
HELP
November 11, 2009

R topics documented:
base.stacking.thermodynamics . 2
calcGC-methods . 2
calcGC . 3
calcPrototype-methods . 4
calcPrototype . 4
calcTm-methods . 5
calcTm . 6
combineData-methods . 7
combineData . 8
createWiggle-methods . 9
createWiggle . 10
exprs2-methods . 11
exprs2 . 12
fuzzyMatches-methods . 12
fuzzyMatches . 13
getFeatures-methods . 14
getFeatures . 15
getSamples-methods . 16
getSamples . 16
plotBins-methods . 17
plotBins . 18
plotChip-methods . 19
plotChip . 20
plotFeature-methods . 21
plotFeature . 22
plotPairs-methods . 23
plotPairs . 24
quantileNormalize-methods . 25
quantileNormalize . 26
readDesign-methods . 27
readDesign . 28
readPairs-methods . 30
readPairs . 30
readSampleKey . 32

Index 34

1

2 calcGC-methods

base.stacking.thermodynamics
Base-stacking thermodynamic parameters

Description

Unified thermodynamic parameters (delta-S and delta-H values) for nearest-neighbor base stacking
calculations

Usage

data(base.stacking.thermodynamics)

Format

A matrix with 2 columns and 16 rows. Column 1 indicates enthalpic parameters (dH) and column
2 indicates entropic parameters (dS). Rows indicate all possible 2bp combinations of "A", "T", "C",
and "G" (e.g. "AC")

Source

Allawi, H.T. and SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G.T mismatches
in DNA, Biochemistry, 36, 10581-10594.

Examples

data(base.stacking.thermodynamics)

calcGC-methods Calculate GC percent (methods)

Description

Methods for calculating GC percent from oligonucleotide sequences

Methods

x = "missing" Handle empty function call

x = "NULL" Handle empty function call

x = "character" Handle character input

x = "ExpressionSet" Handle input of an object of class ExpressionSet

See Also

calcGC

calcGC 3

calcGC Calculate GC percent

Description

Function to calculate GC percent from a nucleotide sequence input

Usage

calcGC(x, ...)

Arguments

x characters containing nucleotide sequence (ex: ‘"ATCGGAA"’) or an object of
class ExpressionSet

... Other arguments passed to methods:

‘allow’ vector of characters specifying what other characters to allow in se-
quence (default is ‘"N"’)

Value

Returns a numerical value (from ‘0’ to ‘1’) indicating the C+G content of the sequence, correspond-
ing to the fraction of (C+G)/(A+T+C+G...). A value of ‘NA’ is returned if the function encounters
an error that prevents proper calculation of GC percent.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

calcGC-methods, calcTm

Examples

#demo(pipeline,package="HELP")

calcGC("AAAACGCG")
calcGC(sequence="cXgXcXgXcXgX",allow="X")

4 calcPrototype

calcPrototype-methods
Calculate prototype (methods)

Description

Methods for calculating prototype ([trimmed] mean) across all samples

Methods

x = "missing" Handle empty function call

x = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive data from
AssayData.

x = "vector" Handle vector input as a matrix

x = "matrix" Handle matrix input

Author(s)

Mark Reimers (〈mreimers@vcu.edu〉), Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

calcPrototype

calcPrototype Calculate prototype

Description

Calculates prototype (trimmed mean) across all samples

Usage

calcPrototype(x, ...)

Arguments

x a numeric matrix, where each column represents a different sample

... Arguments to be passed to methods (see calcPrototype-methods):

‘element’ which element of AssayData to use for a given ExpressionSet
input (default is ‘"exprs"’)

‘samples’ which samples to use as data. Can be a vector of characters match-
ing sample names, integers indicating which samples to choose, or a mix-
ture of the two. If ‘NULL’ (default), all samples will be used.

‘center’ logical; if ‘TRUE’ (default) samples will be mean-centered before
protototype calculation. If ‘FALSE’, this mean-centering step will be skipped

‘trim’ the fraction (0 to 0.5, default is 0.1) of observations to be trimmed from
each end of each row and column in x before the mean is computed.

calcTm-methods 5

‘verbose’ logical; if ‘TRUE’ (default) progress will be output to screen. If
‘FALSE’, no output will be displayed.

‘...’ other arguments to be passed to mean. See mean.

Value

Returns a vector of numerical data, representing the prototype ([trimmed] mean) of all samples in
x.

Author(s)

Mark Reimers (〈mreimers@vcu.edu〉), Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

calcPrototype-methods, mean

Examples

#demo(pipeline,package="HELP")

x <- matrix(data=rep(1:1000,10),nrow=1000,ncol=10)
x <- x*(sample(1:100/100,size=10000,replace=TRUE))
x <- t(t(x)-1000*(1:10))
x[c(1:10,991:1000),]
x.avg <- calcPrototype(x)
x.avg[c(1:10,991:1000)]

#rm(x,x.avg)

calcTm-methods Calculate Tm (methods)

Description

Methods for calculating melting temperature (Tm) of nucleotide sequences

Methods

x = "missing" Handle empty function call

x = "NULL" Handle empty function call

x = "character" Handle character input

x = "ExpressionSet" Handle input of an object of class ExpressionSet

See Also

calcTm

6 calcTm

calcTm Calculate Tm

Description

Calculate melting temperature (Tm) using the nearest-neighbor base-stacking algorithm and the
unified thermodynamic parameters.

Usage

calcTm(x, ...)

Arguments

x characters containing nucleotide sequences (ex: ‘"ATCGGAA"’) or an object of
class ExpressionSet

... Additional arguments passed to methods:

‘strand1.concentration’ numeric value specifying concentration of strand
1 (default is 2e-07)

‘strand2.concentration’ numeric value specifying concentration of strand
2 (default is 2e-07)

‘method’ character value specifying the Tm algorithm to use (default is ‘"nearest-neighbor"’);
currently not supported

Value

Returns a numerical value indicating the predicted melting temperature (Tm) of the sequence in
degrees Celsius. A value of ‘NA’ is returned if the function encounters an error that prevents proper
Tm calculation.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

References

Allawi, H.T. and SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G.T mismatches
in DNA, Biochemistry, 36, 10581-10594.

See Also

calcTm-methods, base.stacking.thermodynamics, calcGC

Examples

#demo(pipeline,package="HELP")

calcTm("GTGTGGCTACAGGTGGGCCGTGGCGCACCTAAGTGAGGACAGAGAACAAC")
calcTm("GTGTGGCTACAGGTGGGCCGTGGCGCACCTAAGTGAGGACAGAGAACAAC",strand1.concentration=1E-5,strand2.concentration=2E-8)

combineData-methods 7

combineData-methods
Combine data (methods)

Description

Methods for calculating trimmed and/or weighted means of groups of rows in a given data matrix.

Methods

x = "missing", y = "missing", w = "missing" Handle empty function call

x = "vector", y = "missing", w = "missing" Handle partially empty function call. Reinterpret
with default parameters instead of missing values.

x = "vector", y = "missing", w = "vector" Handle partially empty function call. Reinterpret with
default parameters instead of missing values.

x = "vector", y = "vector", w = "missing" Handle partially empty function call. Reinterpret with
default parameters instead of missing values.

x = "vector", y = "vector", w = "vector" Handle input of three vectors specifying data, group-
ing, and weighting information, respectively. Note that the data and weighting inputs are
handled as matrices.

x = "matrix", y = "vector", w = "missing" Handle partially empty function call. Reinterpret with
default parameters instead of missing values.

x = "matrix", y = "vector", w = "matrix" Handle input of one matrix, one vector, and one ma-
trix specifying data, grouping, and weighting information, respectively.

x = "ExpressionSet", y = "missing", w = "missing" Handle input of an object of class ExpressionSet.
Derive grouping and weighting data from featureData and AssayDataElement, re-
spectively.

x = "ExpressionSet", y = "vector", w = "missing" Handle input of an object of class ExpressionSet
and a vector specifying grouping information. Derive weighting data from codeAssayDataEle-
ment.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

combineData

8 combineData

combineData Combine data

Description

Calculate trimmed and/or weighted means of groups of rows in a given data matrix.

Usage

combineData(x, y, w, ...)

Arguments

x a numeric matrix containing the values whose trimmed and/or weighted mean is
to be computed. Each column is treated independently.

y a vector describing the discrete groups used to divide the elements of x. If y is
missing then all elements of x are handled together.

w a matrix of weights the same dimensions as x giving the weights to use for each
element of x. If w is missing then all elements of x are given the same weight.

... Arguments to be passed to methods (see combineData-methods):

‘trim’ the fraction (0 to 0.5, default is 0) of observations to be trimmed from
each group of rows in x according to y.

‘na.rm’ logical; if ‘TRUE’, missing values are removed from x and y and z.
If ‘FALSE’ any missing values cause an error.

‘element’ which element of AssayData to use for a given ExpressionSet
input (default is ‘"exprs"’)

‘feature.group’ which element of featureData to use as binning vari-
able (default is NULL). Can be a character matching varLabel or simply
an integer indicating which feature to choose. See getFeatures.

‘element.weight’ which element of AssayData to use for a given ExpressionSet
input. If NULL (default), weighting is not performed.

‘feature.weight’ which element of featureData to use as weighting
variable (default is NULL). Can be a character matching varLabel or
simply an integer indicating which feature to choose. See getFeatures.

‘samples’ which samples to use as data. Can be a vector of characters match-
ing sample names, integers indicating which samples to choose, or a mix-
ture of the two. If ‘NULL’ (default), all samples will be used.

‘...’ other arguments not handled at this time.

Value

Returns a matrix of combined numerical data, where each row represents the summary of a group
of elements from the corresponding column in x.

Note

Each column in data matrix treated separately.

createWiggle-methods 9

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

combineData-methods, mean, weighted.mean

Examples

#demo(pipeline,package="HELP")

x <- 1:100
combineData(x,w=x/100)
weighted.mean(x,w=x/100)

y <- sample(c("a","b","c",1:3),size=100,replace=TRUE)
combineData(cbind(x,x,2*x),y,trim=0.5)

#rm(x,y)

createWiggle-methods
Create wiggle track (methods)

Description

Methods for creating wiggle tracks

Methods

x = "missing", y = "missing" Handle empty function call

x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. De-
rive features from FeatureData.

x = "ExpressionSet", y = "matrix" Handle input of an object of class ExpressionSet. De-
rive features from matrix input

x = "vector", y = "matrix" Handle vector input

x = "matrix", y = "matrix" Handle matrix input

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

createWiggle

10 createWiggle

createWiggle Create wiggle track

Description

Create and write a wiggle track (UCSC Genome Browser format) to flat file

Usage

createWiggle(x, y, ...)

Arguments

x matrix of numerical data, where each column represents data for an individual
wiggle track. x can also be of class "ExpressionSet".

y an additional matrix of numerical data with columns corresponding to chr, start,
and end, respectively.

... Arguments to be passed to methods (see createWiggle-methods):

‘element’ which element of AssayData to use for a given ExpressionSet
input (default is ‘"exprs"’)

‘feature.chr’ which element of featureData to use as chromosomal
information (default is ‘"CHR"’). Can be a character matching varLabel
or simply an integer indicating which feature to choose.

‘feature.start’ which element of featureData to use as start posi-
tions (default is ‘"START"’). Can be a character matching varLabel or
simply an integer indicating which feature to choose.

‘feature.stop’ which element of featureData to use as end positions
(default is ‘"STOP"’). Can be a character matching varLabel or simply
an integer indicating which feature to choose.

‘samples’ which sample(s) to use as data. Can be a vector of characters
matching sample names, integers indicating which samples to choose, or
a mixture of the two. If ‘NULL’ (default), all samples will be used.

‘colors’ vector of colors, indicates which colors to use for which wiggle track
‘file’ location of file to write wiggle track information; if ‘""’, wiggle track

prints to the standard output connection: see cat.
‘append’ logical; if ‘TRUE’, the output is appended to an existent wiggle track

file. If ‘FALSE’ (default), a new file with a new header is created and any
existing file of the same name is destroyed.

‘na.rm’ logical; if ‘TRUE’ (default), missing values are removed from data. If
‘FALSE’ any missing values cause an error

‘sep’ a string used to separate columns. Using ‘sep = "�"’ (default) gives
tab-delimited output.

‘...’ other arguments to be passed to cat. See cat.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

exprs2-methods 11

References

UCSC Genome Browser, http://genome.ucsc.edu/goldenPath/help/customTrack.
html: Kent, W.J., Sugnet, C. W., Furey, T. S., Roskin, K.M., Pringle, T. H., Zahler, A. M., and
Haussler, D. The Human Genome Browser at UCSC. Genome Res. 12(6), 996-1006 (2002).

See Also

write, cat

Examples

#demo(pipeline,package="HELP")

chr <- rep("chr1", 500)
start <- (1:500)*200
end <- start+199
data <- sample(5*(1:10000/10000)-2, size=500)
data <- cbind(data, abs(data), -1*data)
colnames(data) <- c("data", "abs", "opposite")
createWiggle(data, cbind(chr, start, end))

#rm(chr, start, end, data)

exprs2-methods Retrieve microarray data (for signal channel 2) from ExpressionSets
(methods)

Description

Methods for accessing (and/or assigning) data for signal channel 2 in a given ExpressionSet object

Methods

object = "missing" Handle empty function call

object = "ExpressionSet" Handle input of an object of class ExpressionSet

object = "ExpressionSet", value = "missing" Handle empty function call

object = "ExpressionSet", value = "matrix" Handle input of an object of class ExpressionSete

See Also

exprs2

http://genome.ucsc.edu/goldenPath/help/customTrack.html
http://genome.ucsc.edu/goldenPath/help/customTrack.html

12 fuzzyMatches-methods

exprs2 Retrieve microarray data (for signal channel 2) from ExpressionSets

Description

Access (and/or assign) data for signal channel 2 in a given ExpressionSet object

Usage

exprs2(object)
exprs2(object) <- value

Arguments

object Object of class ExpessionSet

value Matrix with rows representing features and columns representing samples

Value

exprs2 returns a (usually large!) matrix of values

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

Examples

#demo(pipeline,package="HELP")

fuzzyMatches-methods
Fuzzy matching (methods)

Description

Methods for matching and reinterpreting a vector in terms of a second vector, essentially using the
second vector as a key to interpreting the first.

Methods

x = "missing", y = "missing" Handle empty function call

x = "vector", y = "missing" Handle empty function call

x = "vector", y = "NULL" Handle empty function call

x = "vector", y = "vector" Handle input of two vectors.

x = "NULL", y = "vector" Handle empty function call

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

fuzzyMatches 13

See Also

fuzzyMatches

fuzzyMatches Fuzzy matching

Description

Match and reinterpret a vector in terms of a second vector, essentially using the second vector as a
key to interpret the first.

Usage

fuzzyMatches(x, y, ...)

Arguments

x vector, the values to be matched.

y vector, the values to be matched against.

... Arguments to be passed to methods (see getSamples-methods):

‘strict’ logical indicating whether or not to allow restrict matching. If ‘FALSE’,
numerical indices in x can reference values in y. If ‘TRUE’ (default), only
exact matches of values in x and y will be used.

‘keep’ logical indicating whether or not to preserve non-matching values from
x (when strict = FALSE). If ‘TRUE’ (default), all values in x will be
returned with those that match values in y replaced by the corresponding
values in y. If ‘FALSE’, non-matching values will be removed.

‘alias’ logical indicating whether or not to return aliased values (default is
‘TRUE’). If ‘FALSE’, numerical indices will be returned with a value of
nomatch for non-matching values in x.

‘match.all’ character value, specifying a special value to be interpreted as a
match for ALL values in y (default is ‘"*"’). Any occurence of match.all
in x will be replaced by all values in y.

‘nomatch’ numerical, specifying a value for non-matching values in codex
when strict = FALSE, keep = TRUE, and alias = FALSE.

‘na.rm’ a logical value indicating whether NA values should be stripped be-
fore the computation proceeds (default is ‘TRUE’). If ‘FALSE’ any missing
values in x will cause an error and missing values in codey may cause un-
expected behavior.

‘...’ other arguments not handled at this time.

Details

This function employs multiple stages of matching between two vectors. First, the values in x are
matched against y to find any exact matches. Next, numerical values in x are used to retrieve the
corresponding positions in y. All unmatched values may be retained or dropped (depending on the
value of keep), and a list of unique values is returned. Note that a value of match.all in x will
be interpreted as a match for ALL values in y, and therefore replaced with the contents of y.

14 getFeatures-methods

Value

Returns a vector of unique values in x, that match values in y according to the parameters described
above.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

fuzzyMatches-methods, match

Examples

a <- c(1, "four", "missing")
b <- c("one", "two", "three", "four")
fuzzyMatches(a, b)
fuzzyMatches(a, b, strict=FALSE)
fuzzyMatches(a, b, strict=FALSE, alias=FALSE)
fuzzyMatches(a, b, strict=FALSE, keep=FALSE)

getFeatures-methods
Get features (methods)

Description

Methods for fetching a subset of features from a given data structure

Methods

x = "missing", y = "missing" Handle empty function call

x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. Se-
lect all feature data.

x = "ExpressionSet", y = "NULL" Handle input of an object of class ExpressionSet. Select
all feature data.

x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Select
a subset of features.

x = "AnnotatedDataFrame", y = "missing" Handle input of an AnnotatedDataFrame ob-
ject. Select all feature data.

x = "AnnotatedDataFrame", y = "NULL" Handle input of an AnnotatedDataFrame ob-
ject. Select all feature data.

x = "AnnotatedDataFrame", y = "vector" Handle input of an AnnotatedDataFrame object.
Select a subset of features.

x = "vector", y = "missing" Handle input of a vector (interpreted as a matrix). Select all feature
data

x = "vector", y = "NULL" Handle input of a vector (interpreted as a matrix). Select all feature
data

getFeatures 15

x = "vector", y = "vector" Handle input of two vectors specifying feature data and feature subset
information, respectively.

x = "matrix", y = "vector" Handle input of a matrix and a vector specifying feature data and
feature subset information, respectively.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

getFeatures

getFeatures Get features (methods)

Description

Fetch a subset of features from a given data structure

Usage

getFeatures(x, y, ...)

Arguments

x the matrix of feature data to subset. If x is a vector it is interpreted as a matrix. x
can also be of class "ExpressionSet" or an "AnnotatedDataFrame"
object.

y which feature(s) to use. Can be a vector of characters matching feature names,
integers indicating which features to choose, or a mixture of the two. If not
supplied (or if equivalent to ‘"*"’), all features will be used.

... other arguments passed are not handled at this time.

Value

Returns a matrix of values corresponding to a subset of features from the data structure supplied,
where columns correspond to features. Function halts if no features to return.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

getFeatures-methods

Examples

data(sample.ExpressionSet)
df <- data.frame(x=1:500,y=501:1000, row.names=featureNames(sample.ExpressionSet))
featureData(sample.ExpressionSet) <- new("AnnotatedDataFrame", data=df, dimLabels=c("featureNames", ""))
getFeatures(sample.ExpressionSet, "y")[1:10]

16 getSamples

getSamples-methods Get samples (methods)

Description

Methods for fetching subsets of samples from various data structures

Methods

x = "missing", y = "missing" Handle empty function call

x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. Se-
lect data for all samples.

x = "ExpressionSet", y = "NULL" Handle input of an object of class ExpressionSet. Select
data for all samples.

x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Select
data for a subset of samples.

x = "vector", y = "missing" Handle input of a vector (interpreted as a matrix). Select data for all
samples.

x = "vector", y = "NULL" Handle input of a vector (interpreted as a matrix). Select data for all
samples.

x = "vector", y = "vector" Handle input of two vectors specifying data and sample subset infor-
mation, respectively.

x = "matrix", y = "missing" Handle input of a matrix. Select data for all samples.

x = "matrix", y = "NULL" Handle input of a matrix. Select data for all samples.

x = "matrix", y = "vector" Handle input of a matrix and a vector specifying data and sample
subset information, respectively.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

getSamples

getSamples Get samples

Description

Fetch a subset of samples from a given data structure

Usage

getSamples(x, y, ...)

plotBins-methods 17

Arguments

x the matrix of sample data to subset. If x is a vector it is interpreted as a matrix.
x can also be of class "ExpressionSet".

y which sample(s) to use as data. Can be a vector of characters matching sample
names, integers indicating which samples to choose, or a mixture of the two. If
not supplied, all samples will be used.

... Arguments to be passed to methods (see getSamples-methods):

‘element’ which element of AssayData to use for a given ExpressionSet
input (default is ‘"exprs"’)

‘order’ vector of characters, specifying on which column(s) to order the sam-
ple data. If ‘NULL’ (default), the data will be returned without ordering
enforced.

‘...’ other arguments passed are not handled at this time.

Value

Returns a matrix of values corresponding to a subset of samples from the data supplied, where
columns correspond to samples. Function halts if no samples to return.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

getSamples-methods

Examples

data(sample.ExpressionSet)
se.ABC <- getSamples(sample.ExpressionSet, c("A", "B", "C"), element="se.exprs")
se.ABC[1:10,]

plotBins-methods Plot bins (methods)

Description

Methods for plotting densities of multiple bins of data, divided by a sliding window approach

Methods

x = "missing", y = "missing" Handle empty function call

x = "matrix", y = "missing" Handle matrix input, reinterpret function call with two vector input
if matrix has two columns, otherwise handle as empty function call

x = "vector", y = "missing" Handle empty function call

x = "vector", y = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive
binning information from this class but use data from a vector input.

18 plotBins

x = "vector", y = "vector" Handle input of two vectors specifying data and binning information,
respectively.

x = "matrix", y = "matrix" Handle matrix input, reinterpret function call with vector input

x = "matrix", y = "vector" Handle matrix input, reinterpret function call with vector input

x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. De-
rive both data and binning information from a single object.

x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Derive
data from this class but use binning information from a vector input.

x = "ExpressionSet", y = "ExpressionSet" Handle input of two objects of class ExpressionSet.
Derive data and binning information from each one, respectively.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

plotBins

plotBins Plot bins

Description

Plot densities of multiple bins of data, divided by a sliding window approach

Usage

plotBins(x, y, ...)

Arguments

x the vector of numerical data to be plotted. If x is a matrix it is interpreted as a
vector. x can also be of class "ExpressionSet".

y an additional vector of numerical data to be used for binning. If y is a matrix it
is interpreted as a vector. y can also be of class "ExpressionSet".

... Arguments to be passed to methods (see plotBins-methods):

‘element’ which element of AssayData to use for a given ExpressionSet
input (default is ‘"exprs"’)

‘sample’ which element of sampleNames to use as data (default is 1). Can
be a character matching a sample name or simply an integer indicating
which sample to choose. See getSamples.

‘feature’ which element of featureData to use as binning variable (de-
fault is 1). Can be a character matching varLabel or simply an integer
indicating which feature to choose. See getFeatures.

‘num.bins’ number of bins (default is 10) used to divide the data
‘num.steps’ number of steps (default is 3) used to create bin offsets, result-

ing in bins of sliding windows

plotChip-methods 19

‘mode’ the binning mode to be used. This must be either ‘"continuous"’
or ‘"discrete"’. ‘"continuous"’ mode will divide the data into
density-dependent bins. ‘"discrete"’ mode will divide the data uni-
formly by binning data values.

‘show.avg’ logical; if ‘TRUE’, plots overall density in addition to densities
per bin. If ‘FALSE’ (default), overall density plot is omitted.

‘main’ an overall title for the plot: see title.
‘xlab’ a title for the x axis: see title.
‘ylab’ a title for the y axis: see title.
‘na.rm’ logical; if ‘TRUE’ (default), missing values are removed from x and

y. If ‘FALSE’ any missing values cause an error.
‘...’ other arguments to be passed to plot. See plot.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

plotBins-methods, density, quantile

Examples

#demo(pipeline,package="HELP")

x <- 1:1000
y <- sample(1:50,size=1000,replace=TRUE)
plotBins(x,y,show.avg=TRUE,main="Random binning data",xlab="1:1000")

#rm(x,y)

plotChip-methods Plot chip image (methods)

Description

Methods for graphic display of spatially-linked data, particularly applicable for microarrays

Methods

x = "missing", y = "missing", z = "missing" Handle empty function call

x = "matrix", y = "missing", z = "missing" Handle matrix input, extract information, and rein-
terpret function call with appropriate vectors

x = "ExpressionSet", y = "missing", z = "missing" Handle input of an object of class ExpressionSet.
Derive both data and position information from a single object.

x = "ExpressionSet", y = "vector", z = "missing" Handle input of an object of class ExpressionSet.
Derive position information from this object, but the corresponding data from vector input.

x = "ExpressionSet", y = "ExpressionSet", z = "missing" Handle input of two objects of class
ExpressionSet. Derive position information and data from each one, respectively.

20 plotChip

x = "vector", y = "vector", z = "ExpressionSet" Handle input of an object of class ExpressionSet.
Derive data from this object, but the corresponding position information from vector input.

x = "vector", y = "vector", z = "vector" Handle input of three vectors. Derive X and Y positions
and data from each one, respectively.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉), Mark Reimers (〈mreimers@vcu.edu〉)

See Also

plotChip

plotChip Plot chip image

Description

Graphic display of spatially-linked data, particularly applicable for microarrays

Usage

plotChip(x, y, z, ...)

Arguments

x vector of numerical data determining x-coordinates of data on chip. x can also
handle ExpressionSet (see plotChip-methods for more parameter de-
tails).

y vector of numerical data determining y-coordinates of data on chip

z the vector of numerical data to be plotted

... Arguments to be passed to methods (see plotChip-methods):

‘element’ which element of AssayData to use for a given ExpressionSet
input (default is ‘"exprs"’)

‘sample’ which element of sampleNames to use as data (default is 1). Can
be a character matching a sample name or simply an integer indicating
which sample to choose.

‘feature.x’ which element of featureData to use as X coordinate (de-
fault is "X"). Can be a character matching varLabel or simply an integer
indicating which feature to choose.

‘feature.y’ which element of featureData to use as Y coordinate (de-
fault is "Y"). Can be a character matching varLabel or simply an integer
indicating which feature to choose.

‘na.rm’ logical; if ‘TRUE’, missing values are removed from x, y, and z. If
‘FALSE’ (default) any missing values cause an error.

‘main’ an overall title for the plot: see title.
‘xlab’ a title for the x axis: see title.
‘ylab’ a title for the y axis: see title.

plotFeature-methods 21

‘colors’ vector of colors specifying the color scheme to use (default is rev(rainbow(n=20,
start=0, end=1/3))). Also determines the resolution of z such that
the more colors that are used allow finer discrimination of differences in z.

‘range’ vector of numerical data of length 2 (default is c(NA, NA)) speci-
fying range used to color-code data in z

‘nrows’ numerical input specifying the number of rows by which to divide the
chip; default is ‘NULL’ which skips the division of data into blocks and
results in individual spot resolution

‘ncols’ numerical input specifying the number of columns by which to divide
the chip; default is ‘NULL’ which skips the division of data into blocks and
results in individual spot resolution

‘...’ other arguments to be passed to plot. See plot.

Author(s)

Reid F. Thompson 〈rthompso@aecom.yu.edu〉, Mark Reimers 〈mreimers@vcu.edu〉

See Also

plotChip-methods

Examples

#demo(pipeline,package="HELP")

x <- rep(1:100,100)
y <- rep(1:100,each=100)
z <- x*(1001:11000/1000)
z <- z-mean(z)
z <- z*(sample(1:10000/10000)+1)
plotChip(x,y,z,main="Curved gradient",xlab="x",ylab="y")

plotChip(x,y,sample(1:10000,size=10000),colors=gray(0:50/50),range=c(1,10000),main="Random noise")

#rm(x,y,z)

plotFeature-methods
Plot feature versus two-color intensity (methods)

Description

Methods for plotting featureData (ex: fragment size) versus two-color signal intensity data

Methods

x = "missing", y = "missing" Handle empty function call
x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. De-

rive both data and feature information from a single object.
x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Derive

data from this class but use feature values from a vector input.
x = "matrix", y = "vector" Handle matrix input, where each of two columns in matrix represents

data from one signal channel. Feature data is derived from values from a vector input.

22 plotFeature

plotFeature Plot feature versus two-color intensity

Description

Graphical display of featureData (ex: fragment size) versus two-color signal intensity data

Usage

plotFeature(x, y, ...)

Arguments

x matrix of numerical data to be plotted, with two columns (one for each signal
channel). x can also be of class "ExpressionSet".

y an additional vector of numerical data to be used for feature. If y is missing, the
function will attempt to fill a value from featureData in x.

... Arguments to be passed to methods (see plotFeature-methods):

‘element.x’ which element of AssayData to use (for signal channel 1) for
a given ExpressionSet input (default is ‘"exprs"’)

‘element.y’ which element of AssayData to use (for signal channel 2) for
a given ExpressionSet input (default is ‘"exprs2"’)

‘sample’ which element of sampleNames to use as data (default is 1). Can
be a character matching a sample name or simply an integer indicating
which sample to choose.

‘feature’ which element of featureData to use as plotting feature (de-
fault is 1). Can be a character matching varLabel or simply an integer
indicating which feature to choose.

‘feature.random’ which element of featureData to use to identify ran-
dom probes (default is ‘"TYPE"’). Can be a character matching varLabel
or simply an integer indicating which feature to choose.

‘which.random’ an integer vector specifying which rows of data correspond
to random probes. if ‘NULL’ (default), the function will attempt to identify
random probes using featureData.

‘random.flag’ a character specifying the label for random probes in feature.random
from featureData. Default is ‘"RAND"’.

‘na.rm’ logical; if ‘TRUE’ (default), missing values are removed from x. If
‘FALSE’ any missing values cause an error.

‘limit’ numerical input specifying the maximum number of points to plot
(default is 10,000). if ‘NULL’, all points will be used.

‘cutoff’ a numerical input specifying the value below which signal intensi-
ties from channel 1 can be considered "failed" probes. If ‘NULL’ (default),
the function will attempt to calculate a cutoff from random probe informa-
tion.

‘cutoff2’ a numerical input specifying the value below which signal intensi-
ties from channel 2 can be considered "failed" probes. If ‘NULL’ (default),
the function will attempt to calculate a cutoff from random probe informa-
tion.

plotPairs-methods 23

‘main’ an overall title for the plot: see title.
‘xlab’ a title for the x axis (default is ‘"Fragment size (bp)"’): see

title.
‘ylab’ a title for the y axis for signal channel 1 (default is ‘"log(MspI)"’):

see title.
‘ylab2’ a title for the y axis for signal channel 2 (default is ‘"log(HpaII)"’):

see title.
‘cex’ numerical value (default is 0.2) giving the amount by which plotting text

and symbols should be scaled relative to the default.
‘...’ other arguments to be passed to plot. See plot.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

plotFeature-methods

Examples

#demo(pipeline,package="HELP")

msp1 <- sample(8000:16000/1000, size=1000)
msp1 <- msp1[order(msp1)]
hpa2 <- sample(8000:16000/1000, size=1000)
hpa2 <- hpa2[order(hpa2)]
size <- sample((1:1000)*1.8+200, size=1000)
rand <- which.min(abs(msp1-quantile(msp1, 0.25)))
plotFeature(cbind(msp1, hpa2), size, which.random=(rand-20):(rand+20), main="Random")

#rm(msp1, hpa2, size, rand)

plotPairs-methods Plot tree-pairs (methods)

Description

Methods for pairwise comparison of samples producing a matrix of scatterplots and a corresponding
dendrogram

Methods

x = "missing" Handle empty function call

x = "matrix" Handle matrix input

x = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive data from
AssayData.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

24 plotPairs

See Also

plotPairs

plotPairs Plot tree-pairs

Description

Pairwise comparison of samples producing a matrix of scatterplots and a corresponding dendrogram

Usage

plotPairs(x, ...)

Arguments

x a numeric matrix, where each column represents a different sample. x can also
be of class "ExpressionSet".

... Arguments to be passed to methods (see plotPairs-methods):

‘element’ which element of AssayData to use for a given ExpressionSet
input (default is ‘"exprs"’)

‘samples’ which samples to use as data. Can be a vector of characters match-
ing sample names, integers indicating which samples to choose, or a mix-
ture of the two. If ‘NULL’ (default), all samples will be used.

‘scale’ logical value indicating whether sample branch lengths should be
scaled by distance (default is ‘TRUE’)

‘groups’ logical value indicating whether the samples should be organized
and color-coded by group (default is ‘TRUE’)

‘dist.method’ the distance measure to be used. This must be one of ‘"euclidean"’
(default), ‘"maximum"’, ‘"manhattan"’, ‘"canberra"’, ‘"binary"’
or ‘"minkowski"’. Any unambiguous substring can be given: see dist
for more details.

‘hclust.method’ the agglomeration method to be used. This should be (an
unambiguous abbreviation of) one of ‘"ward"’ (default), ‘"single"’,
‘"complete"’, ‘"average"’, ‘"mcquitty"’, ‘"median"’ or ‘"centroid"’:
see hclust for more details.

‘k’ an integer scalar or vector with the desired number of groups. If ‘NULL’ (de-
fault), grouping will rely instead on distance measurements: see cutree
for more details.

‘...’ other arguments to be passed to pairs or dist. See pairs, dist.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

plotPairs-methods, dist, hclust, dendrogram, cutree, pairs

quantileNormalize-methods 25

Examples

#demo(pipeline,package="HELP")

x <- sample(1:10000,size=10000)
x <- cbind(x,x+5,x*sample((1000:2000)/1000,size=10000,replace=TRUE),sample(-1*(1:10000),size=10000))
colnames(x) <- c("x","x+5","spread","random")
plotPairs(x)

#rm(x)

quantileNormalize-methods
Quantile normalization (methods)

Description

Methods for applying quantile normalization to multiple bins of data, divided by a sliding window
approach

Methods

x = "missing", y = "missing" Handle empty function call

x = "matrix", y = "missing" Handle matrix input, reinterpret function call with two vector input
if matrix has two columns, otherwise handle as empty function call

x = "vector", y = "missing" Handle empty function call

x = "vector", y = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive
binning information from this class but use data from a vector input.

x = "vector", y = "vector" Handle input of two vectors specifying data and binning information,
respectively.

x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. De-
rive both data and binning information from a single object.

x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Derive
data from this class but use binning information from a vector input.

x = "ExpressionSet", y = "ExpressionSet" Handle input of two objects of class ExpressionSet.
Derive data and binning information from each one, respectively.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

quantileNormalize

26 quantileNormalize

quantileNormalize Quantile normalization

Description

Apply quantile normalization to multiple bins of data, divided by a sliding window approach

Usage

quantileNormalize(x, y, ...)

Arguments

x the vector of numerical data to be normalized. If x is a matrix it is interpreted
as a vector. x can also be of class "ExpressionSet".

y an additional vector of numerical data to be used for binning. If y is a matrix it
is interpreted as a vector. y can also be of class "ExpressionSet".

... Arguments to be passed to methods (see quantileNormalize-methods):

‘element’ which element of AssayData to use for a given ExpressionSet
input (default is ‘"exprs"’)

‘sample’ which element of sampleNames to use as data (default is 1). Can
be a character matching a sample name or simply an integer indicating
which sample to choose. See getSamples.

‘feature’ which element of featureData to use as binning variable (de-
fault is 1). Can be a character matching varLabel or simply an integer
indicating which feature to choose. See getFeatures.

‘num.bins’ number of bins (default is 10) used to divide the data
‘num.steps’ number of steps (default is 3) used to create bin offsets, result-

ing in bins of sliding windows
‘mode’ the binning mode to be used. This must be either ‘"continuous"’

(default) or ‘"discrete"’. ‘"continuous"’ mode will divide the data
into density-dependent bins. ‘"discrete"’ mode will divide the data
uniformly by binning data values.

‘type’ an integer between 1 and 9 (default is 7) selecting one of the nine quan-
tile algorithms: see quantile.

‘na.rm’ logical; if ‘TRUE’, missing values are removed from x and y. If
‘FALSE’ any missing values cause an error.

‘...’ other arguments to be passed to quantile. See quantile.

Value

Returns a vector of normalized numerical data according to input parameters.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

quantileNormalize-methods, quantile

readDesign-methods 27

Examples

#demo(pipeline,package="HELP")

x <- rep(1:100,10)+10*rep(1:10,each=100)
y <- rep(1:20,each=50)
d <- density(quantileNormalize(x,y,num.bins=20,num.steps=1,mode="discrete"))
plot(density(x))
lines(dx,dy/3,col="red")

#rm(x,y,d)

readDesign-methods Read NimbleGen design files (methods)

Description

Methods for extracting array design information from corresponding files in the Nimblegen .ndf
and .ngd formats.

Methods

x = "missing", y = "missing", z = "missing" Handle empty function call

x = "vector", y = "missing", z = "missing" Handle single vector input. If two values specified
in vector, reinterpret function call with two character inputs. Otherwise, handle as empty
function call.

x = "vector", y = "vector", z = "missing" Handle two vector input. If vectors of unit length,
reinterpret function call with two character inputs. Otherwise, handle as improper function
call.

x = "character", y = "character", z = "ExpressionSet" Handle two character vector inputs, each
specifiying a filename to use when reading design information. Design information will be
written to an ExpressionSet.

x = "character", y = "character", z = "character" Handle two character vector inputs, each speci-
fiying a filename to use when reading design information. Design information will be written
to a database.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

readDesign

28 readDesign

readDesign Read NimbleGen design files

Description

Function to extract array design information from corresponding files in the Nimblegen .ndf and
.ngd formats.

Usage

readDesign(x, y, z, ...)

Arguments

x path to the Nimblegen design file (.ndf). Each line of the file is interpreted as a
single spot on the array design. If it does not contain an absolute path, the file
name is relative to the current working directory, getwd(). Tilde-expansion
is performed where supported. Alternatively, x can be a readable connection
(which will be opened for reading if necessary, and if so closed at the end of the
function call). ‘file’ can also be a complete URL.

y path to the Nimblegen gene descriptions file (.ngd). Each line of the file is
interpreted as a single locus. If it does not contain an absolute path, the file
name is relative to the current working directory, getwd(). Tilde-expansion
is performed where supported. Alternatively, y can be a readable connection
(which will be opened for reading if necessary, and if so closed at the end of the
function call). ‘file’ can also be a complete URL.

z object in which to store design information from files. Can be an ExpressionSet,
in which case design information will be stored in featureData.

... Arguments to be passed to methods (see readDesign-methods):

‘path’ a character vector containing a single full path name to which filenames
will be appended. If ‘NULL’, filenames (x and y) are treated as is.

‘comment.char’ character: a character vector of length one containing a sin-
gle character or an empty string (default is ‘"#"’). Use ‘""’ to turn off the
interpretation of comments altogether.

‘sep’ the field separator character (default is ‘"�"’). Values on each line of the
file are separated by this character. If ‘sep = ""’ the separator is "white
space", that is one or more spaces, tabs, newlines or carriage returns.

‘quote’ the set of quoting characters (default is ‘""̈’). To disable quoting alto-
gether, use quote = "". See scan for the behavior on quotes embedded
in quotes. Quoting is only considered for columns read as character, which
is all of them unless ‘colClasses’ is specified.

‘eSet’ ExpressionSet input (default is new("ExpressionSet")) in
which to store design information in featureData

‘...’ other arguments to be passed to read.table. See read.table.

Value

Returns an ExpressionSet filled with featureData containing the following featureColumns:

readDesign 29

\option{SEQ_ID}
a vector of characters with container IDs, linking each probe to a parent identifier

\option{PROBE_ID}
a vector of characters containing unique ID information for each probe

\option{X} vector of numerical data determining x-coordinates of probe location on chip

\option{Y} vector of numerical data determining y-coordinates of probe location on chip
\option{TYPE}

a vector of characters defining the type of probe, e.g. random background signals
(‘"RAND"’) or usable data (‘"DATA"’).

\option{CHR} a matrix of characters containing unique ID and chromosomal positions for each
container

\option{START}
a matrix of characters containing unique ID and chromosomal positions for each
container

\option{STOP}
a matrix of characters containing unique ID and chromosomal positions for each
container

\option{SIZE}
a matrix of characters containing unique ID and chromosomal positions for each
container

\option{SEQUENCE}
a vector of characters containing sequence information for each probe

\option{WELL}
a vector of characters containing multiplex well location for each probe (if
present in design files)

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

readDesign-methods, read.table

Examples

#demo(pipeline, package="HELP")

chr <- rep("chr1", 500)
start <- (1:500)*200
stop <- start+199
x <- 1:500
seqids <- sample(1:50, size=500, replace=TRUE)
cat("#COMMENT\nSEQ_ID\tCHROMOSOME\tSTART\tSTOP\n", file="./read.design.test.ngd")
table.ngd <- cbind(seqids, chr, start, stop)
write.table(table.ngd, file="./read.design.test.ngd", append=TRUE, col.names=FALSE, row.names=FALSE, quote=FALSE, sep="\t")
cat("#COMMENT\nSEQ_ID\tX\tY\tPROBE_ID\tCONTAINER\tPROBE_SEQUENCE\tPROBE_DESIGN_ID\n", file="./read.design.test.ndf")
sequence <- rep("NNNNNNNN", 500)
table.ndf <- cbind(seqids, x, x, x, x, sequence, x)
write.table(table.ndf, file="./read.design.test.ndf", append=TRUE, col.names=FALSE, row.names=FALSE, quote=FALSE, sep="\t")
x <- readDesign("./read.design.test.ndf", "./read.design.test.ngd")
seqids[1:10]
pData(featureData(x))$"SEQ_ID"[1:10]

30 readPairs

#rm(table.ngd, table.ndf, chr, start, stop, x, seqids, sequence)
#file.remove("./read.design.test.ngd")
#file.remove("./read.design.test.ndf")

readPairs-methods Read Nimblegen .pair files (methods)

Description

Methods for extracting data from corresponding files in the Nimblegen .pair format.

Methods

x = "missing", y = "missing", z = "missing" Handle empty function call

x = "vector", y = "missing", z = "missing" Handle single vector input. If two values specified
in vector, reinterpret function call with two character inputs. Otherwise, handle as empty
function call.

x = "vector", y = "vector", z = "missing" Handle two vector input. If vectors of unit length,
reinterpret function call with two character inputs. Otherwise, handle as improper function
call.

x = "character", y = "character", z = "ExpressionSet" Handle two character vector inputs, each
specifiying a filename to use when reading pair information. Pair data will be written to an
ExpressionSet object.

x = "character", y = "character", z = "character" Handle two character vector inputs, each speci-
fiying a filename to use when reading pair information. Pair data will be written to a database.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

readPairs

readPairs Read Nimblegen .pair files

Description

Function to extract data from corresponding files in the Nimblegen .pair format.

Usage

readPairs(x, y, z, ...)

readPairs 31

Arguments

x the name of the file containing data from signal channel 1. Each line of the file is
interpreted as a single data point. If it does not contain an absolute path, the file
name is relative to the current working directory, getwd(). Tilde-expansion
is performed where supported. Alternatively, x can be a readable connection
(which will be opened for reading if necessary, and if so closed at the end of the
function call). x can also be a complete URL.

y the name of the file containing data from signal channel 1. Each line of the file is
interpreted as a single data point. If it does not contain an absolute path, the file
name is relative to the current working directory, getwd(). Tilde-expansion
is performed where supported. Alternatively, y can be a readable connection
(which will be opened for reading if necessary, and if so closed at the end of the
function call). y can also be a complete URL.

z object in which to store pair information from files. Can be an ExpressionSet,
in which case pair data will be stored in featureData.

... Arguments to be passed to methods (see readPairs-methods):
‘name’ character input specifying a sample name to assign to the data from

specified pair files. If ‘NULL’ (default), a value will be extracted from the
filename specified in x.

‘element.x’ which element of AssayData (default is ‘"exprs"’) in which
to store signal channel 1 data.

‘element.y’ which element of AssayData (default is ‘"exprs2"’) in
which to store signal channel 2 data.

‘match.probes’ logical specifying whether to match data from pair files by
‘"PROBE_ID"’ with any pre-existing data. if ‘TRUE’ (default), order of
values will be rearranged so long as there are already ‘"PROBE_ID"’s
specified in featureData.

‘path’ a character vector containing a single full path name to which filenames
will be appended. If ‘NULL’, filenames (x and y) are treated as is.

‘comment.char’ character: a character vector of length one containing a sin-
gle character or an empty string (default is ‘"#"’). Use ‘""’ to turn off the
interpretation of comments altogether.

‘sep’ the field separator character (default is ‘"�"’). Values on each line of the
file are separated by this character. If ‘sep = ""’ the separator is "white
space", that is one or more spaces, tabs, newlines or carriage returns.

‘quote’ the set of quoting characters (default is ‘""̈’). To disable quoting
altogether, use quote = "". See scan for the behaviour on quotes em-
bedded in quotes. Quoting is only considered for columns read as character,
which is all of them unless ‘colClasses’ is specified.

‘eSet’ ExpressionSet input (default is new("ExpressionSet")) in
which to store pair information in assayData

‘verbose’ logical; if ‘TRUE’ (default) progress will be output to screen. If
‘FALSE’, no output will be displayed.

‘...’ other arguments to be passed to read.table. See read.table.

Value

Returns an ExpressionSet filled with assayData containing matrices of data from both sig-
nal channels.

and featureData containing the following featureColumns:

32 readSampleKey

\option{SEQ_ID}
a vector of characters with container IDs, linking each probe to a parent identifier

\option{PROBE_ID}
a vector of characters containing unique ID information for each probe

\option{CHIPS}
a vector of characters with .pair file locations for signal channel 1 data

\option{CHIPS2}
a vector of characters with .pair file locations for signal channel 2 data

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

readPairs-methods, read.table

Examples

#demo(pipeline,package="HELP")

x <- 1:500
y <- rev(x)
data <- sample(8000:10000/1000,size=500)
seqids <- sample(1:50,size=500,replace=TRUE)
cat("#COMMENT\nSEQ_ID\tPROBE_ID\tX\tY\tPM\n",file="./read.pair.test.1")
table.1 <- cbind(seqids,y,x,x,data)
write.table(table.1,file="./read.pair.test.1",append=TRUE,col.names=FALSE,row.names=FALSE,quote=FALSE,sep="\t")
cat("#COMMENT\nSEQ_ID\tPROBE_ID\tX\tY\tPM\n",file="./read.pair.test.2")
table.2 <- cbind(seqids,y,x,x,rev(data))
write.table(table.2,file="./read.pair.test.2",append=TRUE,col.names=FALSE,row.names=FALSE,quote=FALSE,sep="\t")
x <- readPairs("./read.pair.test.1","./read.pair.test.2")
c(seqids[1],y[1],data[1],rev(data)[1])
pData(featureData(x))$"SEQ_ID"[1]
pData(featureData(x))$"PROBE_ID"[1]
assayDataElement(x, "exprs")[1]
assayDataElement(x, "exprs2")[1]

#rm(table.1,table.2,x,y,data,seqids)
#file.remove("./read.pair.test.1")
#file.remove("./read.pair.test.2")

readSampleKey Read sample key

Description

Function to extract sample key data from a file and link chip ID information with aliases if they
exist.

Usage

readSampleKey(file = NULL, chips = NULL, comment.char = "#", sep = "\t")

readSampleKey 33

Arguments

file the name of the file containing sample key information. Each line of the file
is interpreted as a single chip-to-sample map. If it does not contain an absolute
path, the file name is relative to the current working directory, getwd(). Tilde-
expansion is performed where supported. Alternatively, file can be a readable
connection (which will be opened for reading if necessary, and if so closed at
the end of the function call). ‘file’ can also be a complete URL.

chips a character vector specifying a specific chip ID lookup in the sample key, for
which the function will return the appropriate sample aliases

comment.char character: a character vector of length one containing a single character or an
empty string. Use ‘""’ to turn off the interpretation of comments altogether.

sep the field separator character. Values on each line of the file are separated by this
character. If ‘sep = ""’ the separator is "white space", that is one or more
spaces, tabs, newlines or carriage returns.

Value

Returns a character vector of sample alias information corresponding to the chips present in the
sample key or a subset thereof, specified by the chips input.

Author(s)

Reid F. Thompson (〈rthompso@aecom.yu.edu〉)

See Also

read.table

Examples

#demo(pipeline,package="HELP")

cat("#COMMENT\nCHIP_ID\tSAMPLE\n",file="./sample.key.txt")
write.table(cbind(1:10,1001:1010),file="./sample.key.txt",append=TRUE,col.names=FALSE,row.names=FALSE,quote=FALSE,sep="\t")
readSampleKey(file="./sample.key.txt")
readSampleKey(file="./sample.key.txt",chips=c(7:10,"NA1","NA2"))

#file.remove("./sample.key.txt")

Index

∗Topic IO
readDesign, 27
readPairs, 29
readSampleKey, 31

∗Topic arith
calcGC, 2
calcTm, 5
combineData, 7

∗Topic array
calcPrototype, 3
quantileNormalize, 25

∗Topic attribute
getFeatures, 14
getSamples, 15

∗Topic datasets
base.stacking.thermodynamics,

1
∗Topic file

readDesign, 27
readPairs, 29
readSampleKey, 31

∗Topic hplot
plotBins, 17
plotChip, 19
plotFeature, 21
plotPairs, 23

∗Topic manip
exprs2, 11
fuzzyMatches, 12

∗Topic methods
calcGC-methods, 2
calcPrototype-methods, 3
calcTm-methods, 4
combineData-methods, 6
createWiggle-methods, 8
exprs2-methods, 10
fuzzyMatches-methods, 11
getFeatures-methods, 13
getSamples-methods, 15
plotBins-methods, 16
plotChip-methods, 18
plotFeature-methods, 20
plotPairs-methods, 22

quantileNormalize-methods, 24
readDesign-methods, 26
readPairs-methods, 29

∗Topic print
createWiggle, 9

∗Topic utilities
calcGC, 2
calcTm, 5

base.stacking.thermodynamics, 1, 6

calcGC, 2, 2, 6
calcGC,character-method

(calcGC-methods), 2
calcGC,ExpressionSet-method

(calcGC-methods), 2
calcGC,missing-method

(calcGC-methods), 2
calcGC,NULL-method

(calcGC-methods), 2
calcGC-methods, 3
calcGC-methods, 2
calcPrototype, 3, 3
calcPrototype,ExpressionSet-method

(calcPrototype-methods), 3
calcPrototype,matrix-method

(calcPrototype-methods), 3
calcPrototype,missing-method

(calcPrototype-methods), 3
calcPrototype,vector-method

(calcPrototype-methods), 3
calcPrototype-methods, 4
calcPrototype-methods, 3
calcTm, 3, 5, 5
calcTm,character-method

(calcTm-methods), 4
calcTm,ExpressionSet-method

(calcTm-methods), 4
calcTm,missing-method

(calcTm-methods), 4
calcTm,NULL-method

(calcTm-methods), 4
calcTm-methods, 6
calcTm-methods, 4

34

INDEX 35

cat, 9, 10
combineData, 6, 7
combineData,ExpressionSet,missing,missing-method

(combineData-methods), 6
combineData,ExpressionSet,vector,missing-method

(combineData-methods), 6
combineData,matrix,vector,matrix-method

(combineData-methods), 6
combineData,matrix,vector,missing-method

(combineData-methods), 6
combineData,missing,missing,missing-method

(combineData-methods), 6
combineData,vector,missing,missing-method

(combineData-methods), 6
combineData,vector,missing,vector-method

(combineData-methods), 6
combineData,vector,vector,missing-method

(combineData-methods), 6
combineData,vector,vector,vector-method

(combineData-methods), 6
combineData-methods, 7, 8
combineData-methods, 6
createWiggle, 8, 9
createWiggle,ExpressionSet,matrix-method

(createWiggle-methods), 8
createWiggle,ExpressionSet,missing-method

(createWiggle-methods), 8
createWiggle,matrix,matrix-method

(createWiggle-methods), 8
createWiggle,missing,missing-method

(createWiggle-methods), 8
createWiggle,vector,matrix-method

(createWiggle-methods), 8
createWiggle-methods, 9
createWiggle-methods, 8
cutree, 23

dendrogram, 23
density, 18
dist, 23

exprs2, 10, 11
exprs2,ExpressionSet-method

(exprs2-methods), 10
exprs2,missing-method

(exprs2-methods), 10
exprs2-methods, 10
exprs2<- (exprs2), 11
exprs2<-,ExpressionSet,matrix-method

(exprs2-methods), 10
exprs2<-,ExpressionSet,missing-method

(exprs2-methods), 10

fuzzyMatches, 12, 12
fuzzyMatches,missing,missing-method

(fuzzyMatches-methods), 11
fuzzyMatches,NULL,vector-method

(fuzzyMatches-methods), 11
fuzzyMatches,vector,missing-method

(fuzzyMatches-methods), 11
fuzzyMatches,vector,NULL-method

(fuzzyMatches-methods), 11
fuzzyMatches,vector,vector-method

(fuzzyMatches-methods), 11
fuzzyMatches-methods, 13
fuzzyMatches-methods, 11

getFeatures, 7, 14, 14, 17, 25
getFeatures,AnnotatedDataFrame,missing-method

(getFeatures-methods), 13
getFeatures,AnnotatedDataFrame,NULL-method

(getFeatures-methods), 13
getFeatures,AnnotatedDataFrame,vector-method

(getFeatures-methods), 13
getFeatures,ExpressionSet,missing-method

(getFeatures-methods), 13
getFeatures,ExpressionSet,NULL-method

(getFeatures-methods), 13
getFeatures,ExpressionSet,vector-method

(getFeatures-methods), 13
getFeatures,matrix,vector-method

(getFeatures-methods), 13
getFeatures,missing,missing-method

(getFeatures-methods), 13
getFeatures,vector,missing-method

(getFeatures-methods), 13
getFeatures,vector,NULL-method

(getFeatures-methods), 13
getFeatures,vector,vector-method

(getFeatures-methods), 13
getFeatures-methods, 14
getFeatures-methods, 13
getSamples, 15, 15, 17, 25
getSamples,ExpressionSet,missing-method

(getSamples-methods), 15
getSamples,ExpressionSet,NULL-method

(getSamples-methods), 15
getSamples,ExpressionSet,vector-method

(getSamples-methods), 15
getSamples,matrix,missing-method

(getSamples-methods), 15
getSamples,matrix,NULL-method

(getSamples-methods), 15
getSamples,matrix,vector-method

(getSamples-methods), 15

36 INDEX

getSamples,missing,missing-method
(getSamples-methods), 15

getSamples,vector,missing-method
(getSamples-methods), 15

getSamples,vector,NULL-method
(getSamples-methods), 15

getSamples,vector,vector-method
(getSamples-methods), 15

getSamples-methods, 12, 16
getSamples-methods, 15
getwd, 27, 30, 32

hclust, 23

match, 13
mean, 4, 8

pairs, 23
plot, 18, 20, 22
plotBins, 17, 17
plotBins,ExpressionSet,ExpressionSet-method

(plotBins-methods), 16
plotBins,ExpressionSet,missing-method

(plotBins-methods), 16
plotBins,ExpressionSet,vector-method

(plotBins-methods), 16
plotBins,matrix,missing-method

(plotBins-methods), 16
plotBins,missing,missing-method

(plotBins-methods), 16
plotBins,vector,ExpressionSet-method

(plotBins-methods), 16
plotBins,vector,missing-method

(plotBins-methods), 16
plotBins,vector,vector-method

(plotBins-methods), 16
plotBins-methods, 17, 18
plotBins-methods, 16
plotChip, 19, 19
plotChip,ExpressionSet,ExpressionSet,missing-method

(plotChip-methods), 18
plotChip,ExpressionSet,missing,missing-method

(plotChip-methods), 18
plotChip,ExpressionSet,vector,missing-method

(plotChip-methods), 18
plotChip,matrix,missing,missing-method

(plotChip-methods), 18
plotChip,missing,missing,missing-method

(plotChip-methods), 18
plotChip,vector,vector,ExpressionSet-method

(plotChip-methods), 18
plotChip,vector,vector,vector-method

(plotChip-methods), 18

plotChip-methods, 19, 20
plotChip-methods, 18
plotFeature, 21
plotFeature,ExpressionSet,missing-method

(plotFeature-methods), 20
plotFeature,ExpressionSet,vector-method

(plotFeature-methods), 20
plotFeature,matrix,vector-method

(plotFeature-methods), 20
plotFeature,missing,missing-method

(plotFeature-methods), 20
plotFeature-methods, 21, 22
plotFeature-methods, 20
plotPairs, 23, 23
plotPairs,ExpressionSet-method

(plotPairs-methods), 22
plotPairs,matrix-method

(plotPairs-methods), 22
plotPairs,missing-method

(plotPairs-methods), 22
plotPairs-methods, 23
plotPairs-methods, 22

quantile, 18, 25
quantileNormalize, 24, 25
quantileNormalize,ExpressionSet,ExpressionSet-method

(quantileNormalize-methods),
24

quantileNormalize,ExpressionSet,missing-method
(quantileNormalize-methods),
24

quantileNormalize,ExpressionSet,vector-method
(quantileNormalize-methods),
24

quantileNormalize,matrix,missing-method
(quantileNormalize-methods),
24

quantileNormalize,missing,missing-method
(quantileNormalize-methods),
24

quantileNormalize,vector,ExpressionSet-method
(quantileNormalize-methods),
24

quantileNormalize,vector,missing-method
(quantileNormalize-methods),
24

quantileNormalize,vector,vector-method
(quantileNormalize-methods),
24

quantileNormalize-methods, 25
quantileNormalize-methods, 24

read.table, 27, 28, 30–32

INDEX 37

readDesign, 26, 27
readDesign,character,character,character-method

(readDesign-methods), 26
readDesign,character,character,ExpressionSet-method

(readDesign-methods), 26
readDesign,missing,missing,missing-method

(readDesign-methods), 26
readDesign,vector,missing,missing-method

(readDesign-methods), 26
readDesign,vector,vector,missing-method

(readDesign-methods), 26
readDesign-methods, 27, 28
readDesign-methods, 26
readPairs, 29, 29
readPairs,character,character,character-method

(readPairs-methods), 29
readPairs,character,character,ExpressionSet-method

(readPairs-methods), 29
readPairs,missing,missing,missing-method

(readPairs-methods), 29
readPairs,vector,missing,missing-method

(readPairs-methods), 29
readPairs,vector,vector,missing-method

(readPairs-methods), 29
readPairs-methods, 30, 31
readPairs-methods, 29
readSampleKey, 31

scan, 27, 30

title, 18, 19, 22

weighted.mean, 8
write, 10

	base.stacking.thermodynamics
	calcGC-methods
	calcGC
	calcPrototype-methods
	calcPrototype
	calcTm-methods
	calcTm
	combineData-methods
	combineData
	createWiggle-methods
	createWiggle
	exprs2-methods
	exprs2
	fuzzyMatches-methods
	fuzzyMatches
	getFeatures-methods
	getFeatures
	getSamples-methods
	getSamples
	plotBins-methods
	plotBins
	plotChip-methods
	plotChip
	plotFeature-methods
	plotFeature
	plotPairs-methods
	plotPairs
	quantileNormalize-methods
	quantileNormalize
	readDesign-methods
	readDesign
	readPairs-methods
	readPairs
	readSampleKey
	Index

