qml)

End(Not run)

tpb_uk <- "
Outer Model (Based on Hagger et al., 2007)
ATT =~ att3 + att2 + att1 + att4
SN =~ sn4 + sn2 + sn3 + sn1
PBC =~ pbc2 + pbc1 + pbc3 + pbc4
INT =~ int2 + int1 + int3 + int4
BEH =~ beh3 + beh2 + beh1 + beh4

Inner Model (Based on Steinmetz et al., 2011)
Causal Relationsships
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ INT:PBC

"

uk_dblcent <- twostep(tpb_uk, TPB_UK, method = "dblcent")
summary(uk_dblcent)

Not run:
uk_qml <- twostep(tpb_uk, TPB_UK, method = "qml")

uk_lms <- twostep(tpb_uk, TPB_UK, method = "lms", nodes = 32, adaptive.quad = TRUE)
summary(uk_lms)

End(Not run)

var_interactions Extract or modify parTable from an estimated model with estimated
variances of interaction terms

Description

Extract or modify parTable from an estimated model with estimated variances of interaction terms

var_interactions 73

Usage

var_interactions(object, ...)

Arguments

object An object of class modsem_da, modsem_mplus, or a parTable of class data.frame

... Additional arguments passed to other functions

Index

bootstrap_modsem, 3
bootstrapLavaan, 5

centered_estimates, 6
colorize_output, 8
compare_fit, 10

data.frame, 73
default_settings_da, 11, 23, 27
default_settings_pi, 11

estimate_h0, 12
extract_lavaan, 13

fit_modsem_da, 14

get_pi_data, 15
get_pi_syntax, 16

is_interaction_model, 17

jordan, 18

modsem, 4, 19, 33, 40, 45, 59, 62, 63
modsem_coef, 22
modsem_da, 3–5, 7, 10, 12, 19, 20, 23, 29, 30,

32, 41, 44, 45, 50, 57, 59, 62, 71, 73
modsem_inspect, 29
modsem_mimpute, 33
modsem_mplus, 19, 20, 34, 44, 45, 50, 57, 59,

61, 73
modsem_nobs, 36
modsem_pi, 3–5, 10, 12, 15, 16, 19, 20, 30, 32,

36, 41, 44, 45, 50, 57, 59, 60, 71
modsem_predict, 40
modsem_vcov, 42
modsemify, 21, 70

oneInt, 42

parameter_estimates, 43, 63

plot_interaction, 45
plot_jn, 47
plot_surface, 50

relcorr_single_item, 27, 35, 39, 53

set_modsem_colors, 54
simple_slopes, 45, 46, 56
standardize_model, 25, 62
standardized_estimates, 25, 59, 62, 63
summarize_partable, 63
summary.modsem_da, 64
summary.modsem_mplus

(summary.modsem_da), 64
summary.modsem_pi (summary.modsem_da),

64

TPB, 67
TPB_1SO, 67
TPB_2SO, 68
TPB_UK, 69
trace_path, 69, 70
twostep, 71

var_interactions, 72

74

	bootstrap_modsem
	centered_estimates
	colorize_output
	compare_fit
	default_settings_da
	default_settings_pi
	estimate_h0
	extract_lavaan
	fit_modsem_da
	get_pi_data
	get_pi_syntax
	is_interaction_model
	jordan
	modsem
	modsemify
	modsem_coef
	modsem_da
	modsem_inspect
	modsem_mimpute
	modsem_mplus
	modsem_nobs
	modsem_pi
	modsem_predict
	modsem_vcov
	oneInt
	parameter_estimates
	plot_interaction
	plot_jn
	plot_surface
	relcorr_single_item
	set_modsem_colors
	simple_slopes
	standardized_estimates
	standardize_model
	summarize_partable
	summary.modsem_da
	TPB
	TPB_1SO
	TPB_2SO
	TPB_UK
	trace_path
	twostep
	var_interactions
	Index

