
Bioconductor’s tspair package

Jeffrey Leek
Department of Oncology
Johns Hopkins University
email: jtleek@jhu.edu

April 21, 2009

Contents

1 Overview 1

2 Simulated Example 2

3 The tspcalc function 2

4 The tspplot function 3

5 The tspsig function 3

6 Prediction with the tspair package 3

7 Cross-validating the TSP approach 4

1 Overview

The tspair package contains functions for calculating the top scoring pair for classification of
high-dimensional data sets [1].
A top scoring pair is a pair of genes whose relative ranks can be used to classify arrays according
to a binary phenotype. A top scoring pair classifier has three advantages over standard classifiers:
(1) the classifier is based on the relative ranks of genes and is more robust to normalization and
preprocessing, (2) the classifier is based on a pair of genes and is likely to be more interpretable
than a more complicated classifier, and (3) a classifier based on a small number of genes lends itself
to diagnostic tests based on PCR that are both more rapid and cheaper than classifiers based on a
large number of genes.
This document provides a tutorial for using the tsp package. The package consists of the functions:
tspcalc for identifying a top scoring pair based on a data matrix or expression set and a group
variable, tspplot for plotting TSP objects, tspsig for calculating significance of TSPs, and
tsp.predict for predicting the outcomes of new arrays based on a previously calculated TSP.
As with any R package, detailed information on functions, their arguments and values, can be
obtained from the help files. For instance, to view the help file for the function tspcalc within R,
type ? tspcalc. Here we will demonstrate the use of the functions in the tspair package to ana-
lyze a simulated expression experiment. We will also show how to calculate p-values for significance.

1

2 Simulated Example

We demonstrate the functionality of this package using simulated gene expression data. The data
used in this analysis is included with the tspair package as the dataset tspdata. This data set
consists of simulated data (the variable dat) for 1000 genes (in rows) and 50 arrays (in columns).
The first 25 arrays correspond to the first group and the second 25 correspond to the second. A
second variable gives the group indicator (grp) and a third variable is an expression set combining
these two elements (eSet1).
To load the data set type data(tspdata), and to view a description of this data type ? tspdata.

> library(tspair)

> data(tspdata)

> dim(dat)

[1] 1000 50

3 The tspcalc function

The tspcalc function computes all pairs in the gene expression matrix achieving the top score
described in Geman and colleagues (2004) [1], described briefly below. In the expression matrix,
genes should be in rows and arrays in columns. Generally, the number of genes is much larger than
the number of arrays. First we calculate the top scoring pair using the simulated gene expression
matrix and the group indicator:

> tsp1 <- tspcalc(dat, grp)

> tsp1

tsp object with: 1 TSPs
Pair: TSP Score Tie-Breaker Indices
TSP 1 : 0.64 NA 5 338

The function tspcalc returns a tsp object. A tsp object consists of the following elements: index -
an index giving the rows of the gene expression matrix that define a top scoring pair. If index has
more than one row, each row corresponds to a different pair achieving the top score, score - the
top scoring pair score, defined as: |Pr(Xi > Yi|Class 1)−Pr(Xi > Yi|Class 2)| where Xi is the gene
expression measurement for the first gene on array i and Yi is the gene expression measurement for
the second gene of the pair on array i, grp - the group indicator variable converted to a binary (0-1)
variable, gene1 - the data for all top scoring pairs concatenated in rows, and labels the group labels
from the user-defined grp variable. If more than one top scoring pair achieves the same maximum
score, then the unique TSP is determined by the tie-breaking score described in [2]. Briefly, each
expression value is ranked within its array, then a rank difference score is calculated for each pair
of genes.
It is also possible to calculate the top scoring pair from an expression set object, using either a
group indicator variable as with the data matrix, or by indicating a column in the pData of the
expression set.

> tsp2 <- tspcalc(eSet1, grp)

> tsp3 <- tspcalc(eSet1, 1)

2

4 The tspplot function

The tspplot accepts a tsp object and returns a TSP plot. The figure plots the expression for the
first gene in the TSP pair versus the expression for the second gene in the TSP pair across arrays.
The user defined groups are plotted in the colors red and blue. The score for the pair is shown
across the top of each plot. If there is more than one TSP, hitting return will cycle from one TSP
to the next.

> tspplot(tsp1)

Number of TSPs: 1
TSP 1

5 The tspsig function

The score from tspcalc can be interpreted as the average of sensitivity and specificity of the
classifier in the data used to construct the TSP. But to get a legitimate measure of significance,
some measure of uncertainty must be calculated using a permutation test, cross-validation, or
application of the TSP to a new training set. Here we demonstrate how to use the functions in the
tspair to calculate significance of a TSP.
The function tspsig tests the null hypothesis that no TSP exists in the data set by permutation.
To calculate the p-value, the group labels are permuted B times and a null TSP score is calculated
for each, the p-value is the total number of null TSP scores that exceed the observed TSP score
plus one divided by B + 1. The function tspsig calculates the significance with a progress bar to
indicate the time left in the calculation.

> out <- tspsig(dat, grp, B = 50, seed = 12355)

|2% |20% |40% |60% |80% |100%
Progress: ||

> out$p

[1] 0.3529412

> out$nullscores

[1] 0.64 0.60 0.68 0.64 0.60 0.64 0.64 0.60 0.64 0.68 0.60 0.64 0.68 0.68 0.60
[16] 0.64 0.68 0.64 0.68 0.64 0.64 0.72 0.64 0.60 0.64 0.60 0.64 0.60 0.60 0.68
[31] 0.68 0.64 0.64 0.64 0.64 0.68 0.64 0.72 0.68 0.72 0.64 0.64 0.64 0.68 0.64
[46] 0.72 0.64 0.68 0.64 0.72

6 Prediction with the tspair package

A major of the advantage of the TSP approach is that predictions are very simple and can be easily
calculated either by hand or using the built in functionality of the TSP package. The function
summary can be used to tabulate the results from the TSP. Type ?summary.tsp for details.

> summary(tsp1, printall = TRUE)

3

There are 1 TSPs

Data for TSP: 1
Group Labels

1(Gene Gene5 < Gene Gene338) diseased healthy
FALSE 22 6
TRUE 3 19

In this example, the expression value for “Gene5” is greater than the expression value for “Gene338”
much more often for the diseased patients. So if new data were obtained, when the expression for
“Gene5” is greater than the expression for “Gene338” we predict that the patient will be diseased.
The predict can be used to predict group outcomes for new expression sets or data matrices. Type
?predict for details. The user can input a TSP object and a new data matrix or expression set.
The predict searches for the TSP gene names from the original tspcalc function call, and based
on the row names or featureNames of the new data set identifies the genes to use for prediction.
The predict function returns a prediction for each new array. If the tsp object includes more than
one TSP, the default is to predict from the TSP achieving the highest tie-breaking score from Tan
and colleagues [2], but the user may elect to predict from any TSP. Here the variables dat2 and
eSet2 represent independent data sets that can be used to predict outcomes based on the TSP
classifier defined above.

> predict(tsp1, eSet2)

[1] "diseased" "healthy" "healthy" "diseased" "healthy" "diseased"
[7] "healthy" "diseased" "diseased" "diseased" "healthy" "diseased"
[13] "diseased" "healthy" "healthy" "diseased" "diseased" "diseased"
[19] "healthy" "healthy"

> predict(tsp1, dat2)

[1] "diseased" "healthy" "healthy" "diseased" "healthy" "diseased"
[7] "healthy" "diseased" "diseased" "diseased" "healthy" "diseased"
[13] "diseased" "healthy" "healthy" "diseased" "diseased" "diseased"
[19] "healthy" "healthy"

7 Cross-validating the TSP approach

The cross-validation procedure described by Geman and colleagues [1] re-calculates the TSP classi-
fier within each cross-validation loop. This scheme can be intuitively though of as cross-validating
the TSP procedure, instead of the specific TSP classifier. To calculate the leave one out cross-
validation error, each sample is left out, the TSP classifier is calculated, and the group of the left
out sample is predicted. The estimated cross-validation error is the faction of incorrect predictions.

> narrays <- ncol(dat)

> correct.prediction <- rep(TRUE, narrays)

> for (i in 1:narrays) {

+ testdat <- dat[, -i]

+ testgrp <- grp[-i]

+ tsptest <- tspcalc(testdat, testgrp)

4

+ prediction <- predict(tsptest, dat)[i]

+ correct.prediction[i] <- prediction == grp[i]

+ }

> cv.error <- mean(correct.prediction == FALSE)

> cv.error

[1] 0.44

References

[1] D. Geman, C. A’vignon, D. Naiman, and R. Winslow. Classifying gene expression profiles from
pairwise mrna comparisons. Statist. Appl. in Genetics and Molecular Biology, 2004.

[2] A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, and D. Geman. Simple decision rules for
classifying human cancers from gene expression profiles. Bioinformatics, 21:3896–3904, 2005.

5

−2 −1 0 1 2 3

−
2

−
1

0
1

2

Groups: healthy = Red | disease = Blue; Score: 0.64

Gene: Gene5 Expression

G
en

e:
 G

en
e3

38
 E

xp
re

ss
io

n

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

Figure 1: A top scoring pair plot from the simulated example.

6

