Package ‘pathling’

January 20, 2026
Type Package
Title A Library for using 'Pathling’
Version 9.2.0
Maintainer °° Australian e-Health Research Centre, CSIRO" <pathling@csiro.au>

Description R API for 'Pathling', a tool for querying and transforming elec-
tronic health record data that is represented using the 'Fast Healthcare Interoperability Re-
sources' (FHIR) standard - see <https://pathling.csiro.au/docs>.

License Apache License 2.0
URL https://pathling.csiro.au/

BugReports https://github.com/aehrc/pathling/issues
LazyData TRUE

Encoding UTF-8

Depends R (>=3.5.0)

Imports rlang(>= 1.0.0), sparklyr(>= 1.8.1), jsonlite(>= 1.8.8), purrr
Suggests testthat(>= 3.2.1.1), lintr, styler
Config/testthat/edition 3

RoxygenNote 7.2.3

SystemRequirements Spark: 3.5.x

Config/pathling/Version 9.2.0
Config/pathling/SparkVersion 4.0.1
Config/pathling/ScalaVersion 2.13
Config/pathling/HadoopMajor Version 3
Config/pathling/Hadoop Version 3.4.1
Config/pathling/DeltaVersion 4.0.0

NeedsCompilation yes

Author Australian e-Health Research Centre, CSIRO [cph, cre],
Piotr Szul [aut],
John Grimes [aut]

Repository CRAN

Date/Publication 2026-01-20 09:00:08 UTC


https://pathling.csiro.au/docs
https://pathling.csiro.au/
https://github.com/aehrc/pathling/issues

2 Contents

Contents
conditionNS . . . . . . .. e e e e e e 3
ds read . . . . . . e e 3
AS_VIEW . . o 4
ds_write_delta . . . . . . . . . e 5
ds_write_ndjson . . . . . .. e e e e e e 6
ds_write_parquet . . . . . . ... e e e e e e e e e e 7
ds_write_tables . . . . . . . .. L e e e e 8
Equivalence . . . . . . . ... L 9
LOINC_URI . . . . . e 10
MimeType . . . . . . . o 11
pathling_connect . . . . . . . . . . . e 11
pathling_disconnect . . . . . . . . . . L 14
pathling_disconnect_all . . . . . . . . . . . . .. 14
pathling_encode . . . . . . . . . L e 15
pathling_encode_bundle . . . . . . .. ... .. 16
pathling_examples . . . . . . . ... 17
pathling_example_resource . . . . . . . . . . . ..ol 17
pathling_install_spark . . . . . . . . . . ... 18
pathling_is_spark_installed . . . . . . . . . . .. .. 19
pathling_read_bulk . . . . . . . .. ... 19
pathling_read_bundles . . . . . . . . . ... 21
pathling_read_datasets . . . . . . . . . . . . e 22
pathling_read_delta . . . . . . . . . . ... 23
pathling_read_ndjson . . . . . . . . ... 24
pathling_read_parquet . . . . . . . . . .. .. 25
pathling_read_tables . . . . . . . . .. ... 26
pathling_spark . . . . . . . . .. e e 27
pathling_spark_info . . . . . . . . . ... 27
pathling version . . . . . . . . . ... 28
PropertyType . . . . . . . e 28
SaveMode . . . . . .. e e e 29
SNOMED_URI . . . . . . . e e 29
StorageType . . . . . . . L 30
LO_AITAY . . v v o o e e e e e e e e e e e e e e e e e e e e e e 30
tX_designation . . . . . ... L. e e e e e e e e 31
tx_display . . ..o e 32
tx_member_of . . ... L L e e 33
tx_property_of . . . ... 33
tx_subsumed_by . . . . .. 34
X SUDSUIMES . . . o o o o o e e e e e e e e e 35
tx_to_coding . . . ... e e e e 36
tx_to_ecl_value_set . . . . . . . . .. e e e e 37
tx_to_loinc_coding . . . . . ... e 38
tx_to_snomed_coding . . . . . . ... L. 39
tx_translate . . . . . L L L s e 40

VEISION . . . . v o e e e 41



conditions

Index

conditions Synthetic conditions data

Description

A synthetic data set of simplified and flattened FHIR Condition resources generated by Synthea.

Usage

conditions

Format

An object of class data. frame with 19 rows and 6 columns.

Details

A data frame with 19 rows and 6 columns:

e START - The onset date

* STOP - The abatement date

* PATIENT - The ID of the patient

ENCOUNTER - The ID of the encounter

CODE - The SNOMED CT code of the condition
DESCRIPTION - The display name of the condition

ds_read Get data for a resource type from a data source

Description

Get data for a resource type from a data source

Usage

ds_read(ds, resource_code)

Arguments

ds The DataSource object.

resource_code A string representing the type of FHIR resource to read data from.



4 ds_view

Value

A Spark DataFrame containing the data for the given resource type.

Examples

## Not run:
data_source <- pc %>% pathling_read_ndjson(pathling_examples(”ndjson”))
data_source %>%
ds_read("Patient”) %>%
sparklyr: :sdf_nrow()
data_source %>%
ds_read("Condition”) %>%
sparklyr: :sdf_nrow()

## End(Not run)

ds_view Execute a SQL on FHIR view

Description

Executes a SQL on FHIR view definition and returns the result as a Spark DataFrame.

Usage

ds_view(
ds,
resource,
select = NULL,
constants = NULL,

where = NULL,
json = NULL
)
Arguments
ds The DataSource object containing the data to be queried.
resource A string representing the type of FHIR resource that the view is based upon, e.g.
"Patient’ or ’Observation’.
select A list of columns and nested selects to include in the view. Each element should
be a list with appropriate structure.
constants An optional list of constants that can be used in FHIRPath expressions.
where An optional list of FHIRPath expressions that can be used to filter the view.
json An optional JSON string representing the view definition, as an alternative to

providing the parameters as R objects.



ds_write_delta

Value

A Spark DataFrame containing the results of the view.

See Also

Pathling documentation - SQL on FHIR

Examples

## Not run:
data_source <- pc %>% pathling_read_ndjson(pathling_examples(”"ndjson"))
data_source %>% ds_view("Patient”,
select = list(
list(
column = list(
list(path = "id", name = "id"),
list(path = "gender"”, name = "gender"),
list(
path = "telecom.where(system="'phone').value”,
name = "phone_numbers”, collection = TRUE
)
)
),
list(
forEach = "name”,
column = list(
list(path = "use"”, name = "name_use"),
list(path = "family", name = "family_name")
),
select = list(
list(
forEachOrNull = "given”,
column = list(
list(path = "$this”, name = "given_name")
)
)
)
)
),
where = list(
list(path = "gender = 'male'")
)
)

## End(Not run)

ds_write_delta Write FHIR data to Delta files



https://pathling.csiro.au/docs/libraries/running-queries

6 ds_write_ndjson

Description

Writes the data from a data source to a directory of Delta files.

Usage

ds_write_delta(ds, path, save_mode = SaveMode$OVERWRITE)

Arguments
ds The DataSource object.
path The URI of the directory to write the files to.
save_mode The save mode to use when writing the data - "overwrite" will overwrite any
existing data, "merge" will merge the new data with the existing data based on
resource ID.
Value

A list with element file_infos, containing a list of files created. Each file has fhir_resource_type
and absolute_url.
See Also

Pathling documentation - Writing Delta
SaveMode

Other data sink functions: ds_write_ndjson(), ds_write_parquet(), ds_write_tables()

Examples

pc <- pathling_connect()
data_source <- pc %>% pathling_read_ndjson(pathling_examples(”"ndjson”))

# Write the data to a directory of Delta files.
data_source %>% ds_write_delta(file.path(tempdir(), "delta"), save_mode = SaveMode$OVERWRITE)

pathling_disconnect(pc)

ds_write_ndjson Write FHIR data to NDJSON files

Description
Writes the data from a data source to a directory of NDJSON files. The files will be named using
the resource type and the ".ndjson" extension.

Usage

ds_write_ndjson(ds, path, save_mode = SaveMode$ERROR, file_name_mapper = NULL)


https://pathling.csiro.au/docs/libraries/io#delta-lake-1

ds_write_parquet 7

Arguments
ds The DataSource object.
path The URI of the directory to write the files to.
save_mode The save mode to use when writing the data.

file_name_mapper
An optional function that can be used to customise the mapping of the resource
type to the file name. Currently not implemented.
Value
A list with element file_infos, containing a list of files created. Each file has fhir_resource_type
and absolute_url.
See Also

Pathling documentation - Writing NDJSON
Other data sink functions: ds_write_delta(), ds_write_parquet(), ds_write_tables()

Examples

## Not run:
data_source <- pc %>% pathling_read_ndjson(pathling_examples(”"ndjson”))

# Write the data to a directory of NDJSON files.
data_source %>% ds_write_ndjson(file.path(tempdir(), "ndjson"))

## End(Not run)

ds_write_parquet Write FHIR data to Parquet files

Description

Writes the data from a data source to a directory of Parquet files.

Usage

ds_write_parquet(ds, path, save_mode = SaveMode$ERROR)

Arguments
ds The DataSource object.
path The URI of the directory to write the files to.

save_mode The save mode to use when writing the data.


https://pathling.csiro.au/docs/libraries/io#ndjson-1

8 ds_write_tables

Value
A list with element file_infos, containing a list of files created. Each file has fhir_resource_type
and absolute_url.

See Also

Pathling documentation - Writing Parquet

Other data sink functions: ds_write_delta(), ds_write_ndjson(), ds_write_tables()

Examples

pc <- pathling_connect()
data_source <- pc %>% pathling_read_ndjson(pathling_examples("ndjson”))

# Write the data to a directory of Parquet files.
data_source %>% ds_write_parquet(file.path(tempdir(), "parquet”))

pathling_disconnect(pc)

ds_write_tables Write FHIR data to managed tables

Description

Writes the data from a data source to a set of tables in the Spark catalog.

Usage

ds_write_tables(ds, schema = NULL, save_mode = SaveMode$OVERWRITE)

Arguments
ds The DataSource object.
schema The name of the schema to write the tables to.
save_mode The save mode to use when writing the data - "overwrite" will overwrite any
existing data, "merge" will merge the new data with the existing data based on
resource ID.
Value

A list with element file_infos, containing a list of files created. Each file has fhir_resource_type
and absolute_url.


https://pathling.csiro.au/docs/libraries/io#parquet-1

Equivalence 9

See Also

Pathling documentation - Writing managed tables
SaveMode

Other data sink functions: ds_write_delta(), ds_write_ndjson(), ds_write_parquet()

Examples

# Create a temporary warehouse location, which will be used when we call ds_write_tables().
temp_dir_path <- tempfile()
dir.create(temp_dir_path)
sc <- sparklyr::spark_connect(master = "local[*]", config = list(
"sparklyr.shell.conf" = c(
paste@("spark.sqgl.warehouse.dir=", temp_dir_path),
"spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension”,
"spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog”
)

), version = pathling_spark_info()$spark_version)

pc <- pathling_connect(sc)
data_source <- pc %>% pathling_read_ndjson(pathling_examples(”"ndjson"))

# Write the data to a set of Spark tables in the 'default' database.
data_source %>% ds_write_tables("default”, save_mode = SaveMode$MERGE)

pathling_disconnect(pc)
unlink(temp_dir_path, recursive = TRUE)

Equivalence Concept map equivalence types

Description

The following values are supported:
* RELATEDTO - The concepts are related to each other, and have at least some overlap in meaning,
but the exact relationship is not known.

* EQUIVALENT - The definitions of the concepts mean the same thing (including when structural
implications of meaning are considered) (i.e. extensionally identical).

e EQUAL - The definitions of the concepts are exactly the same (i.e. only grammatical differ-
ences) and structural implications of meaning are identical or irrelevant (i.e. intentionally
identical).

* WIDER - The target mapping is wider in meaning than the source concept.

* SUBSUMES - The target mapping subsumes the meaning of the source concept (e.g. the source
is-a target).


https://pathling.csiro.au/docs/libraries/io#managed-tables-1

10 LOINC_URI

* NARROWER - The target mapping is narrower in meaning than the source concept. The sense
in which the mapping is narrower SHALL be described in the comments in this case, and
applications should be careful when attempting to use these mappings operationally.

e SPECIALIZES - The target mapping specializes the meaning of the source concept (e.g. the
target is-a source).

e INEXACT - There is some similarity between the concepts, but the exact relationship is not
known.

* UNMATCHED - This is an explicit assertion that there is no mapping between the source and
target concept.

* DISJOINT - This is an explicit assertion that the target concept is not in any way related to the
source concept.

Usage

Equivalence

Format

An object of class 1ist of length 10.

See Also
FHIR R4 - ConceptMapEquivalence

LOINC_URI LOINC system URI

Description

The URI of the LOINC code system: http://loinc.org.

Usage
LOINC_URI

Format

An object of class character of length 1.

See Also
Using LOINC with HL7 Standards


https://hl7.org/fhir/R4/valueset-concept-map-equivalence.html
https://terminology.hl7.org/LOINC.html

MimeType 11

MimeType FHIR MIME types

Description
The following MIME types are supported:

e FHIR_JSON: FHIR resources encoded as JSON
e FHIR_XML: FHIR resources encoded as XML

Usage
MimeType

Format

An object of class 1ist of length 2.

See Also
FHIR R4 - Resource Formats

pathling_connect Create or retrieve the Pathling context

Description

Creates a Pathling context with the given configuration options.

Usage

pathling_connect(
spark = NULL,
max_nesting_level = 3,
enable_extensions = FALSE,
enabled_open_types = c("boolean”, "code"”, "date”, "dateTime"”, "decimal”, "integer"”,
"string"”, "Coding"”, "CodeableConcept”, "Address”, "Identifier"”, "Reference"),
enable_terminology = TRUE,
terminology_server_url = "https://tx.ontoserver.csiro.au/fhir"”,
terminology_verbose_request_logging = FALSE,
terminology_socket_timeout = 60000,
max_connections_total = 32,
max_connections_per_route = 16,
terminology_retry_enabled = TRUE,
terminology_retry_count = 2,
enable_cache = TRUE,


https://hl7.org/fhir/R4/formats.html

12 pathling_connect

cache_max_entries = 2e+05,
cache_storage_type = StorageType$MEMORY,
cache_storage_path = NULL,
cache_default_expiry = 600,
cache_override_expiry = NULL,
token_endpoint = NULL,
enable_auth = FALSE,

client_id = NULL,

client_secret = NULL,

scope = NULL,
token_expiry_tolerance = 120,
accept_language = NULL,
explain_queries = FALSE,
max_unbound_traversal_depth = 10

Arguments

spark A pre-configured SparkSession instance, use this if you need to control the way
that the session is set up
max_nesting_level
Controls the maximum depth of nested element data that is encoded upon im-
port. This affects certain elements within FHIR resources that contain recursive
references, e.g., QuestionnaireResponse.item.
enable_extensions
Enables support for FHIR extensions
enabled_open_types
The list of types that are encoded within open types, such as extensions.
enable_terminology
Enables the use of terminology functions
terminology_server_url
The endpoint of a FHIR terminology service (R4) that the server can use to
resolve terminology queries.
terminology_verbose_request_logging
Setting this option to TRUE will enable additional logging of the details of re-
quests to the terminology service.
terminology_socket_timeout
The maximum period (in milliseconds) that the server should wait for incoming

data from the HTTP service
max_connections_total

The maximum total number of connections for the client
max_connections_per_route

The maximum number of connections per route for the client
terminology_retry_enabled
Controls whether terminology requests that fail for possibly transient reasons

should be retried
terminology_retry_count

The number of times to retry failed terminology requests



pathling_connect 13

enable_cache Set this to FALSE to disable caching of terminology requests
cache_max_entries

Sets the maximum number of entries that will be held in memory
cache_storage_type

The type of storage to use for the terminology cache
cache_storage_path

The path on disk to use for the cache
cache_default_expiry

The default expiry time for cache entries (in seconds)
cache_override_expiry

If provided, this value overrides the expiry time provided by the terminology

server
token_endpoint An OAuth2 token endpoint for use with the client credentials grant
enable_auth Enables authentication of requests to the terminology server
client_id A client ID for use with the client credentials grant
client_secret A client secret for use with the client credentials grant

scope A scope value for use with the client credentials grant
token_expiry_tolerance
The minimum number of seconds that a token should have before expiry when
deciding whether to send it with a terminology request
accept_language
The default value of the Accept-Language HTTP header passed to the terminol-
ogy server
explain_queries
Setting this option to TRUE will enable additional logging relating to the query
plan used to execute queries
max_unbound_traversal_depth
Maximum depth for self-referencing structure traversals in repeat operations.
Controls how deeply nested hierarchical data can be flattened during projection.

Details

If no Spark session is provided and there is not one already present in this process, a new one will
be created.

If a SparkSession is not provided, and one is already running within the current process, it will be
reused.

It is assumed that the Pathling library API JAR is already on the classpath. If you are running your
own cluster, make sure it is on the list of packages.

Value

A Pathling context instance initialized with the specified configuration

See Also

Other context lifecycle functions: pathling_disconnect(), pathling_disconnect_all(), pathling_spark()



14 pathling_disconnect_all

Examples

## Not run:
# Create PathlingContext for an existing Spark connecton.
pc <- pathling_connect(spark = sc)

# Create PathlingContext with a new Spark connection.
pc <- pathling_connect()
spark <- pathling_spark(pc)

## End(Not run)

pathling_disconnect Disconnect from the Spark session

Description

Disconnects the Spark connection associated with a Pathling context.

Usage

pathling_disconnect(pc)

Arguments

pc The PathlingContext object.

Value

No return value, called for side effects only.

See Also

Other context lifecycle functions: pathling_connect(), pathling_disconnect_all(), pathling_spark()

pathling_disconnect_all
Disconnect all Spark connections

Description

Disconnect all Spark connections

Usage

pathling_disconnect_all()



pathling_encode 15

Value

No return value, called for side effects only.

See Also

Other context lifecycle functions: pathling_connect(), pathling_disconnect(), pathling_spark()

pathling_encode Encode FHIR JSON or XML to a dataframe

Description
Takes a Spark DataFrame with string representations of FHIR resources in the given column and
encodes the resources of the given types as Spark DataFrame.

Usage

pathling_encode(pc, df, resource_name, input_type = NULL, column = NULL)

Arguments
pc The Pathling context object.
df A Spark DataFrame containing the resources to encode.

resource_name The name of the FHIR resource to extract (e.g., "Condition", "Observation").
input_type The MIME type of input string encoding. Defaults to "application/fhir+json".

column The column in which the resources to encode are stored. If set to NULL, the
input DataFrame is assumed to have one column of type string.

Value

A Spark DataFrame containing the given type of resources encoded into Spark columns.

See Also

Other encoding functions: pathling_encode_bundle()

Examples

pc <- pathling_connect()
json_resources_df <- pathling_spark(pc) %>%
sparklyr: :spark_read_text(path = system.file("extdata”, "ndjson”, "Condition.ndjson”,
package = "pathling”
D)
pc %>% pathling_encode(json_resources_df, "Condition")
pathling_disconnect(pc)



16 pathling_encode_bundle

pathling_encode_bundle
Encode FHIR Bundles to a dataframe

Description
Takes a dataframe with string representations of FHIR bundles in the given column and outputs a
dataframe of encoded resources.

Usage

pathling_encode_bundle(pc, df, resource_name, input_type = NULL, column = NULL)

Arguments
pc A Pathling context object.
df A Spark DataFrame containing the bundles with the resources to encode.

resource_name The name of the FHIR resource to extract (Condition, Observation, etc.).
input_type The MIME type of the input string encoding. Defaults to *application/fhir+json’.

column The column in which the resources to encode are stored. If 'NULL’, then the
input DataFrame is assumed to have one column of type string.

Value

A Spark DataFrame containing the given type of resources encoded into Spark columns.

See Also

Other encoding functions: pathling_encode()

Examples

pc <- pathling_connect()
json_resources_df <- pathling_spark(pc) %>%
sparklyr: :spark_read_text(
path = system.file("extdata”, "bundle-xml”, package = "pathling"),
whole = TRUE
)
pc %>% pathling_encode_bundle(json_resources_df, "Condition",
input_type = MimeType$FHIR_XML, column = "contents"”
)
pathling_disconnect(pc)



pathling_examples

pathling_examples Get path to Pathling example data

Description

Construct the path to the package example data in a platform-independent way.

Usage

pathling_examples(...)

Arguments

character vector of the path components.

Value

The path to the examples data.

See Also

Other example functions: pathling_example_resource()

Examples

pathling_examples(”ndjson”, "Condition.ndjson")

pathling_example_resource
Read resource from Pathling example data

Description

Reads a FHIR resource dataframe from the package example data.

Usage

pathling_example_resource(pc, resource_name)

Arguments

pc The PathlingContext object.

resource_name The name of the resource to read.



18 pathling_install_spark

Details

The resources are read from the package example data in the extdata/parquet directory. Currently
the following resources are available: ’Patient’ and ’Condition’.

Value

A Spark DataFrame containing the resource data.

See Also

Other example functions: pathling_examples()

Examples

## Not run:
pathling_example_resource(pc, "Condition")

## End(Not run)

pathling_install_spark
Install Spark

Description

Installs the version of Spark/Hadoop defined in the package metadata using the sparklyr: :spark_install
function.

Usage

pathling_install_spark()

Value

List with information about the installed version.

See Also

Other installation functions: pathling_is_spark_installed(), pathling_spark_info(), pathling_version()



pathling_is_spark_installed 19

pathling_is_spark_installed
Check if Spark is installed

Description

Checks if the version of Spark/Hadoop required by Pathling is installed.

Usage
pathling_is_spark_installed()

Value

TRUE if the required version of Spark/Hadoop is installed, FALSE otherwise.

See Also

Other installation functions: pathling_install_spark(), pathling_spark_info(), pathling_version()

pathling_read_bulk Create a data source from a FHIR Bulk Data Access API endpoint

Description

Creates a data source by downloading data from a FHIR server that implements the FHIR Bulk
Data Access API.

Usage

pathling_read_bulk(
pc,
fhir_endpoint_url,
output_dir,
group_id = NULL,
patients = NULL,

types = NULL,
output_format = "application/fhir+ndjson”,
since = NULL,

elements = NULL,

type_filters = NULL,
include_associated_data = NULL,
output_extension = "ndjson”,
timeout = NULL,
max_concurrent_downloads = 10,
auth_config = NULL



20 pathling_read_bulk

Arguments

pc The PathlingContext object.

fhir_endpoint_url
The URL of the FHIR server to export from.

output_dir The directory to write the output files to.
group_id Optional group ID for group-level export.
patients Optional list of patient IDs for patient-level export.
types List of FHIR resource types to include.

output_format The format of the output data. Defaults to "application/thir+ndjson".
since Only include resources modified after this timestamp.
elements List of FHIR elements to include.

type_filters FHIR search queries to filter resources.
include_associated_data
Pre-defined set of FHIR resources to include.
output_extension
File extension for output files. Defaults to "ndjson".
timeout Optional timeout duration in seconds.
max_concurrent_downloads
Maximum number of concurrent downloads. Defaults to 10.
auth_config Optional authentication configuration list with the following possible elements:

¢ enabled: Whether authentication is enabled (default: FALSE)

e client_id: The client ID to use for authentication

* private_key_jwk: The private key in JWK format

* client_secret: The client secret to use for authentication

* token_endpoint: The token endpoint URL

¢ use_smart: Whether to use SMART authentication (default: TRUE)

¢ use_form_for_basic_auth: Whether to use form-based basic auth (default:
FALSE)

* scope: The scope to request
* token_expiry_tolerance: The token expiry tolerance in seconds (default:

120)
Value

A DataSource object that can be used to run queries against the data.

See Also

Pathling documentation - Reading from Bulk Data API

Other data source functions: pathling_read_bundles(), pathling_read_datasets(), pathling_read_delta(),
pathling_read_ndjson(), pathling_read_parquet(), pathling_read_tables()


https://pathling.csiro.au/docs/libraries/io#fhir-bulk-data-api

pathling_read_bundles 21

Examples

## Not run:
pc <- pathling_connect()

# Basic system-level export

data_source <- pc %>% pathling_read_bulk(
fhir_endpoint_url = "https://bulk-data.smarthealthit.org/fhir",
output_dir = "/tmp/bulk_export”

)

# Group-level export with filters
data_source <- pc %>% pathling_read_bulk(
fhir_endpoint_url = "https://bulk-data.smarthealthit.org/fhir",
output_dir = "/tmp/bulk_export”,
group_id = "group-1",
types = c("Patient”, "Observation”),
elements = c("id", "status"”),
since = as.POSIXct("2023-01-01")
)

# Patient-level export with auth
data_source <- pc %>% pathling_read_bulk(
fhir_endpoint_url = "https://bulk-data.smarthealthit.org/fhir",
output_dir = "/tmp/bulk_export”,
patients = c(
"123", # Just the ID portion
"456"
),
auth_config = list(
enabled = TRUE,
client_id = "my-client-id",
private_key_jwk = '{ "kty":"RSA", ...}',
scope = "system/x.read”
)
)

pathling_disconnect(pc)

## End(Not run)

pathling_read_bundles Create a data source from FHIR bundles

Description

Creates a data source from a directory containing FHIR bundles.

Usage

pathling_read_bundles(pc, path, resource_types, mime_type = MimeType$FHIR_JSON)



22 pathling_read_datasets

Arguments
pc The PathlingContext object.
path The URI of the directory containing the bundles.
resource_types A sequence of resource type codes that should be extracted from the bundles.
mime_type The MIME type of the bundles. Defaults to "application/fhir+json".
Value

A DataSource object that can be used to run queries against the data.

See Also

Pathling documentation - Reading Bundles

Other data source functions: pathling_read_bulk(), pathling_read_datasets(), pathling_read_delta(),
pathling_read_ndjson(), pathling_read_parquet(), pathling_read_tables()

Examples

## Not run:
data_source <- pc %>% pathling_read_bundles(
pathling_examples("”bundle-xml"),
c("Patient”, "Observation"”), MimeType$FHIR_XML
)
data_source %>%
ds_read("Observation”) %>%
sparklyr: :sdf_nrow()

## End(Not run)

pathling_read_datasets
Create a data source from datasets

Description

Creates an immutable, ad-hoc data source from a named list of Spark datasets indexed with resource
type codes.

Usage

pathling_read_datasets(pc, resources)

Arguments
pc The PathlingContext object.
resources A name list of Spark datasets, where the keys are resource type codes and the

values are the data frames containing the resource data.


https://pathling.csiro.au/docs/libraries/io#fhir-bundles

pathling_read_delta 23

Value

A DataSource object that can be used to run queries against the data.

See Also
Pathling documentation - Reading datasets

Other data source functions: pathling_read_bulk(), pathling_read_bundles(), pathling_read_delta(),
pathling_read_ndjson(), pathling_read_parquet(), pathling_read_tables()

Examples

## Not run:
patient_df <- pc %>% pathling_example_resource("Patient”)
condition_df <- pc %>% pathling_example_resource("Condition")
data_source <- pc %>% pathling_read_datasets(list(Patient = patient_df, Condition = condition_df))
data_source %>%
ds_read("Patient”) %>%
sparklyr: :sdf_nrow()

## End(Not run)

pathling_read_delta Create a data source from Delta tables

Description
pathling_read_delta() creates a data source from a directory containing Delta tables. Each table
must be named according to the name of the resource type that it stores.

Usage

pathling_read_delta(pc, path)

Arguments

pc The PathlingContext object.

path The URI of the directory containing the Delta tables.
Value

A DataSource object that can be used to run queries against the data.

See Also

Pathling documentation - Reading Delta

Other data source functions: pathling_read_bulk(), pathling_read_bundles(), pathling_read_datasets(),
pathling_read_ndjson(), pathling_read_parquet(), pathling_read_tables()


https://pathling.csiro.au/docs/libraries/io#datasets
https://pathling.csiro.au/docs/libraries/io#delta-lake

24 pathling_read_ndjson

Examples

## Not run:
data_source <- pc %>% pathling_read_delta(pathling_examples("delta”))
data_source %>%

ds_read("Patient”) %>%

sparklyr: :sdf_nrow()

## End(Not run)

pathling_read_ndjson Create a data source from NDJSON

Description

Creates a data source from a directory containing NDJSON files. The files must be named with
the resource type code and must have the ".ndjson" extension, e.g. "Patient.ndjson" or "Observa-
tion.ndjson".

Usage

pathling_read_ndjson(pc, path, extension = "ndjson”, file_name_mapper = NULL)
Arguments

pc The PathlingContext object.

path The URI of the directory containing the NDJSON files.

extension The file extension to use when searching for files. Defaults to "ndjson".

file_name_mapper
An optional function that maps a filename to the set of resource types that it

contains. Currently not implemented.
Value

A DataSource object that can be used to run queries against the data.

See Also

Pathling documentation - Reading NDJSON

Other data source functions: pathling_read_bulk(), pathling_read_bundles(), pathling_read_datasets(),
pathling_read_delta(), pathling_read_parquet(), pathling_read_tables()


https://pathling.csiro.au/docs/libraries/io#ndjson

pathling_read_parquet 25

Examples

## Not run:
data_source <- pc %>% pathling_read_ndjson(pathling_examples(”ndjson"))
data_source %>%

ds_read("Patient”) %>%

sparklyr: :sdf_nrow()

## End(Not run)

pathling_read_parquet Create a data source from Parquet tables

Description
pathling_read_parquet() creates a data source from a directory containing Parquet tables. Each
table must be named according to the name of the resource type that it stores.

Usage

pathling_read_parquet(pc, path)

Arguments

pc The PathlingContext object.

path The URI of the directory containing the Parquet tables.
Value

A DataSource object that can be used to run queries against the data.

See Also

Pathling documentation - Reading Parquet

Other data source functions: pathling_read_bulk(), pathling_read_bundles(), pathling_read_datasets(),
pathling_read_delta(), pathling_read_ndjson(), pathling_read_tables()

Examples

## Not run:
data_source <- pc %>% pathling_read_parquet(pathling_examples("parquet”))
data_source %>%

ds_read("Patient”) %>%

sparklyr: :sdf_nrow()

## End(Not run)


https://pathling.csiro.au/docs/libraries/io#parquet

26 pathling_read_tables

pathling_read_tables Create a data source from managed tables

Description

pathling_read_tables() creates a data source from a set of Spark tables, where the table names
are the resource type codes.

Usage

pathling_read_tables(pc, schema = NULL)

Arguments

pc The PathlingContext object.

schema An optional schema name that should be used to qualify the table names.
Value

A DataSource object that can be used to run queries against the data.

See Also

Pathling documentation - Reading managed tables

Other data source functions: pathling_read_bulk(), pathling_read_bundles(), pathling_read_datasets(),
pathling_read_delta(), pathling_read_ndjson(), pathling_read_parquet()

Examples

## Not run:
data_source <- pc %>% pathling_read_tables()
data_source %>%

ds_read("Patient”) %>%

sparklyr: :sdf_nrow()

## End(Not run)


https://pathling.csiro.au/docs/libraries/io#managed-tables

pathling_spark 27

pathling_spark Get the Spark session

Description

Returns the Spark connection associated with a Pathling context.

Usage
pathling_spark(pc)

Arguments

pc The PathlingContext object.

Value

The Spark connection associated with this Pathling context.

See Also

Other context lifecycle functions: pathling_connect(), pathling_disconnect(), pathling_disconnect_all()

pathling_spark_info Get versions of Spark and other dependencies

Description

Returns the versions of Spark and Spark packages used by the Pathling R library.

Usage
pathling_spark_info()

Value
A list containing the following keys:

* spark_version: The version of Spark used by Pathling.
* scala_version: The version of Scala used by Pathling.

hadoop_version: The version of Hadoop used by Pathling.
* hadoop_major_version: The major version of Hadoop used by Pathling.

delta_version: The version of Delta used by Pathling.

See Also

Other installation functions: pathling_install_spark(), pathling_is_spark_installed(),
pathling_version()



28 PropertyType

pathling_version Get version of Pathling

Description

Get version of Pathling

Usage

pathling_version()

Value

The version of the Pathling R library.

See Also

Other installation functions: pathling_install_spark(), pathling_is_spark_installed(),
pathling_spark_info()

PropertyType Coding property data types

Description
The following data types are supported:

e STRING - A string value.

* INTEGER - An integer value.

* BOOLEAN - A boolean value.

* DECIMAL - A decimal value.

e DATETIME - A date/time value.
* CODE - A code value.

* CODING - A Coding value.

Usage
PropertyType

Format

An object of class 1ist of length 7.

See Also
FHIR R4 - Data Types


https://hl7.org/fhir/R4/datatypes.html

SaveMode

29

SaveMode SaveMode

Description

The following save modes are supported:

* OVERWRITE: Overwrite any existing data.
* APPEND: Append the new data to the existing data.

IGNORE: Only save the data if the file does not already exist.

* ERROR: Raise an error if the file already exists.

* MERGE: Merge the new data with the existing data based on resource ID.

Usage

SaveMode

Format

An object of class 1ist of length 5.

SNOMED_URI SNOMED CT system URI

Description

The URI of the SNOMED CT code system: http://snomed.info/sct.

Usage

SNOMED_URI

Format

An object of class character of length 1.

See Also
Using SNOMED CT with HL7 Standards


https://terminology.hl7.org/SNOMEDCT.html

30

to_array

StorageType Terminology cache storage type

Description

The type of storage to use for the terminology cache.

Usage

StorageType

Format

An object of class 1ist of length 2.

Details

The following values are supported:

* MEMORY - Use an in-memory cache

e DISK - Use a disk-based cache

to_array Convert a vector to a SQL array literal

Description

Converts a vector to an expression with the corresponding SQL array literal.

Usage

to_array(value)

Arguments

value A character or numeric vector to be converted

Value

The quosure with the SQL array literal that can be used in dplyr: :mutate.



tx_designation 31

tx_designation Get designations for codings

Description

Takes a Coding column as its input. Returns a Column that contains the values of designations
(strings) for this coding that match the specified use and language. If the language is not provided,
then all designations with the specified type are returned regardless of their language.

Usage

tx_designation(coding, use = NULL, language = NULL)

Arguments
coding A Column containing a struct representation of a Coding.
use The code with the use of the designations.
language The language of the designations.

Value

The Column containing the result of the operation (array of strings with designation values).

See Also

Pathling documentation - Retrieving designations

Examples

## Not run:
# Get the (first) SNOMED CT "Fully specified name"” ('900000000000003001")
# for the first coding of the Condition resource, in the 'en' language.
pc %>%
pathling_example_resource("”Condition”) %>%
sparklyr: :mutate(
id,
designation = (!!tx_designation(code[["coding"]1[[0]1],
I'1tx_to_snomed_coding("900000000000003001") ,

language = "en”
))[[el],
.keep = "none”

)

## End(Not run)


https://pathling.csiro.au/docs/libraries/terminology#retrieving-designations

32 tx_display

tx_display Get the display text for codings

Description

Takes a Coding column as its input. Returns a Column that contains the canonical display name
associated with the given code.

Usage

tx_display(coding, accept_language = NULL)

Arguments

coding A Column containing a struct representation of a Coding.

accept_language
The optional language preferences for the returned display name. Overrides the
parameter ‘accept_language‘ in pathling_connect.

Value

A Column containing the result of the operation (String).

See Also
Pathling documentation - Multi-language support

Other terminology functions: tx_member_of (), tx_property_of (), tx_subsumed_by (), tx_subsumes(),
tx_translate()

Examples

## Not run:
# Get the display name of the first coding of the Condition resource, with the default language.
pc %>%

pathling_example_resource("Condition”) %>%

sparklyr: :mutate(

id,
display = !!tx_display(code[["coding”]1][[@]]),
.keep = "none”

)

## End(Not run)


https://pathling.csiro.au/docs/libraries/terminology#multi-language-support

tx_member_of 33

tx_member_of Test membership within a value set

Description

Takes a Coding or array of Codings column as its input. Returns the column which contains a
Boolean value, indicating whether any of the input Codings is a member of the specified FHIR
ValueSet.

Usage

tx_member_of (codings, value_set_uri)

Arguments

codings A Column containing a struct representation of a Coding or an array of such
structs.

value_set_uri An identifier for a FHIR ValueSet.

Value

A Column containing the result of the operation.

See Also

Pathling documentation - Value set membership

Other terminology functions: tx_display(), tx_property_of (), tx_subsumed_by(), tx_subsumes(),
tx_translate()

tx_property_of Get properties for codings

Description

Takes a Coding column as its input. Returns a Column that contains the values of properties for
this coding with specified names and types. The type of the result column depends on the types of
the properties. Primitive FHIR types are mapped to their corresponding SQL primitives. Complex
types are mapped to their corresponding structs.

Usage

tx_property_of(
coding,
property_code,
property_type = "string",
accept_language = NULL

)


https://pathling.csiro.au/docs/libraries/terminology#value-set-membership

34 tx_subsumed_by

Arguments

coding A Column containing a struct representation of a Coding.
property_code The code of the property to retrieve.

property_type The type of the property to retrieve.

accept_language
The optional language preferences for the returned property values. Overrides
the parameter ‘accept_language‘ in ‘PathlingContext.create’.

Value

The Column containing the result of the operation (array of property values).

See Also

PropertyType
Pathling documentation - Retrieving properties

Other terminology functions: tx_display(), tx_member_of (), tx_subsumed_by(), tx_subsumes(),
tx_translate()

Examples

## Not run:
# Get the (first) value of the “inactive” property of the first coding of the Condition resource.
pc %>%
pathling_example_resource("”Condition") %>%
sparklyr::mutate(id,
is_inavtive = (!!tx_property_of(
code[["coding”]1]1[[@]],
"inactive”, PropertyType$BOOLEAN
y[[ell,
.keep = "none”

)

## End(Not run)

tx_subsumed_by Test subsumption between codings

Description
Takes two Coding columns as input. Returns a Column that contains a Boolean value, indicating
whether the left Coding is subsumed by the right Coding.

Usage

tx_subsumed_by(left_codings, right_codings)


https://pathling.csiro.au/docs/libraries/terminology#retrieving-properties

tx_subsumes 35

Arguments

left_codings A Column containing a struct representation of a Coding or an array of Codings.

right_codings A Column containing a struct representation of a Coding or an array of Codings.

Value

A Column containing the result of the operation (boolean).

See Also

Pathling documentation - Subsumption testing

Other terminology functions: tx_display(), tx_member_of (), tx_property_of (), tx_subsumes(),
tx_translate()

Examples

pc <- pathling_connect()

# Test the codings of the Condition “code™ for subsumption by a SNOMED CT code.
pc %>%
pathling_example_resource("”Condition”) %>%
sparklyr: :mutate(
id,
is_subsumed_by = !!tx_subsumed_by(
code[["coding"1],
I'1tx_to_snomed_coding("444814009")
),
.keep = "none”

)

pathling_disconnect(pc)

tx_subsumes Test subsumption between codings

Description

Takes two Coding columns as input. Returns a Column that contains a Boolean value, indicating
whether the left Coding subsumes the right Coding.

Usage

tx_subsumes(left_codings, right_codings)

Arguments

left_codings A Column containing a struct representation of a Coding or an array of Codings.

right_codings A Column containing a struct representation of a Coding or an array of Codings.


https://pathling.csiro.au/docs/libraries/terminology#subsumption-testing

36 tx_to_coding

Value

A Column containing the result of the operation (boolean).

See Also

Pathling documentation - Subsumption testing

Other terminology functions: tx_display(), tx_member_of (), tx_property_of (), tx_subsumed_by (),
tx_translate()

Examples

## Not run:
# Test the codings of the Condition ~code™ for subsumption of a SNOMED CT code.
pc %>%
pathling_example_resource(”Condition") %>%
sparklyr: :mutate(
id,
subsumes = !!tx_subsumes(
code[["coding"]],
1'1tx_to_snomed_coding("444814009")
),
.keep = "none"

)

## End(Not run)

tx_to_coding Convert codes to Coding structures

Description

Converts a Column containing codes into a Column that contains a Coding struct.

Usage

tx_to_coding(coding_column, system, version = NULL)

Arguments

coding_column The Column containing the codes.

system The URI of the system the codes belong to.
version The version of the code system.
Details

The Coding struct Column can be used as an input to terminology functions such as tx_member_of
and tx_translate. Please note that inside sparklyr verbs such as mutate the functions calls need
to be preceded with !'!, e.g: ! 'tx_to_coding(CODE, SNOMED_URI).


https://pathling.csiro.au/docs/libraries/terminology#subsumption-testing

tx_to_ecl value_set 37

Value

A Column containing a Coding struct.

See Also
FHIR R4 - Coding

Other terminology helpers: tx_to_ecl_value_set(), tx_to_loinc_coding(), tx_to_snomed_coding()

Examples

## Not run:
condition_df <- pathling_spark(pc) %>% sparklyr::copy_to(conditions)

# Convert codes to ICD-10 codings.
condition_df %>% sparklyr::mutate(

icdCoding = !!tx_to_coding(CODE, "http://hl7.org/fhir/sid/icd-10"), .keep = "none”
)

## End(Not run)

tx_to_ecl_value_set Convert a SNOMED CT ECL expression to a ValueSet URI

Description
Converts a SNOMED CT ECL expression into a FHIR ValueSet URI. It can be used with the
‘tx_member_of function.

Usage

tx_to_ecl_value_set(ecl)

Arguments

ecl The ECL expression.

Value

The ValueSet URI.

See Also
Using SNOMED CT with HL7 Standards - Implicit Value Sets

Other terminology helpers: tx_to_coding(), tx_to_loinc_coding(), tx_to_snomed_coding()


https://hl7.org/fhir/R4/datatypes.html#Coding
https://terminology.hl7.org/SNOMEDCT.html#snomed-ct-implicit-value-sets

38 tx_to_loinc_coding

Examples

## Not run:
# Example usage of tx_to_ecl_value_set function
tx_to_ecl_value_set("<<373265006 |Analgesic (substance)|")

## End(Not run)

tx_to_loinc_coding Convert LOINC codes to Coding structures

Description

Converts a Column containing codes into a Column that contains a LOINC Coding struct.

Usage

tx_to_loinc_coding(coding_column, version = NULL)

Arguments

coding_column The Column containing the codes.

version The version of the code system.

Details

The Coding struct Column can be used as an input to terminology functions such as tx_member_of
and tx_translate. Please note that inside sparklyr verbs such as mutate the functions calls need
to be preceded with !'!, e.g: ! 'tx_to_coding(CODE, SNOMED_URI).

Value

A Column containing a Coding struct.

See Also

Other terminology helpers: tx_to_coding(), tx_to_ecl_value_set(), tx_to_snomed_coding()

Examples
## Not run:
condition_df <- pathling_spark(pc) %>% sparklyr::copy_to(conditions)

# Convert codes to LOINC codings.
# Equivalent to: tx_to_coding(CODE, "http://loinc.org")
condition_df %>% sparklyr::mutate(loincCoding = !!tx_to_loinc_coding(CODE), .keep = "none")

## End(Not run)



tx_to_snomed_coding 39

tx_to_snomed_coding Convert SNOMED CT codes to Coding structures

Description

Converts a Column containing codes into a Column that contains a SNOMED Coding struct.

Usage

tx_to_snomed_coding(coding_column, version = NULL)

Arguments

coding_column The Column containing the codes.

version The version of the code system.

Details

The Coding struct Column can be used as an input to terminology functions such as tx_member_of
and tx_translate. Please note that inside sparklyr verbs such as mutate the functions calls need
to be preceded with !'!, e.g: !''tx_to_coding(CODE, SNOMED_URI).

Value

A Column containing a Coding struct.

See Also

Other terminology helpers: tx_to_coding(), tx_to_ecl_value_set(), tx_to_loinc_coding()

Examples

## Not run:
condition_df <- pathling_spark(pc) %>% sparklyr::copy_to(conditions)

# Convert codes to SNOMED CT codings.
# Equivalent to: tx_to_coding(CODE, "http://snomed.info/sct")

condition_df %>% sparklyr::mutate(snomedCoding = !!tx_to_snomed_coding(CODE), .keep = "none")

## End(Not run)



40 tx_translate

tx_translate Translate between value sets

Description

Takes a Coding column as input. Returns the Column which contains an array of Coding value
with translation targets from the specified FHIR ConceptMap. There may be more than one target
concept for each input concept. Only the translation with the specified equivalences are returned.

Usage

tx_translate(
codings,
concept_map_uri,
reverse = FALSE,
equivalences = NULL,
target = NULL

Arguments

codings A Column containing a struct representation of a Coding.

concept_map_uri
An identifier for a FHIR ConceptMap.

reverse The direction to traverse the map. FALSE results in "source to target" mappings,
while TRUE results in "target to source".

equivalences A value of a collection of values from the ConceptMapEquivalence ValueSet.

target Identifies the value set in which a translation is sought. If there’s no target
specified, the server should return all known translations.

Value

A Column containing the result of the operation (an array of Coding structs).

See Also

Equivalence
Pathling documentation - Concept translation

Other terminology functions: tx_display(), tx_member_of (), tx_property_of (), tx_subsumed_by(),
tx_subsumes()


https://pathling.csiro.au/docs/libraries/terminology#concept-translation

Version

Examples

## Not run:

# Translates the codings of the Condition ~code™ using a SNOMED implicit concept map.

pc %>%
pathling_example_resource(”Condition”) %>%
sparklyr: :mutate(
id,
translation = !!tx_translate(
code[["coding”]1],
"http://snomed.info/sct?fhir_cm=900000000000527005"
),
.keep = "none”

)

## End(Not run)

41

Version FHIR versions

Description
The following FHIR versions are supported:

* R4: FHIR R4

Usage

Version

Format

An object of class 1ist of length 1.



Index

* Terminology functions
tx_designation, 31

x context lifecycle functions
pathling_connect, 11
pathling_disconnect, 14
pathling_disconnect_all, 14
pathling_spark, 27

x data sink functions
ds_write_delta, 5
ds_write_ndjson, 6
ds_write_parquet, 7
ds_write_tables, 8

x data source functions
pathling_read_bulk, 19
pathling_read_bundles, 21
pathling_read_datasets, 22
pathling_read_delta, 23
pathling_read_ndjson, 24
pathling_read_parquet, 25
pathling_read_tables, 26

* datasets
conditions, 3
Equivalence, 9
LOINC_URI, 10
MimeType, 11
PropertyType, 28
SaveMode, 29
SNOMED_URI, 29
StorageType, 30
Version, 41

x encoding functions
pathling_encode, 15
pathling_encode_bundle, 16

+ example functions
pathling_example_resource, 17
pathling_examples, 17

x installation functions
pathling_install_spark, 18
pathling_is_spark_installed, 19

42

pathling_spark_info, 27
pathling_version, 28

* terminology functions
tx_display, 32
tx_member_of, 33
tx_property_of, 33
tx_subsumed_by, 34
tx_subsumes, 35
tx_translate, 40

* terminology helpers
tx_to_coding, 36
tx_to_ecl_value_set, 37
tx_to_loinc_coding, 38
tx_to_snomed_coding, 39

conditions, 3

ds_read, 3

ds_view, 4
ds_write_delta, 5, 7-9
ds_write_ndjson, 6, 6, 8, 9
ds_write_parquet, 6, 7,7, 9
ds_write_tables, 6-8, 8

Equivalence, 9, 40
LOINC_URI, 10
MimeType, 11

pathling_connect, 11, 14, 15,27, 32
pathling_disconnect, 13,14, 15,27
pathling_disconnect_all, 13, 14, 14,27
pathling_encode, 15, 16
pathling_encode_bundle, 15, 16
pathling_example_resource, 17,17
pathling_examples, 17, I8
pathling_install_spark, 18, 19, 27, 28
pathling_is_spark_installed, I8, 19, 27,
28
pathling_read_bulk, 19, 22-26



INDEX

pathling_read_bundles, 20, 21, 23-26
pathling_read_datasets, 20, 22, 22, 23-26
pathling_read_delta, 20, 22, 23, 23, 24-26
pathling_read_ndjson, 20, 22, 23, 24, 25, 26
pathling_read_parquet, 20, 22-24, 25, 26
pathling_read_tables, 20, 22-25, 26
pathling_spark, 13-15,27
pathling_spark_info, I8, 19,27, 28
pathling_version, I8, 19, 27,28
PropertyType, 28, 34

SaveMode, 6, 9, 29
SNOMED_URI, 29
StorageType, 30

to_array, 30

tx_designation, 31
tx_display, 32, 33-36, 40
tx_member_of, 32, 33, 34—40
tx_property_of, 32, 33, 33, 35, 36, 40
tx_subsumed_by, 32-34, 34, 36, 40
tx_subsumes, 32-35, 35, 40
tx_to_coding, 36, 37-39
tx_to_ecl_value_set, 37, 37, 38, 39
tx_to_loinc_coding, 37, 38, 39
tx_to_snomed_coding, 37, 38, 39
tx_translate, 32-36, 38, 39, 40

Version, 41

43



	conditions
	ds_read
	ds_view
	ds_write_delta
	ds_write_ndjson
	ds_write_parquet
	ds_write_tables
	Equivalence
	LOINC_URI
	MimeType
	pathling_connect
	pathling_disconnect
	pathling_disconnect_all
	pathling_encode
	pathling_encode_bundle
	pathling_examples
	pathling_example_resource
	pathling_install_spark
	pathling_is_spark_installed
	pathling_read_bulk
	pathling_read_bundles
	pathling_read_datasets
	pathling_read_delta
	pathling_read_ndjson
	pathling_read_parquet
	pathling_read_tables
	pathling_spark
	pathling_spark_info
	pathling_version
	PropertyType
	SaveMode
	SNOMED_URI
	StorageType
	to_array
	tx_designation
	tx_display
	tx_member_of
	tx_property_of
	tx_subsumed_by
	tx_subsumes
	tx_to_coding
	tx_to_ecl_value_set
	tx_to_loinc_coding
	tx_to_snomed_coding
	tx_translate
	Version
	Index

