Package ‘rix’

January 16, 2026

Title Reproducible Data Science Environments with 'Nix'
Version 0.17.4

Description Simplifies the creation of reproducible data science environments
using the 'Nix' package manager, as described in
Dolstra (2006) <ISBN 90-393-4130-3>. The included "rix()"
function generates a complete description of the environment as a
“default.nix” file, which can then be built using 'Nix'. This results in
project specific software environments with pinned versions of R, packages,
linked system dependencies, and other tools or programming languages such
as Python or Julia. Additional helpers make it easy to run R code in
'Nix' software environments for testing and production.

License GPL (>=3)
URL https://docs.ropensci.org/rix/

BugReports https://github.com/ropensci/rix/issues
Depends R (>=2.10)

Imports codetools, curl, jsonlite, sys, utils

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Bruno Rodrigues [aut, cre] (ORCID:

<https://orcid.org/0000-0002-3211-3689>),

Philipp Baumann [aut] (ORCID: <https://orcid.org/0000-0002-3194-8975>),

David Watkins [rev] (David reviewed the package (v. 0.9.1) for
rOpenSci, see
<https://github.com/ropensci/software-review/issues/625>),

Jacob Wujiciak-Jens [rev] (ORCID:
<https://orcid.org/0000-0002-7281-3989>, Jacob reviewed the package
(v. 0.9.1) for rOpenSci, see

https://docs.ropensci.org/rix/
https://github.com/ropensci/rix/issues
https://orcid.org/0000-0002-3211-3689
https://orcid.org/0000-0002-3194-8975
https://github.com/ropensci/software-review/issues/625
https://orcid.org/0000-0002-7281-3989

2 available_dates

<https://github.com/ropensci/software-review/issues/625>),
Richard J. Acton [ctb] (ORCID: <https://orcid.org/0000-0002-2574-9611>),
Jordi Rosell [ctb] (ORCID: <https://orcid.org/0000-0002-4349-1458>),
Elio Campitelli [ctb] (ORCID: <https://orcid.org/0000-0002-7742-9230>),
Laszl6 Kupesik [ctb] (ORCID: <https://orcid.org/0000-0003-3535-5496>),
Michael Heming [ctb] (ORCID: <https://orcid.org/0000-0002-9568-2790>)

Maintainer Bruno Rodrigues <bruno@brodrigues.co>
Repository CRAN
Date/Publication 2026-01-16 12:50:02 UTC

Contents
available_dates L e 2
available_df e 3
available 1. e 3
ga_cachiX e 4
make_launcher e 5
nix_build e 5
TENV2NIX . . v v v v vt e e e e e e e e e e e e e e e 7
TIX v o e e e e e e e 9
FX_ANIE. . . o o s 14
setup_cachix L 16
TAr_MIX_ A . o o vt e e e e e e e e e e e e e e e e 18
WIth_ NIX s, 18

Index 22

available_dates List available dates.
Description

List available dates.

Usage

available_dates()

Value

A character vector containing the available dates

See Also

Other available versions: available_df (), available_r()

https://github.com/ropensci/software-review/issues/625
https://orcid.org/0000-0002-2574-9611
https://orcid.org/0000-0002-4349-1458
https://orcid.org/0000-0002-7742-9230
https://orcid.org/0000-0003-3535-5496
https://orcid.org/0000-0002-9568-2790

available_df

Examples

available_dates()

available_df Return data frame with R, Bioc versions and supported platforms

Description

Return data frame with R, Bioc versions and supported platforms

Usage
available_df ()

Value

A data frame

See Also

Other available versions: available_dates(), available_r()

Examples

available_dates()

available_r List available R versions from the rstats-on-nix fork of Nixpkgs

Description

List available R versions from the rstats-on-nix fork of Nixpkgs

Usage

available_r()

Value

A character vector containing the available R versions.

See Also

Other available versions: available_dates(), available_df ()

Examples

available_r()

4 ga_cachix

ga_cachix ga_cachix Build an environment on GitHub Actions and cache it on
Cachix

Description

ga_cachix Build an environment on GitHub Actions and cache it on Cachix

Usage

ga_cachix(cache_name, path_default)

Arguments

cache_name String, name of your cache.

path_default String, relative path (from the root directory of your project) to the default.nix
to build.

Details

This function puts a . yaml file inside the . github/workflows/ folders on the root of your project.
This workflow file will use the projects default.nix file to generate the development environment
on GitHub Actions and will then cache the created binaries in Cachix. Create a free account on
Cachix to use this action. Refer to vignette(”"binary-cache") for detailed instructions. Make
sure to give read and write permissions to the GitHub Actions bot.

Value

Nothing, copies file to a directory.

See Also

Other CI/CD: tar_nix_ga()

Examples

Not run:
ga_cachix("my-cachix"”, path_default = "default.nix")

End(Not run)

make_launcher 5

make_launcher Create a startup script to launch an editor inside of a Nix shell

Description

Create a startup script to launch an editor inside of a Nix shell

Usage

make_launcher(editor, project_path)

Arguments

editor Character, the command to launch the editor. See the "Details" section below
for more information.

project_path Character, where to write the launcher, for example "/home/path/to/project".
The file will thus be written to the file "/home/path/to/project/start-editor.sh".
If the folder does not exist, it will be created.

Details

This function will write a launcher to start an IDE inside of a Nix shell. With a launcher, you
only need to execute it instead of first having to drop into the shell using nix-shell and then
type the command to run the IDE. For security reasons, this script is not executable upon cre-
ation, so you need to make it executable first by running chmod +x start-editor.sh (replace
editor with whichever editor you use). You don’t need this launcher if you use direnv; see
vignette("configuring-ide") for more details.

Value

Nothing, writes a script.

Examples

available_dates()

nix_build Invoke shell command nix-build from an R session

Description

Invoke shell command nix-build from an R session

6 nix_build

Usage
nix_build(
project_path = getwd(),
message_type = c("simple”, "quiet"”, "verbose"),
args = NULL
)
Arguments

project_path Path to the folder where the default.nix file resides.

message_type Character vector with messaging type. Either "simple” (default), "quiet” for
no messaging, or "verbose".

args A character vector of additional arguments to be passed directly to the nix-build

command. If the project directory (i.e. project_path) is not included in args,
it will be appended automatically.

Details
This function is a wrapper for the nix-build command-line interface. Users can supply any flags
supported by nix-build via the args parameter. If no custom arguments are provided, only the
project directory is passed.

Value
Integer of the process ID (PID) of the nix-build shell command launched, if the nix_build() call
is assigned to an R object. Otherwise, it will be returned invisibly.

See Also

Other Nix execution: with_nix()

Examples

Not run:

Run nix-build with default arguments (project directory)
nix_build()

Run nix-build with custom arguments
nix_build(args = c("--max-jobs", "2", "--quiet"))

End(Not run)

renv2nix 7

renv2nix renv2nix
Description
renv2nix
Usage
renv2nix(
renv_lock_path = "renv.lock",

project_path,

return_rix_call = FALSE,

method = c("fast”, "accurate"”),
override_r_ver = NULL,

Arguments

renv_lock_path Character, path of the renv.lock file, defaults to "renv.lock”

project_path Character, where to write default.nix, for example "/home/path/to/project".
The file will thus be written to the file "/home/path/to/project/default.nix". If the
folder does not exist, it will be created.

return_rix_call
Logical, return the generated rix function call instead of evaluating it this is for
debugging purposes, defaults to FALSE

method Character, the method of generating a nix environment from an renv.lock file.
"fast" is an inexact conversion which simply extracts the R version and a list
of all the packages in an renv.lock file and adds them to the r_pkgs argument
of rix(). This will use a snapshot of nixpkgs that should contain package
versions that are not too different from the ones defined in the renv.lock file.
For packages installed from GitHub or similar, an attempt is made to handle
them and pass them to the git_pkgs argument of rix(). Currently defaults to
"fast", "accurate" is not yet implemented.

override_r_ver Character, defaults to NULL, override the R version defined in the renv.lock
file with another version. This is especially useful if the renv.lock file lists a
version of R not (yet) available through Nix, or if the R version included in the
renv.lock is too old compared to the package versions. Can also be a date,
check available_dates().

Arguments passed on to rix

system_pkgs Vector of characters. List further software you wish to install that
are not R packages such as command line applications for example. You
can look for available software on the NixOS website https://search.
nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&
type=packages&query=

https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=
https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=
https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=

renv2nix

local_r_pkgs Vector of characters, paths to local packages to install. These
packages need to be in the .tar.gz or .zip formats and must be in the
same folder as the generated "default.nix" file.

tex_pkgs Vector of characters. A set of TeX packages to install. Use this if you
need to compile . tex documents, or build PDF documents using Quarto. If
you don’t know which package to add, start by adding "amsmath". See the
vignette("d2- installing-system-tools-and-texlive-packages-in-a-nix-environment"’
for more details.

py_conf List. A list containing two or three elements: py_version, py_pkgs,
and optionally py_src_dir. py_version should be in the form "3.12" for
Python 3.12, and py_pkgs should be an atomic vector of package names
(e.g., py_pkgs = c("polars”, "plotnine”, "great-tables")). If Python
packages are requested but {reticulate} is not in the list of R packages,
the user will be warned that they may want to add it. When py_conf pack-
ages are requested, the RETICULATE_PYTHON environment variable is set to
ensure the Nix environment does not use a system-wide Python installa-
tion. If you are developing a Python package, set py_src_dir to the path
of your package’s source directory (e.g., "mypackage/src” or just "src”).
This adds PYTHONPATH to the shell hook so your package can be imported
without installation. This is the Nix equivalent of pip install -e
(editable install). Note: if "uv"” is in system_pkgs, LD_LIBRARY_PATH is
automatically configured for dynamic library loading (required by packages
like numpy).

jl_conf List. A list of two elements, j1_version and j1_conf. jl_version
must be of the form "1.10" for Julia 1.10. Leave empty or use an empty
string to use the latest version, or use "1ts"” for the long term support ver-
sion. j1_conf must be an atomic vector of packages names, for example
jl_conf =c("TidierData", "TidierPlots").

ide Character, defaults to "none". If you wish to use RStudio to work inter-
actively use "rstudio”" or "rserver" for the server version. Use "code" for
Visual Studio Code or "codium" for Codium, or "positron" for Positron.
You can also use "radian", an interactive REPL. This will install a project-
specific version of the chosen editor which will be differrent than the one al-
ready present in your system (if any). For other editors or if you want to use
an editor already installed on your system (which will require some configu-
ration to make it work seamlessly with Nix shells see the vignette(”configuring-ide")
for configuration examples), use "none". Please be aware that VS Code and
Positron are not free software. To facilitate their installation, rix () auto-
matically enables a required setting without prompting the user for confir-
mation. See the "Details" section below for more information.

overwrite Logical, defaults to FALSE. If TRUE, overwrite the default.nix
file in the specified path.

print Logical, defaults to FALSE. If TRUE, print default.nix to console.
message_type Character. Message type, defaults to "simple”, which gives
minimal but sufficient feedback. Other values are currently "quiet, which

generates the files without message, and "verbose”, displays all the mes-
sages.

11X 9

shell_hook Character of length 1, defaults to NULL. Commands added to the
shellHook variable are executed when the Nix shell starts. So by default,
using nix-shell default.nix will start a specific program, possibly with
flags (separated by space), and/or do shell actions. You can for example use
shell_hook =R, if you want to directly enter the declared Nix R session
when dropping into the Nix shell.

Details

In order for this function to work properly, we recommend not running it inside the same folder
as an existing {renv} project. Instead, run it from a new, empty directory which path you pass
to project_path, and use renv_lock_path to point to the renv.lock file in the original {renv}
folder. We recommend that you start from an empty folder to hold your new Nix project, and copy
the renv. lock file only (not any of the other files and folders generated by {renv}) and then call
renv2nix () there. For more details, see vignette("renv2nix").

Value

Nothing, this function is called for its side effects only, unless return_rix_call = TRUE in which
case an unevaluated call to rix() is returned

Examples
Not run:
if the lock file is in another folder
renv2nix(
renv_lock_path = "path/to/original/renv_project/renv.lock”,
project_path = "path/to/rix_project”
)

you could also copy the renv.lock file in the folder of the Nix
project (don’t copy any other files generated by ~{renv}")
renv2nix(

renv_lock_path = "path/to/rix_project/renv.lock”,

project_path = "path/to/rix_project”
)

End(Not run)

rix Generate a Nix expression that builds a reproducible development en-
vironment

Description

Generate a Nix expression that builds a reproducible development environment

10 rix

Usage
rix(
r_ver = NULL,
date = NULL,
r_pkgs = NULL,

system_pkgs = NULL,
git_pkgs = NULL,
local_r_pkgs = NULL,
tex_pkgs = NULL,

py_conf = NULL,

jl_conf = NULL,

ide = "none”,
project_path,

overwrite = FALSE,

print = FALSE,
message_type = "simple”,
shell_hook = NULL,
ignore_remotes_cache = FALSE

Arguments

r_ver Character. The required R version, for example "4.0.0". You can check which R
versions are available using available_r(), and for more details check available_df ().
For reproducibility purposes, you can also provide a nixpkgs revision directly.
For older versions of R, nix-build might fail with an error stating ’this deriva-
tion is not meant to be built’. In this case, simply drop into the shell with
nix-shell instead of building it first. It is also possible to provide either
"bleeding-edge" or "frozen-edge" if you need an environment with bleeding
edge packages. Read more in the "Details" section below.

date Character. Instead of providing r_ver, it is also possible to provide a date.
This will build an environment containing R and R packages (and other de-
pendencies) as of that date. You can check which dates are available with
available_dates(). For more details about versions check available_df ().

r_pkgs Vector of characters. List the required R packages for your analysis here.

system_pkgs Vector of characters. List further software you wish to install that are not R pack-
ages such as command line applications for example. You can look for avail-
able software on the NixOS website https://search.nixos.org/packages?
channel=unstable&from=08&size=50&sort=relevance&type=packages&query=

git_pkgs List. A list of packages to install from Git. See details for more information.

local_r_pkgs Vector of characters, paths to local packages to install. These packages need
to be in the .tar.gz or .zip formats and must be in the same folder as the
generated "default.nix" file.

tex_pkgs Vector of characters. A set of TeX packages to install. Use this if you need to
compile .tex documents, or build PDF documents using Quarto. If you don’t
know which package to add, start by adding "amsmath". See the vignette("d2-

https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=
https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=

11X 11

installing-system-tools-and-texlive-packages-in-a-nix-environment")
for more details.

py_conf List. A list containing two or three elements: py_version, py_pkgs, and op-
tionally py_src_dir. py_version should be in the form "3.12" for Python
3.12, and py_pkgs should be an atomic vector of package names (e.g., py_pkgs
=c("polars”, "plotnine”, "great-tables"”)). If Python packages are re-
quested but {reticulate} is not in the list of R packages, the user will be
warned that they may want to add it. When py_conf packages are requested,
the RETICULATE_PYTHON environment variable is set to ensure the Nix environ-
ment does not use a system-wide Python installation. If you are developing a
Python package, set py_src_dir to the path of your package’s source directory
(e.g., "mypackage/src” orjust "src"). This adds PYTHONPATH to the shell hook
so your package can be imported without installation. This is the Nix equivalent
of pip install -e . (editable install). Note: if "uv” is in system_pkgs,
LD_LIBRARY_PATH is automatically configured for dynamic library loading (re-
quired by packages like numpy).

jl_conf List. A list of two elements, j1_version and j1_conf. j1_version must be of
the form "1.10" for Julia 1.10. Leave empty or use an empty string to use the
latest version, or use "1ts" for the long term support version. j1_conf must be
an atomic vector of packages names, for example j1_conf = c("TidierData",
"TidierPlots").

ide Character, defaults to "none". If you wish to use RStudio to work interactively
use "rstudio” or "rserver” for the server version. Use "code" for Visual Studio
Code or "codium" for Codium, or "positron" for Positron. You can also use
"radian", an interactive REPL. This will install a project-specific version of the
chosen editor which will be differrent than the one already present in your sys-
tem (if any). For other editors or if you want to use an editor already installed on
your system (which will require some configuration to make it work seamlessly
with Nix shells see the vignette(”configuring-ide") for configuration ex-
amples), use "none". Please be aware that VS Code and Positron are not free
software. To facilitate their installation, rix () automatically enables a required
setting without prompting the user for confirmation. See the "Details" section
below for more information.

project_path Character, where to write default.nix, for example "/home/path/to/project".
The file will thus be written to the file "/home/path/to/project/default.nix". If the
folder does not exist, it will be created.

overwrite Logical, defaults to FALSE. If TRUE, overwrite the default.nix file in the
specified path.
print Logical, defaults to FALSE. If TRUE, print default.nix to console.

message_type Character. Message type, defaults to "simple”, which gives minimal but suf-
ficient feedback. Other values are currently "quiet, which generates the files
without message, and "verbose”, displays all the messages.

shell_hook Character of length 1, defaults to NULL. Commands added to the shellHook vari-
able are executed when the Nix shell starts. So by default, using nix-shell default.nix
will start a specific program, possibly with flags (separated by space), and/or do
shell actions. You can for example use shell_hook = R, if you want to directly
enter the declared Nix R session when dropping into the Nix shell.

12 rix

ignore_remotes_cache
Logical, defaults to FALSE. This variable is only needed when adding packages
from GitHub with remote dependencies, it can be ignored otherwise. If TRUE,
the cache of already processed GitHub remotes will be ignored and all packages
will be processed. If FALSE, the cache will be used to skip already processed
packages, which makes use of fewer API calls. Setting this argument to TRUE
can be useful for debugging.

Details

This function will write a default.nix and an .Rprofile in the chosen path. Using the Nix
package manager, it is then possible to build a reproducible development environment using the
nix-build command in the path. This environment will contain the chosen version of R and pack-
ages, and will not interfere with any other installed version (via Nix or not) on your machine. Every
dependency, including both R package dependencies but also system dependencies like compilers
will get installed as well in that environment.

It is possible to use environments built with Nix interactively, either from the terminal, or using an
interface such as RStudio. If you want to use RStudio, set the ide argument to "rstudio”. Please be
aware that for macOS, RStudio is only available starting from R version 4.4.3 or from the 2025-02-
28. As such, you may want to use another editor on macOS if you need to use an environment with
an older version of R. To use Visual Studio Code (or Codium), set the ide argument to "code"” or
"codium” respectively, which will add the {1anguageserver} R package to the list of R packages
to be installed by Nix in that environment. It is also possible to use Positron by setting the ide
argument to "positron”. Setting the ide argument to an editor will install it from Nix, meaning
that each of your projects can have a dedicated IDE (or IDE version). "radian” and "rserver”
are also options.

Instead of using Nix to install an IDE, you can also simply use the one you have already installed
on your system, with the exception of RStudio which must be managed by Nix to "see" Nix en-
vironments. Positron must also be heavily configured to work with Nix shells, so we recommend
installing it using Nix. To use an editor that you already have installed on your system, set ide =
"none” and refer to the vignette("configuring-ide"”) for more details on how to set up your
editor to work with Nix shells.

Packages to install from GitHub or Gitlab must be provided in a list of 3 elements: "package_name",
"repo_url" and "commit". To install several packages, provide a list of lists of these 3 elements, one
per package to install. It is also possible to install old versions of packages by specifying a version.
For example, to install the latest version of { AER} but an old version of {ggplot2}, you could write:
r_pkgs = c("AER", "ggplot2@2.2.1"). Note however that doing this could result in dependency
hell, because an older version of a package might need older versions of its dependencies, but other
packages might need more recent versions of the same dependencies. If instead you want to use
an environment as it would have looked at the time of {ggplot2}’s version 2.2.1 release, then
use the Nix revision closest to that date, by setting r_ver = "3.1.0", which was the version of R
current at the time. This ensures that Nix builds a completely coherent environment. For security
purposes, users that wish to install packages from GitHub/GitLab or from the CRAN archives must
provide a security hash for each package. {rix} automatically precomputes this hash for the source
directory of R packages from GitHub/Gitlab or from the CRAN archives, to make sure the expected
trusted sources that match the precomputed hashes in the default.nix are downloaded, but only
if Nix is installed. If you need to generate an expression with such packages, but are working

11X 13

on a system where you can’t install Nix, consider generating the expression using a continuous
integration service, such as GitHub Actions.

Note that installing packages from Git or old versions using the "@" notation or local packages, does
not leverage Nix’s capabilities for dependency solving. As such, you might have trouble installing
these packages. If that is the case, open an issue on {rix}’s GitHub repository.

If GitHub packages have dependencies on GitHub as well, {rix} will attempt to generate the correct
expression, but we highly recommend you read the vignette("remote-dependencies™) Vignette.

By default, the Nix shell will be configured with "en_US.UTF-8" for the relevant locale variables

(LANG, LC_ALL, LC_TIME, LC_MONETARY, LC_PAPER, LC_MEASUREMENT). This is done to ensure locale

reproducibility by default in Nix environments created with rix (). If there are good reasons to not

stick to the default, you can set your preferred locale variables via options(rix.nix_locale_variables = 1ist(LANG = "¢
and the aforementioned locale variable names.

It is possible to use "bleeding-edge" or "frozen-edge" as the value for the r_ver argument.
This will create an environment with the very latest R packages. "bleeding-edge" means that
every time you will build the environment, the packages will get updated. This is especially useful
for environments that need to be constantly updated, for example when developing a package. In
contrast, "frozen-edge" will create an environment that will remain stable at build time. So if
you create a default.nix file using "bleeding-edge", each time you build it using nix-build
that environment will be up-to-date. With "frozen-edge" that environment will be up-to-date on
the date that the default.nix will be generated, and then each subsequent call to nix-build will
result in the same environment. "bioc-devel” is the same as "bleeding-edge"”, but also adds
the development version of Bioconductor. "r-devel” is the same as bleeding edge, but with the R
development version instead of the latest stable version and "r-devel-bioc-devel” is the same
as "r-devel” but with Bioconductor on the development version. We highly recommend you read
the vignette titled "z - Advanced topic: Understanding the rPackages set release cycle and using
bleeding edge packages".

Value

Nothing, this function only has the side-effect of writing two files: default.nix and .Rprofile
in the working directory. default.nix contains a Nix expression to build a reproducible environ-
ment using the Nix package manager, and .Rprofile ensures that a running R session from a Nix
environment cannot access local libraries, nor install packages using install.packages() (nor
remove nor update them).

See Also

Other core functions: rix_init()

Examples

Not run:
Build an environment with the latest version of R available from Nixpkgs
and the dplyr and ggplot2 packages
rix(
r_ver = "latest-upstream”,
r_pkgs = c("dplyr”, "ggplot2"),
system_pkgs = NULL,
git_pkgs = NULL,

14 rix_init

local_r_pkgs = NULL,

ide = "code",

project_path = path_default_nix,
overwrite = TRUE,

print = TRUE,

message_type = "simple”,
shell_hook = NULL,
ignore_remotes_cache = FALSE

)

End(Not run)

rix_init Initiate and maintain an isolated, project-specific, and runtime-pure R
setup via Nix.

Description

Creates an isolated project folder for a Nix-R configuration. rix: :rix_init() also adds, appends,
or updates with or without backup a custom .Rprofile file with code that initializes a startup R
environment without system’s user libraries within a Nix software environment. Instead, it restricts
search paths to load R packages exclusively from the Nix store. Additionally, it makes Nix utilities
like nix-shell available to run system commands from the system’s RStudio R session, for both
Linux and macOS.

Usage
rix_init(
project_path,
rprofile_action = c("create_missing"”, "create_backup”, "overwrite”, "append"),
message_type = c("simple”, "quiet"”, "verbose")
)
Arguments

project_path Character with the folder path to the isolated nix-R project. If the folder does
not exist yet, it will be created.

rprofile_action
Character. Action to take with .Rprofile file destined for project_path folder.
Possible values include "create_missing”, which only writes .Rprofile if it
does not yet exist (otherwise does nothing) - this is the action set when using
rix() -; "create_backup”, which copies the existing .Rprofile to a new
backup file, generating names with POSIXct-derived strings that include the
time zone information. A new .Rprofile file will be written with default code
from rix::rix_init(); "overwrite” overwrites the .Rprofile file if it does
exist; "append” appends the existing file with code that is tailored to an isolated
Nix-R project setup.

rix_init 15

message_type Character. Message type, defaults to "simple”, which gives minimal but suf-
ficient feedback. Other values are currently "quiet, which writes .Rprofile
without message, and "verbose”, which displays the mechanisms implemented
to achieve fully controlled R project environments in Nix.

Details

Enhancement of computational reproducibility for Nix-R environments:

The primary goal of rix::rix_init() is to enhance the computational reproducibility of Nix-R
environments during runtime. Concretely, if you already have a system or user library of R packages
(if you have R installed through the usual means for your operating system), using rix: :rix_init()
will prevent Nix-R environments to load packages from the user library which would cause issues.
Notably, no restart is required as environmental variables are set in the current session, in addition
to writing an .Rprofile file. This is particularly useful to make with_nix() evaluate custom R
functions from any "Nix-to-Nix" or "System-to-Nix" R setups. It introduces two side-effects that
take effect both in a current or later R session setup:

1. Adjusting R_LIBS_USER path: By default, the first path of R_LIBS_USER points to the user li-
brary outside the Nix store (see also base: :.1ibPaths()). This creates friction and potential
impurity as R packages from the system’s R user library are loaded. While this feature can be
useful for interactively testing an R package in a Nix environment before adding it to a .nix
configuration, it can have undesired effects if not managed carefully. A major drawback is
that all R packages in the R_LIBS_USER location need to be cleaned to avoid loading packages
outside the Nix configuration. Issues, especially on macOS, may arise due to segmentation
faults or incompatible linked system libraries. These problems can also occur if one of the
(reverse) dependencies of an R package is loaded along the process.

2. Make Nix commands available when running system commands from RStudio: In a
host RStudio session not launched via Nix (nix-shell), the environmental variables from
~/.zshrc or ~/.bashrc may not be inherited. Consequently, Nix command line interfaces
like nix-shell might not be found. The .Rprofile code written by rix::rix_init() en-
sures that Nix command line programs are accessible by adding the path of the "bin" directory
of the default Nix profile, "/nix/var/nix/profiles/default/bin", to the PATH variable in
an RStudio R session.

These side effects are particularly recommended when working in flexible R environments, espe-
cially for users who want to maintain both the system’s native R setup and utilize Nix expressions
for reproducible development environments. This init configuration is considered pivotal to en-
hance the adoption of Nix in the R community, particularly until RStudio in Nixpkgs is packaged
for macOS. We recommend calling rix: :rix_init() prior to comparing R code ran between two
software environments with rix: :with_nix().

rix::rix_init() is called automatically by rix::rix() when generating a default.nix file,
and when called by rix::rix() will only add the .Rprofile if none exists. In case you have a
custom .Rprofile that you wish to keep using, but also want to benefit from what rix_init()
offers, manually call it and set the rprofile_action to "append”.

Value

Nothing, this function only has the side-effect of writing a file called ".Rprofile" to the specified
path.

16 setup_cachix

See Also

with_nix()

Other core functions: rix()

Examples

Not run:

create an isolated, runtime-pure R setup via Nix
project_path <- "./sub_shell”

if (!dir.exists(project_path)) dir.create(project_path)

rix_init(
project_path = project_path,
rprofile_action = "create_missing”,
message_type = c("simple”)

)

End(Not run)

setup_cachix setup_cachix Setup up the rstats-on-nix binary repository

Description

setup_cachix Setup up the rstats-on-nix binary repository

Usage

setup_cachix(nix_conf_path = "~/.config/nix")

Arguments

nix_conf_path Character, path to folder containing ’nix.conf’ file. Defaults to "~/.config/nix".

Details

This function edits ~/.config/nix/nix.conf to add the rstats-on-nix public cache as a sub-
stituter. The rstats-on-nix public cache, hosted on Cachix, contains many prebuild binaries of
R and R packages for x86_64 Linux and macOS (Intel architectures for packages released before
2021 and Apple Silicon from 2021 onwards). This function automatically performs a backup of
~/.config/nix/nix.conf, or creates one if there is no nix. conf file.

This is the recommended approach for configuring the cache, as it works with both standard Nix
installations and Determinate Nix installations. After running this function, you also need to add
yourself to trusted-users so Nix allows you to use the cache. Run one of:
e Linux: echo "trusted-users = root $USER"” | sudo tee -a /etc/nix/nix.custom.conf && sudo systemctl re

¢ macOS: echo "trusted-users = root $USER" | sudo tee -a /etc/nix/nix.custom.conf && sudo launchctl k

setup_cachix 17

If you see warnings like "ignoring untrusted substituter”, this means the trusted-users configuration
is not in place.

NixOS users: This function does not work on NixOS because the Nix configuration is managed
declaratively. Instead, configure the cache in your system configuration. Without Home Manager,
add this to your configuration.nix:

nix.settings = {
substituters = [
"https://cache.nixos.org"
"https://rstats-on-nix.cachix.org"
5;
trusted-public-keys = [
"cache.nixos.org-1:6NCHdD59X43100gWypbMrAURKbJ16ZPMQFGspcDShjY="
"rstats-on-nix.cachix.org-1:vdiiVgocg6WeJrODIqdprZRUrhilJzhBnXv7aWI6+Fo="
1;
b

With Home Manager, add this to your home configuration:

nix.settings = {
substituters = [
"https://rstats-on-nix.cachix.org"
1;
trusted-public-keys = [
"rstats-on-nix.cachix.org-1:vdiiVgocg6WeJrODIqdprZRUrhilJzhBnXv7aWI6+F@="
1;
b

Other use cases include: if you somehow mess up ~/.config/nix/nix.conf and need to generate

anew one from scratch, or if you’re using Nix inside Docker, write a RUN Rscript -e 'rix::setup_cachix()'
statement to configure the cache there. Because Docker runs using root by default no need to in-

stall the cachix client to configure the cache, running setup_cachix() is enough. See the ’z -

Advanced topic: Using Nix inside Docker’ vignette for more details.

Value

Nothing; changes a file in the user’s home directory.

Examples

Not run:
setup_cachix()

End(Not run)

18 with_nix

tar_nix_ga tar_nix_ga Run a {targets} pipeline on GitHub Actions.

Description

tar_nix_ga Run a {targets} pipeline on GitHub Actions.

Usage

tar_nix_ga()

Details

This function puts a . yaml file inside the . github/workflows/ folders on the root of your project.
This workflow file will use the projects default.nix file to generate the development environment
on GitHub Actions and will then run the projects {targets} pipeline. Make sure to give read and
write permissions to the GitHub Actions bot.

Value

Nothing, copies file to a directory.

See Also
Other CI/CD: ga_cachix()

Examples

Not run:
tar_nix_ga()

End(Not run)

with_nix Evaluate function in R or shell command via nix-shell environment

Description

This function needs an installation of Nix. with_nix () has two effects to run code in isolated and
reproducible environments.

1. Evaluate a function in R or a shell command via the nix-shell environment (Nix expression
for custom software libraries; involving pinned versions of R and R packages via Nixpkgs)

2. If no error, return the result object of expr in with_nix() into the current R session.

with_nix

Usage

with_nix(
expr,

19

program - C(HRM, "Shell"),

non

project_path = ".",

message_type = c("simple”, "quiet”, "verbose")
)
Arguments

expr Single R function or call, or character vector of length one with shell command
and possibly options (flags) of the command to be invoked. For program=R,
you can both use a named or an anonymous function. The function provided
in expr should not evaluate when you pass arguments, hence you need to wrap
your function call like function() your_fun(arg_a="a", arg_b="b"), to
avoid evaluation and make sure expr is a function (see details and examples).

program String stating where to evaluate the expression. Either "R", the default, or

project_path

message_type

Details

"shell”. where ="R" will evaluate the expression via RScript and where =
"shell"” will run the system command in nix-shell.

Path to the folder where the default.nix file resides. The defaultis ".", which
is the working directory in the current R session. This approach also useful
when you have different subfolders with separate software environments defined
in different default.nix files.

String how detailed output is. Currently, there is either "simple” (default),
"quiet or "verbose"”, which shows the script that runs via nix-shell.

with_nix() gives you the power of evaluating a main function expr and its function call stack that
are defined in the current R session in an encapsulated nix-R session defined by Nix expression
(default.nix), which is located in at a distinct project path (project_path).

with_nix() is very convenient because it gives direct code feedback in read-eval-print-loop style,
which gives a direct interface to the very reproducible infrastructure-as-code approach offered by
Nix and Nixpkgs. You don’t need extra efforts such as setting up DevOps tooling like Docker and
domain specific tools like {renv} to control complex software environments in R and any other
language. It is for example useful for the following purposes.

1. test compatibility of custom R code and software/package dependencies in development and
production environments

2. directly stream outputs (returned objects), messages and errors from any command line tool
offered in Nixpkgs into an R session.

3. Test if evolving R packages change their behavior for given unchanged R code, and whether
they give identical results or not.

with_nix() can evaluate both R code from a nix-R session within another nix-R session, and also
from a host R session (i.e., on macOS or Linux) within a specific nix-R session. This feature is

20 with_nix

useful for testing the reproducibility and compatibility of given code across different software envi-
ronments. If testing of different sets of environments is necessary, you can easily do so by providing
Nix expressions in custom .nix or default.nix files in different subfolders of the project.

rix_init() is run automatically to generate a custom .Rprofile file for the subshell in project_dir.
The defaults in that file ensure that only R packages from the Nix store, that are defined in the sub-
shell .nix file are loaded and system’s libraries are excluded.

To do its job, with_nix() heavily relies on patterns that manipulate language expressions (aka
computing on the language) offered in base R as well as the {codetools} package by Luke Tierney.

Some of the key steps that are done behind the scene:
1. recursively find, classify, and export global objects (globals) in the call stack of expr as well
as propagate R package environments found.

2. Serialize (save to disk) and deserialize (read from disk) dependent data structures as .Rds with
necessary function arguments provided, any relevant globals in the call stack, packages, and
expr outputs returned in a temporary directory.

3. Use pure nix-shell environments to execute a R code script reconstructed catching ex-
pressions with quoting; it is launched by commands like this via {sys} by Jeroen Ooms:
nix-shell --pure --run "Rscript --vanilla".

Value

* if program = "R", R object returned by function given in expr when evaluated via the R envi-
ronment in nix-shell defined by Nix expression.
e if program = "shell”, list with the following elements:

— status: exit code
— stdout: character vector with standard output

— stderr: character vector with standard error of expr command sent to a command line
interface provided by a Nix package.

See Also

Other Nix execution: nix_build()

Examples

Not run:
create an isolated, runtime-pure R setup via Nix
project_path <- "./sub_shell”

rix_init(
project_path = project_path,
rprofile_action = "create_missing”
)
generate nix environment in ~default.nix”
rix(

r_ver = "4.2.0",
project_path = project_path
)

evaluate function in Nix-R environment via “nix-shell™ and “Rscript”,

with_nix

stream messages, and bring output back to current R session
out <- with_nix(

expr = function(mtcars) nrow(mtcars),

program = "R", project_path = project_path,

message_type = "simple”

)

There no limit in the complexity of function call stacks that “with_nix()"
can possibly handle; however, “expr™ should not evaluate and
needs to be a function for “program = "R"". If you want to pass the
a function with arguments, you can do like this
get_sample <- function(seed, n) {
set.seed(seed)
out <- sample(seq(1, 10), n)
return(out)

}

out <- with_nix(
expr = function() get_sample(seed = 1234, n = 5),
program = "R",
project_path = ,
message_type = "simple”

)

non

You can also attach packages with “library()" calls in the current R
session, which will be exported to the nix-R session.
Other option: running system commands through “nix-shell” environment.

End(Not run)

Index

x CI/CD
ga_cachix, 4
tar_nix_ga, 18

+ Nix execution
nix_build, 5
with_nix, 18

x available versions
available_dates, 2
available_df, 3
available_r, 3

* core functions
rix, 9
rix_init, 14

available_dates, 2, 3
available_df, 2, 3,3
available_r, 2, 3,3
base::.libPaths(), 15
ga_cachix, 4, 18
make_launcher, 5
nix_build, 5, 20
renv2nix, 7

rix, 7,9, 16
rix_init, 13,14
setup_cachix, 16

tar_nix_ga, 4, 18

with_nix, 6, 18
with_nix(), 15, 16

22

	available_dates
	available_df
	available_r
	ga_cachix
	make_launcher
	nix_build
	renv2nix
	rix
	rix_init
	setup_cachix
	tar_nix_ga
	with_nix
	Index

