Package ‘tidyjson’

January 21, 2026

Title Tidy Complex 'JSON'

Version 0.3.3.1

Description Turn complex 'JSON' data into tidy data frames.
License MIT + file LICENSE

URL https://github.com/colearendt/tidyjson

BugReports https://github.com/colearendt/tidyjson/issues
Depends R (>=3.1.0)

Imports assertthat, dplyr (>= 1.0.0), jsonlite, magrittr, purtr,
rlang, tibble, tidyr (>= 1.0.0)

Suggests covr, forcats, ggplot2, igraph, knitr, listviewer, lubridate,
RColorBrewer, rmarkdown, rprojroot, testthat (>= 3.0.0), vctrs,
viridis, wordcloud

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.3
NeedsCompilation no

Author Jeremy Stanley [aut],
Cole Arendt [aut, cre]

Maintainer Cole Arendt <cole@benetist.com>
Repository CRAN
Date/Publication 2026-01-21 07:50:02 UTC

Contents

allowed_json_types e
append_values L
as.character.tbl_json

https://github.com/colearendt/tidyjson
https://github.com/colearendt/tidyjson/issues

2 allowed_json_types
as_tibble.tbl_json oL L e 5
COMIMILS v vt it bt e e e e e e e e e e e e e e e e 5
COMPANICS . « « v v v v v e e e e e e e e e e e e e e e e 6
ENteT_ODJECE L e e e e e e e e e e 7
gather_array 9
gather_object L 10
] 11
IS_JSOM . . o o o o e 12
JSON_COMPIEXItY v o o e e e e e e e e e 14
json_functions Lo e e 15
JSOM_GEL . o o o e e e 15
json_get_column L. e e e 16
json_lengths 17
json_schema L 18
JSON_SIIUCTUTE . . . v v v v v et e e e e e e e e e e e e e e e e e e 19
JSOM_LYPES .« o o o o v e e e e e e e e e 20
print.tbl_jsono e e e e e 21
rbind_tbl_json e 22
read_JSON e 22
spread_all L e e 23
spread_values e 24
thljsono e 25
HAYJSON . . . L e e e e 27
worldbank 27
[tbljson e e e e 28

Index 30

allowed_json_types Fundamental JSON types from http://json.org/, where I collapse 'true’
and ’false’ into ’logical’
Description
Fundamental JSON types from http://json.org/, where I collapse ’true’ and ’false’ into ’logical’
Usage
allowed_json_types
Format

An object of class character of length 6.

append_values 3

append_values Appends all JSON values with a specified type as a new column

Description

"non

The append_values functions let you take any scalar JSON values of a given type ("string", "num-
ber", "logical") and add them as a new column named column.name. This is particularly useful
after using gather_object to gather an object.

Usage

TRUE, recursive = FALSE)

append_values_string(.x, column.name = type, force

append_values_number(.x, column.name = type, force = TRUE, recursive = FALSE)

append_values_logical(.x, column.name = type, force = TRUE, recursive = FALSE)

Arguments
X a json string or tb1_json object
column.name the name of the column to append values as
force should values be coerced to the appropriate type when possible, otherwise, types
are checked first (requires more memory)
recursive logical indicating whether to recurisvely extract a single value from a nested ob-
ject. Only used when force = TRUE. If force = FALSE, and recursive = TRUE,
throws an error.
Details

Any values that can not be converted to the specified will be NA in the resulting column. This
includes other scalar types (e.g., numbers or logicals if you are using append_values_string) and
also any rows where the JSON is NULL or an object or array.

Note that the append_values functions do not alter the JSON attribute of the tb1l_json object in
any way.

Value

a tbl_json object

See Also

gather_object to gather an object first, spread_all to spread values into new columns, json_get_column

4 as.character.tbl_json

Examples

Stack names

"{"first": "bob", "last": "jones"}' %>%
gather_object %>%
append_values_string

This is most useful when data is stored in name-value pairs
For example, tags in recipes:
recipes <- c('{"name": "pie"”, "tags": {"apple”: 10, "pie": 2, "flour": 5}}',
'"{"name": "cookie", "tags": {"chocolate”: 2, "cookie": 13}}")
recipes %>%
spread_values(name = jstring(name)) %>%
enter_object(tags) %>%
gather_object("tag") %>%
append_values_number ("count")

as.character.tbl_json Convert the JSON in an tbl_json object back to a JSON string

Description

Convert the JSON in an tbl_json object back to a JSON string

Usage
S3 method for class 'tbl_json'
as.character(x, ...)

Arguments
X a tbl_json object

not used (map_chr used instead)

Value

a character vector of formatted JSON

as_tibble.tbl_json 5

as_tibble.tbhl_json Convert a tbl_json back to a tbl_df

Description

Drops the JSON attribute and the tbl_json class, so that we are back to a pure tbl_df. Useful for
some internals. Also useful when you are done processing the JSON portion of your data and are
ready to move on to other tools.

Usage

S3 method for class 'tbl_json'
as_tibble(x, ...)

as_data_frame.tbl_json(x, ...)
Arguments
X a tbl_json object

additional parameters

Details
Note that as.tbl calls tbl_df under the covers, which in turn calls as_tibble. As a result, this should
take care of all cases.

Value

a tbl_df object (with no tbl_json component)

commits Commit data for the dplyr repo from github API

Description

Commit data for the dplyr repo from github API

Usage

commits

Format

JSON

6 companies

Examples

library(dplyr)

Commits is a long character string
commits %>% nchar

Let's make it a tbl_json object
commits %>% as.tbl_json

It begins as an array, so let's gather that
commits %>% gather_array

Now let's spread all the top level values
commits %>% gather_array %>% spread_all %>% glimpse

Are there any top level objects or arrays?
commits %>% gather_array %>% gather_object %>% json_types %>%
count(name, type)

Let's look at the parents array

commits %>% gather_array(”"commit"”) %>%
enter_object(parents) %>% gather_array("parent”) %>%
spread_all %>% glimpse

companies Startup company information for 1,000 companies

Description

From: http://jsonstudio.com/resources/

Usage

companies

Format

JSON

Examples

library(dplyr)

Companies is a long character vector
companies %>% str

Work with a small sample
co_samp <- companies[1:5]

enter_object 7

Gather top level values and glimpse
co_samp %>% spread_all %>% glimpse

Get the key employees data for the first 100 companies
key_employees <- companies[1:100] %>%

spread_all %>%

select(name) %>%

enter_object(relationships) %>%

gather_array() %>%

spread_all

key_employees %>% glimpse

Show the top 10 titles

key_employees %>%
filter(!is_past) %>%
count(title) %>%
arrange(desc(n)) %>%
top_n(10)

enter_object Enter into a specific object and discard all other JSON data

Description

When manipulating a JSON object, enter_object lets you navigate to a specific value of the
object by referencing it’s name. JSON can contain nested objects, and you can pass in more than
one character string into enter_object to navigate through multiple objects simultaneously.

Usage
enter_object(.x, ...)
Arguments
X a json string or tbl_json object
a quoted or unquoted sequence of strings designating the object name or se-
quences of names you wish to enter
Details

After using enter_object, all further tidyjson calls happen inside the referenced object (all other
JSON data outside the object is discarded). If the object doesn’t exist for a given row / index, then
that row will be discarded.

In pipelines, enter_object is often preceded by gather_object and followed by gather_array
if the value is an array, or spread_all if the value is an object.

8 enter_object

Value

a tb1l_json object

See Also

gather_object to find sub-objects that could be entered into, gather_array to gather an array in
an object and spread_all or spread_values to spread values in an object.

Examples

Let's start with a simple example of parents and children

json <- c('{"parent”: "bob", "children”: ["sally"”, "george"1}',
"{"parent": "fred", "children”: ["billy"1}',
'{"parent": uanneu}v)

We can see the names and types in each
json %>% gather_object %>% json_types

Let's capture the parent first and then enter in the children object
json %>% spread_all %>% enter_object(children)

Also works with quotes
json %>% spread_all %>% enter_object("children”)

Notice that "anne” was discarded, as she has no children

We can now use gather array to stack the array
json %>% spread_all %>% enter_object(children) %>%
gather_array(”child.num")

And append_values_string to add the children names

json %>% spread_all %>% enter_object(children) %>%
gather_array(”"child.num") %>%
append_values_string(”"child")

The path can be comma delimited to go deep into a nested object
json <- '{"name": "bob", "attributes”: {"age": 32, "gender”: "male"}}'
json %>% enter_object(attributes, age)

A more realistc example with companies data
library(dplyr)
companies %>%
enter_object(acquisitions) %>%
gather_array %>%
spread_all %>%
glimpse

gather_array 9

gather_array Gather a JSON array into index-value pairs

Description

gather_array collapses a JSON array into index-value pairs, creating a new column 'array. index'
to store the index of the array, and storing values in the ' JSON' attribute for further tidyjson manip-
ulation. All other columns are duplicated as necessary. This allows you to access the values of the
array just like gather_object lets you access the values of an object.

Usage

gather_array(.x, column.name = default.column.name)

Arguments
.X a json string or tbl_json object whose JSON attribute should always be an array
column.name the name to give to the array index column created

Details

JSON arrays can be simple vectors (fixed or varying length number, string or logical vectors with
or without null values). But they also often contain lists of other objects (like a list of purchases for
a user). Thus, the best analogy in R for a JSON array is an unnamed list.

gather_array is often preceded by enter_object when the array is nested under a JSON object,
and is often followed by gather_object or enter_object if the array values are objects, or by
append_values to append all scalar values as a new column or json_types to determine the types
of the array elements (JSON does not guarantee they are the same type).

Value

a tbl_json object

See Also
gather_object to gather a JSON object, enter_object to enter into an object, gather to gather
name-value pairs in a data frame

Examples

A simple character array example
json < '["a", "b", "c"]'

Check that this is an array
json %>% json_types

Gather array and check types
json %>% gather_array %>% json_types

10

gather_object

Extract string values
json %>% gather_array %>% append_values_string

A more complex mixed type example

jSOﬂ <- |[nan’

1, true, null, {"name"”: "value”}]'

Then we can use the column.name argument to change the name column
json %>% gather_array %>% json_types

A nested array
json <- '[["a",

nbn’ ncn]' [nan’ udn:ly [nbn, "e"1]"

Extract both levels
json %>% gather_array("index.1") %>% gather_array("index.2") %>%
append_values_string

Some JSON begins as an array
commits %>% gather_array

We can use spread_all to capture all values

(recursive

library(dplyr)

FALSE to limit to the top level object)

commits %>% gather_array %>% spread_all(recursive = FALSE) %>% glimpse

gather_object

Gather a JSON object into name-value pairs

Description

gather_object collapses a JSON object into name-value pairs, creating a new column 'name’' to
store the pair names, and storing the values in the ' JSON" attribute for further tidyjson manipulation.
All other columns are duplicated as necessary. This allows you to access the names of the object
pairs just like gather_array lets you access the values of an array.

Usage

gather_object(.x, column.name = default.column.name)

Arguments

X

column.name

Details

a JSON string or tb1l_json object whose JSON attribute should always be an
object

the name to give to the column of pair names created

gather_object is often followed by enter_object to enter into a value that is an object, by
append_values to append all scalar values as a new column or json_types to determine the types

of the values.

issues 11

Value

a tbl_json object

See Also

gather_array to gather a JSON array, enter_object to enter into an object, gather to gather
name-value pairs in a data frame

Examples

Let's start with a very simple example
json <- '{"name": "bob", " 32, "gender”: "male"}'

n

age”:

Check that this is an object
json %>% json_types

Gather object and check types
json %>% gather_object %>% json_types

Sometimes data is stored in object pair names
json <- '{"2014": 32, "2015": 56, "2016": 14}'

Then we can use the column.name argument to change the column name
json %>% gather_object("year")

We can also use append_values_number to capture the values, since they are
all of the same type
json %>% gather_object("year") %>% append_values_number("count")

This can even work with a more complex, nested example

json <- '{"2015": {"1": 1@, "3": 1, "11": 5}, "2016": {"2": 3, "5": 153}}'

json %>% gather_object("year") %>% gather_object("month") %>%
append_values_number ("count")

Most JSON starts out as an object (or an array of objects), and

gather_object can be used to inspect the top level (or 2nd level) objects
library(dplyr)

worldbank %>% gather_object %>% json_types %>% count(name, type)

issues Issue data for the dplyr repo from github API

Description

Issue data for the dplyr repo from github API

Usage

issues

12 is_json

Format

JSON

Examples
library(dplyr)

issues is a long character string
nchar(issues)

Let's make it a tbl_json object
issues %>% as.tbl_json

It begins as an array, so let's gather that
issues %>% gather_array

Now let's spread all the top level values
issues %>% gather_array %>% spread_all %>% glimpse

Are there any top level objects or arrays?

issues %>% gather_array %>% gather_object %>% json_types %>%
count(name, type) %>%
filter(type %in% c("array”, "object"))

Count issues labels by name
labels <- issues %>%

gather_array %>% # stack issues as "issue.num"
spread_values(id = jnumber(id)) %>% # capture just issue id
enter_object(labels) %>% # filter just those with labels
gather_array("label.index") %>% # stack labels

spread_all

labels %>% glimpse

Count number of distinct issues each label appears in
labels %>%

group_by(name) %>%

summarize(num.issues = n_distinct(id))

is_json Predicates to test for specific JSON types in tbl_json objects

Description

These functions are often useful with filter to filter complex JSON by type before applying
gather_object or gather_array.

is_json

Usage

is_json_string(.x)
is_json_number(.x)
is_json_logical(.x)
is_json_null(.x)
is_json_array(.x)
is_json_object(.x)

is_json_scalar(.x)

Arguments

X a json string or tb1l_json object

Value

a logical vector

See Also

json_types for creating a new column to identify the type of every JSON document

Examples

Test a simple example
json <= '[1, "string", true, [1, 2], {"name"”: "value"}, null]' %>% gather_array
json %>% is_json_number
json %>% is_json_array
json %>% is_json_scalar

Use with filter
library(dplyr)
json %>% filter(is_json_object(.))

Combine with filter in advance of using gather_array

companies[1:5] %>% gather_object %>% filter(is_json_array(.))

companies[1:5] %>% gather_object %>% filter(is_json_array(.)) %>%
gather_array

Combine with filter in advance of using gather_object

companies[1:5] %>% gather_object %>% filter(is_json_object(.))

companies[1:5] %>% gather_object %>% filter(is_json_object(.)) %>%
gather_object(”"name2")

13

14 Jjson_complexity

json_complexity Compute the complexity (recursively unlisted length) of JSON data

Description

When investigating complex JSON data it can be helpful to identify the complexity of deeply nested
documents. The json_complexity function adds a column (default name "complexity”) that
contains the *complexity’ of the JSON associated with each row. Essentially, every on-null scalar
value is found in the object by recursively stripping away all objects or arrays, and the complexity is
the count of these scalar values. Note that 'null’ has complexity 0, as do empty objects and arrays.

Usage

json_complexity(.x, column.name = "complexity")
Arguments

. X a json string or tbl_json object

column.name the name to specify for the length column
Value

a tbl_json object

See Also

json_lengths to compute the length of each value

Examples

A simple example
json <- c('[1, 2, [3, 411", '"{"k1": 1, "k2": [2, [3, 4113}', '"1', 'null")

Complexity is larger than length for nested objects
json %>% json_lengths %>% json_complexity

Worldbank has complexity ranging from 8 to 17
library(magrittr)
worldbank %>% json_complexity %$% table(complexity)

Commits are much more regular
commits %>% gather_array %>% json_complexity %$% table(complexity)

json_functions 15

json_functions Navigates nested objects to get at names of a specific type, to be used
as arguments to spread_values

Description

Note that these functions fail if they encounter the incorrect type. Note that jnumber () is an alias
for jdouble().

Usage
jstring(..., recursive = FALSE)
jlogical(..., recursive = FALSE)
jinteger(..., recursive = FALSE)
jdouble(..., recursive = FALSE)
jnumber(..., recursive = FALSE)
Arguments
a quoted or unquoted sequence of strings designating the object name sequence
you wish to follow to find a value
recursive logical indicating whether second level and beyond objects should be extracted.
Only works when there exists a single value in the nested json object
Value

a function that can operate on parsed JSON data

See Also

spread_values for using these functions to spread the values of a JSON object into new columns

json_get Get JSON from a tbl_json

Description

Extract the raw JSON from a tbl_json object. This is equivalent to reading the "..JSON" hidden
column. But is a helper in case of future behavior changes. This replaces previous behavior, where
the raw JSON was stored in an attribute.

16 json_get_column

Usage

json_get(.data)

Arguments

.data A tbl_json object

Value

A nested list representing the JSON data

json_get_column Make the JSON data a persistent column

Description

Extract the raw JSON from a tbl_json object. Store it in a column. WARNING: column name
collisions will be overwritten

Usage
json_get_column(.data, column_name = "json")
Arguments
.data A tbl_json object
column_name Optional. The name of the output column (either as a string or unquoted name).
Default "json"
Value

A tbl_json object with an added column containing the JSON data

Examples

tj <- as_tbl_json('{"a": "b"}')
json_get_column(tj, my_json)

json_lengths 17

json_lengths Compute the length of JSON data

Description

When investigating JSON data it can be helpful to identify the lengths of the JSON objects or
arrays, especialy when they are 'ragged’ across documents. The json_lengths function adds a
column (default name "length") that contains the ’length’ of the JSON associated with each row.
For objects, this will be equal to the number of name-value pairs. For arrays, this will be equal to
the length of the array. All scalar values will be of length 1, and null will have length 0.

Usage

json_lengths(.x, column.name = "length")
Arguments

. X a json string or tb1l_json object

column.name the name to specify for the length column
Value

a tbl_json object

See Also

json_complexity to compute the recursive length of each value

Examples

A simple example
json <= c('[1, 2, 31", '{"k1": 1, "k2": 2}', '1', 'null")

Complexity is larger than length for nested objects
json %>% json_lengths

Worldbank objcts are either length 7 or 8
library(magrittr)
worldbank %>% json_lengths %$% table(length)

All commits are length 8
commits %>% gather_array %>% json_lengths %$% table(length)

18 json_schema

json_schema Create a schema for a JSON document or collection

Description

Returns a JSON document that captures the *schema’ of the collection of document(s) passed in, as
a JSON string. The schema collapses complex JSON into a simple form using the following rules:

Usage
json_schema(.x, type = c("string"”, "value"))
Arguments
X a json string or tb1_json object
type whether to capture scalar nodes using the string that defines their type (e.g.,
"logical") or as a representative value (e.g., "true")
Details

* string -> "string", e.g., "a sentence" -> "string"

* number -> "number", e.g., 32000.1 -> "number"

* true -> "logical", e.g., true -> "logical"

* false -> "logical", e.g., false -> "logical"

e null -> "null", e.g., null -> "null"

* array -> [<type>] e.g., [1, 2] -> ["'number"]

* object -> {"name": <type>} e.g., {"age": 32} -> {"age": "number"}

For more complex JSON objects, ties are broken by taking the most complex example (using
json_complexity), and then by type (using json_types).

This means that if a name has varying schema across documents, the most complex schema will
be chosen as being representative. Similarly, if the elements of an array vary in schema, the most
complex element is chosen, and if arrays vary in schema across documents, the most complex is
chosen.

Note that json_schema can be slow for large JSON document collections, you may want to sample
your JSON collection first.

Value

a character string JSON document that represents the schema of the collection

See Also

json_structure to recursively structure all documents into a single data frame

json_structure 19

Examples

A simple string
""string”' %>% json_schema %>% writelLines

A simple object
"{"name": "value"}' %>% json_schema %>% writelLines

A more complex JSON array
json <- '[{"a": 1}, [1, 21, "a", 1, true, nulll'

Using type = 'string' (default)
json %>% json_schema %>% writeLines

Using type = 'value' to show a representative value
json %>% json_schema(type = "value") %>% writelLines

Schema of the first 5 github issues

Not run:
library(dplyr)
issues %>% gather_array %>% slice(1:10) %>%
json_schema(type = "value"”) %>% writelLines

End(Not run)

json_structure Recursively structures arbitrary JSON data into a single data frame

Description

Returns a tbl_json object where each row corresponds to a leaf in the JSON structure. The first
row corresponds to the JSON document as a whole. If the document is a scalar value (JSON string,
number, logical or null), then there will only be 1 row. If instead it is an object or an array, then
subsequent rows will recursively correspond to the elements (and their children) of the object or
array.

Usage

json_structure(.x)

Arguments

. X a json string or tbl_json object

Details

The columns in the tb1l_json returend are defined as

e document.id 1L if . x is a single JSON string, otherwise the index of . x.

* parent.id the string identifier of the parent node for this child.

20

json_types

* level what level of the hierarchy this child resides at, starting at L for the root and incre-
menting for each level of nested array or object.

* index what index of the parent object / array this child resides at (from gather_array for
arrays).

* child.id a unique ID for this leaf in this document, represented as <parent>.<index> where
<parent> is the ID for the parent and <index> is this index.

* seq the sequence of names / indices that led to this child (parents that are arrays are excluded)
as a list, where character strings denote objects and integers denote array positions

name if this is the value of an object, what was the name that it is listed under (from gather_object).

type the type of this object (from json_types).

length the length of this object (from json_lengths).

Value

a tb1l_json object

See Also

json_schema to create a schema for a JSON document or collection

Examples

A simple string
""string"' %>% json_structure

A simple object
'"{"name": "value"}' %>% json_structure

A complex array
"[{"a": 13}, [1, 21, "a", 1, true, nulll' %>% json_structure

A sample of structure rows from a company
library(dplyr)
companies[1] %>% json_structure %>% sample_n(5)

json_types Add a column that tells the 'type’ of the JSON data

Description

The function json_types inspects the JSON associated with each row of the tb1l_json object, and
adds a new column ("type” by default) that identifies the type according to the JSON standard at
http://json.org/.

Usage

json_types(.x, column.name = "type")

http://json.org/

print.tbl_json 21

Arguments
X a json string or tbl_json object
column.name the name to specify for the type column
Details

This is particularly useful for inspecting your JSON data types, and can often follows after gather_array,
gather_object or enter_object to inspect the types of the elements of JSON objects or arrays.

Value

a tb1l_json object

Examples

A simple example
c('{"a": 13", '[1, 21', '""a"'", '1', '"true', 'null') %>% json_types

Type distribution in the first 10 companies
library(dplyr)
companies[1:10] %>% gather_object %>% json_types %>% count(type)

print.tbl_json Print a tbl_json object

Description

Print a tbl_json object
Usage

S3 method for class 'tbl_json'

print(x, ..., json.n = 20, json.width = 15)
Arguments

X a tbl_json object

other arguments into print.tbl_df
json.n number of json records to add (...) otherwise

json.width number of json characters to print

22 read_json

rbind_tbl_json Bind two tbl_json objects together and preserve JSON attribute

Description

Bind two tbl_json objects together and preserve JSON attribute

Usage
rbind_tbl_json(x, y)

Arguments
X a tbl_json object
y a tbl_json_object
Value

x and y row-binded together with appropriate JSON attribute

read_json Reads JSON from an input uri (file, url, ...) and returns a tbl_json
object

Description

Reads JSON from an input uri (file, url, ...) and returns a tb1_json object

Usage
read_json(path, format = c("json”, "jsonl”, "infer"))
Arguments
path to some json data
format If "json", process the data like one large JSON record. If "jsonl”, process the
data one JSON record per line (json lines format). If "infer”, the format is the
suffix of the given filepath.
Value

a tb1l_json object

spread_all 23

spread_all Spreads all scalar values of a JSON object into new columns

Description

Like the spread function in tidyr but for JSON, this function spreads out any JSON objects that
are scalars into new columns. If objects are nested, then the recursive flag will expand scalar values
of nested objects out with a compound column name based on the sequences of nested object names
concatenated with the sep character.

Usage

spread_all(.x, recursive = TRUE, sep = ".")
Arguments

X a json string or tb1_json object

recursive whether or not to recursively spread nested objects

sep character used to separate nested object names when resursive is TRUE
Details

Note that arrays are ignored by this function, use gather_array to gather the array first, and then
use spread_all if the array contains objects or use one of the append_values functions to capture
the array values if they are scalars.

Note that scalar JSON values (e.g., a JSON string like ’1°) are also ignored, as they have no names
to create column names with.

The order of columns is determined by the order they are encountered in the JSON document, with
nested objects placed at the end.

If an objects have name-value pairs with names that are duplicates, then ".n" is appended for n
incrementing from 2 on to ensure that columns are unique. This also happens if .x already has a
column with the name of a name-value pair.

This function does not change the value of the JSON attribute of the tb1_json object in any way.

Value

a tbl_json object

See Also

spread_values to specific which specific values to spread along with their types, spread for
spreading data frames

24 spread_values

Examples

A simple example

json <= c('{"a": "x", "b": 1, "c": true}',
"{"a": "y", "c": false}',
"{"a": null, "d": "z"}")

json %>% spread_all

A more complex example
worldbank %>% spread_all

Not run:
Resolving duplicate column names
json <= '{"a": "x", "a": "y"}'

json %>% spread_all

End(Not run)

spread_values Spreads specific scalar values of a JSON object into new columns

Description

The spread_values function lets you extract extract specific values from (potentiall nested) JSON
objects. spread_values takes jstring, jnumber or jlogical named function calls as arguments
in order to specify the type of the data that should be captured at each desired name-value pair
location. These values can be of varying types at varying depths.

Usage
spread_values(.x, ...)
Arguments
X a json string or tb1l_json object
column = value pairs where column will be the column name created and value
must be a call to jstring, jnumber or jlogical specifying the path to get the
value (and the type implicit in the function name)
Details

Note that jstring, jnumber and jlogical will fail if they encounter the incorrect type in any
document.

The advantage of spread_values over spread_all is that you are guaranteed to get a consistent
data frame structure (columns and types) out of any spread_values call. spread_all requires less
typing, but because it infers the columns and their types from the JSON, it is less suitable when
programming.

tbl_json 25

Value

a tb1l_json object

See Also

spread_all for spreading all values, spread for spreading data frames, jstring, jnumber, jlogical
for accessing specific names

Examples

A simple example
json <= '"{"name": {"first": "Bob", "last": "Jones"}, "age": 32}'

Using spread_values
json %>%
spread_values(
first.name = jstring(name, first),
last.name = jstring(name, last),
age = jnumber (age)

)

Another document, this time with a middle name (and no age)
json2 <~ '{"name": {"first”: "Ann", "middle”: "A", "last"”: "Smith"}}'

spread_values still gives the same column structure
c(json, json2) %>%
spread_values(
first.name = jstring(name, first),
last.name = jstring(name, last),
age = jnumber(age)

)

whereas spread_all adds a new column
json %>% spread_all
c(json, json2) %>% spread_all

tbl_json Combines structured JSON (as a data.frame) with remaining JSON

Description

Constructs a tbl_json object, for further downstream manipulation by other tidyjson functions.
Methods exist to convert JSON stored in character strings without any other associated data, as
a separate character string and associated data frame, or as a single data frame with a specified
character string JSON column.

26 tbl_json

Usage
tbl_json(df, json.list, drop.null.json = FALSE, ..., .column_order = NULL)
as.tbl_json(.x, ...)
as_tbl_json(.x, ...)

S3 method for class 'tbl_json'
as.tbl_json(.x, ...)

S3 method for class 'character'
as.tbl_json(.x, ...)

S3 method for class 'list'
as.tbl_json(.x, ...)

S3 method for class 'data.frame'
as.tbl_json(.x, json.column, ...)

is.tbl_json(.x)

Arguments
df data.frame
json.list list of json lists parsed with fromJSON

drop.null. json drop NULL json entries from df and json.list
other arguments

.column_order Experimental argument to preserve column order for the hidden column

X an object to convert into a tbl_json object
json.column the name of the json column of data in . x, if . x is a data frame
Details

Most tidyjson functions accept a tbl_json object as the first argument, and return a tbl_json
object unless otherwise specified. tidyjson functions will attempt to convert an object that isn’t a
tb1l_json object first, and so explicit construction of tidyjson objects is rarely needed.

tbl_json objects consist of a data frame along with it’s associated JSON, where each row of the
data frame corresponds to a single JSON document. The JSON is stored in a "JSON" attribute.

Note that json.list must have the same length as nrow(df), and if json.list has any NULL
elements, the corresponding rows will be removed from df. Also note that "..JSON" is a reserved
column name used internally for filtering tbl_json objects, and so is not allowed in the names of df.

Value

a tbl_json object

tidyjson 27

See Also

read_json for reading json from files

Examples

Construct a tbl_json object using a charater string of JSON
json <- '{"animal”: "cat", "count"”: 2}'
json %>% as.tbl_json

access the "JSON" argument
json %>% as.tbl_json %>% attr("JSON")

Construct a tbl_json object using multiple documents
json <- c('{"animal”: "cat”, "count”: 2}', '{"animal”: "parrot”, "count”: 13}')
json %>% as.tbl_json

Construct a tbl_json object from a data.frame with a JSON colum
library(tibble)
farms <- tribble(

~farm, ~animals,

1L, "[{"animal”: "pig", "count": 503}, {"animal”: "cow", "count": 103}1',
2L, '[{"animal”: "chicken"”, "count": 203}]'

)

farms %>% as.tbl_json(json.column = "animals")

tidy the farms

farms %>% as.tbl_json(json.column = "animals") %>%

gather_array %>% spread_all

tidyjson tidyjson

Description

The tidyjson package provides tools to turn complex JSON data into tidy tibbles and data frames.

worldbank Projects funded by the World Bank

Description

From: http://jsonstudio.com/resources/

Usage
worldbank

28 [.tbl_json

Format

JSON

Examples

Not run:
library(dplyr)

worldbank is a 500 length character vector of JSON
length(worldbank)

Let's look at top level values
worldbank %>% spread_all %>% glimpse

Are there any arrays?
worldbank %>% gather_object %>% json_types %>% count(name, type)

Get the top 10 sectors by funded project in Africa

wb_sectors <- worldbank %>% # 500 Projects funded by the world bank
spread_all %>%
select(project_name, regionname) %>%
enter_object(majorsector_percent) %>% # Enter the 'sector' object
gather_array("sector.index") %>% # Gather the array
spread_values(sector = jstring(Name)) # Spread the sector name

Examine the structured data
wb_sectors %>% glimpse

Get the top 10 sectors by funded project in Africa
wb_sectors %>%

filter(regionname == "Africa") %>% # Filter to just Africa
count(sector) %>% # Count by sector
arrange(desc(n)) %>% # Arrange descending
top_n(10) # Take the top 10

End(Not run)

[.tbl_json Extract subsets of a tbl_json object (not replace)

Description

Extends ‘[.data.frame* to work with tbl_json objects, so that row filtering of the underlying data.frame
also filters the associated JSON.

Usage

S3 method for class 'tbl_json'
.x[i, j, drop = FALSE]

[.tbl_json

Arguments

X a tbl_json object

i row elements to extract

Jj column elements to extract

drop whether or not to simplify results
Value

a tbl_json object

29

Index

x datasets
allowed_json_types, 2
[.tbl_json, 28

allowed_json_types, 2
append_values, 3, 9, 10, 23

append_values_logical (append_values), 3
append_values_number (append_values), 3
append_values_string (append_values), 3

as.character.tbl_json, 4
as.tbl_json (tbl_json), 25
as_data_frame.tbhl_json
(as_tibble.tbl_json), 5
as_tbl_json (tbl_json), 25
as_tibble.tbl_json, 5

commits, 5
companies, 6

enter_object, 7,9-11, 21

filter, 12
fromJSON, 26

gather, 9, 11
gather_array, 8,9, 10-12, 21, 23
gather_keys (gather_object), 10
gather_object, 3, 8, 9, 10, 12, 20, 21

is.tbl_json (tbl_json), 25
is_json, 12

is_json_array (is_json), 12
is_json_logical (is_json), 12
is_json_null (is_json), 12
is_json_number (is_json), 12
is_json_object (is_json), 12
is_json_scalar (is_json), 12
is_json_string (is_json), 12
issues, 11

jdouble (json_functions), 15

30

jinteger (json_functions), 15
jlogical, 24, 25

jlogical (json_functions), 15
jnumber, 24, 25

jnumber (json_functions), 15
json_complexity, 14, 17, 18
json_functions, 15
json_get, 15
json_get_column, 3, 16
json_lengths, 14,17, 20
json_schema, 18, 20
json_structure, 18, 19
json_types, 9, 10, 13, 18, 20, 20
jstring, 24, 25

jstring (json_functions), 15

map_chr, 4

print.tbl_df, 2/
print.tbl_json, 21

rbind_tbl_json, 22
read_json, 22

spread, 23, 25
spread_all, 3, 8, 23,24, 25
spread_values, 8, 15, 23,24

tbl_json, 3, 8-14, 17-25, 25, 26, 29
tidyjson, 27

worldbank, 27

	allowed_json_types
	append_values
	as.character.tbl_json
	as_tibble.tbl_json
	commits
	companies
	enter_object
	gather_array
	gather_object
	issues
	is_json
	json_complexity
	json_functions
	json_get
	json_get_column
	json_lengths
	json_schema
	json_structure
	json_types
	print.tbl_json
	rbind_tbl_json
	read_json
	spread_all
	spread_values
	tbl_json
	tidyjson
	worldbank
	[.tbl_json
	Index

