
Uh-oh; it’s I/O ordering!

ELCE, Edinburgh

Will Deacon <will.deacon@arm.com>

October, 2018

© 2018 Arm Limited

$ whoami

Co-maintainer of arm64 architecture, ARM perf
backends, SMMU drivers, atomics, locking, memory
model, TLB invalidaƟon…

Developer in the Open-Source SoŌware group at Arm

Close working relaƟonship with Architecture and
Technology Group

Co-author of Armv8 architectural memory model

Involved in C/C++ memory model working group

Spoke at ELCE ‘13 about memory ordering

This Ɵme, I’m going to talk about I/O ordering.

2 © 2018 Arm Limited

My idea of paradise

A tropical desert island?

3 © 2018 Arm Limited

My idea of paradise

A uniprocessor tropical desert
island!

4 © 2018 Arm Limited

The grim reality

In reality, we cram thousands of CPUs
together in air-condiƟoned warehouses
deprived of natural light and aƩach
them all to a network.

So much for our island dreams.

5 © 2018 Arm Limited

Challenges of concurrency

Even with a single, coherent, shared memory (like you might expect for CPUs!); concurrency is hard:

Reasoning about programs is no longer ‘stepwise’

Reordering of memory accesses

Heisenbugs which disappear when instrumented

Performance is balanced against correctness

Limited tools to validate code

In other words, the CPU doesn’t actually do what you ask it to do.

Can it really get worse than this?

Of course it can ;)

6 © 2018 Arm Limited

Challenges of concurrency

Even with a single, coherent, shared memory (like you might expect for CPUs!); concurrency is hard:

Reasoning about programs is no longer ‘stepwise’

Reordering of memory accesses

Heisenbugs which disappear when instrumented

Performance is balanced against correctness

Limited tools to validate code

In other words, the CPU doesn’t actually do what you ask it to do.

Can it really get worse than this? Of course it can ;)

6 © 2018 Arm Limited

The theory: memory consistency
models (in 5 minutes)

7 © 2018 Arm Limited

Example: store buffering

IniƟally, *x and *y are 0 in memory; foo and bar are local (register) variables:

CPU0

a: WRITE_ONCE(*x, 1);
b: foo = READ_ONCE(*y);

CPU1

c: WRITE_ONCE(*y, 1);
d: bar = READ_ONCE(*x);

What are the permissible values for foo and bar?

All producƟon architectures permit foo == bar == 0. How?

8 © 2018 Arm Limited

Example: store buffering

IniƟally, *x and *y are 0 in memory; foo and bar are local (register) variables:

CPU0

a: WRITE_ONCE(*x, 1);
b: foo = READ_ONCE(*y);

CPU1

c: WRITE_ONCE(*y, 1);
d: bar = READ_ONCE(*x);

What are the permissible values for foo and bar?

All producƟon architectures permit foo == bar == 0.

How?

8 © 2018 Arm Limited

Example: store buffering

IniƟally, *x and *y are 0 in memory; foo and bar are local (register) variables:

CPU0

a: WRITE_ONCE(*x, 1);
b: foo = READ_ONCE(*y);

CPU1

c: WRITE_ONCE(*y, 1);
d: bar = READ_ONCE(*x);

What are the permissible values for foo and bar?

All producƟon architectures permit foo == bar == 0. How?

8 © 2018 Arm Limited

Lies, damned lies and sequenƟal consistency

CPU0

a: WRITE_ONCE(*x, 1);
b: foo = READ_ONCE(*y);

CPU1

c: WRITE_ONCE(*y, 1);
d: bar = READ_ONCE(*x);

Interleavings

{a,b,c,d}
{c,d,a,b}
{a,c,b,d}
...

‘AmulƟprocessor is sequenƟally consistent if the result of any execuƟon is the same as if the
operaƟons of all the processorswere executed in some sequenƟal order, and the operaƟons
of each individual processor appear in this sequence in the order specified by its program.’
– Leslie Lamport (1979)

SequenƟal consistency (SC) is ‘easy’ to reason about, as there is a single global ordering consistent
with program order for each thread.

It also tells us that foo == bar == 0 is forbidden in the previous example.

9 © 2018 Arm Limited

Lies, damned lies and sequenƟal consistency

CPU0

a: WRITE_ONCE(*x, 1);
b: foo = READ_ONCE(*y);

CPU1

c: WRITE_ONCE(*y, 1);
d: bar = READ_ONCE(*x);

Interleavings

{a,b,c,d}
{c,d,a,b}
{a,c,b,d}
...

‘AmulƟprocessor is sequenƟally consistent if the result of any execuƟon is the same as if the
operaƟons of all the processorswere executed in some sequenƟal order, and the operaƟons
of each individual processor appear in this sequence in the order specified by its program.’
– Leslie Lamport (1979)

SequenƟal consistency (SC) is ‘easy’ to reason about, as there is a single global ordering consistent
with program order for each thread.
It also tells us that foo == bar == 0 is forbidden in the previous example.
9 © 2018 Arm Limited

Litmus tests

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | LDR W2,[X3] ;
MOV W2,#1 | ;
STLR W2,[X3] | ;

exists
(1:X0=1 /\ 1:X2=0)

Thread 0

a: Wx=1

b: WyRel=1

po

c: Ry=1
rf

Thread 1

d: Rx=0

po
fr

Remember: cycles are bad!

A memory model tells you which ones to worry
about.

10 © 2018 Arm Limited

Litmus tests

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | LDR W2,[X3] ;
MOV W2,#1 | ;
STLR W2,[X3] | ;

exists
(1:X0=1 /\ 1:X2=0)

Thread 0

a: Wx=1

b: WyRel=1

po

c: Ry=1
rf

Thread 1

d: Rx=0

po
fr

Remember: cycles are bad!

A memory model tells you which ones to worry
about.

10 © 2018 Arm Limited

Litmus tests

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | LDR W2,[X3] ;
MOV W2,#1 | ;
STLR W2,[X3] | ;

exists
(1:X0=1 /\ 1:X2=0)

Thread 0

a: Wx=1

b: WyRel=1

po

c: Ry=1
rf

Thread 1

d: Rx=0

po
fr

Remember: cycles are bad!

A memory model tells you which ones to worry
about.

10 © 2018 Arm Limited

Beyond shared memory communicaƟon

11 © 2018 Arm Limited

Out-of-band communicaƟon and side-effects

Not all communicaƟon between observers is via explicit accesses to shared memory:

IPI using interrupt controller

DMA using a peripheral

Page-table modificaƟons

Clocks and regulators

Passing of Ɵme

Thread 0

a: Wx=1

b: WirqcRel=1

po

Thread 1

<interrupt>

c: Rx=0

pofr

These interacƟons are generally considered out-of-scope by memory models and rely on
implementaƟon-specific details!

12 © 2018 Arm Limited

Generalise to mulƟple endpoints
Redefine inter-processor communicaƟon by considering accesses to endpoints:

An access is an event targeƫng a specific endpoint which can cause it to change state
An endpoint is a piece of hardware with mutable state that can respond to accesses, or generate

accesses targeƫng other endpoints

For us, endpoints are either memory or an MMIO interface (i.e. __iomem *)
Accesses are load/store operaƟons, using appropriate accessor funcƟons

13 © 2018 Arm Limited

Ordering vs compleƟon
Ordering requires that two accesses to the same endpoint will be remain in-order on their way to
that endpoint.

CompleƟon requires that a prior access reaches a certain point before iniƟaƟng a later access:
Reads complete when they have their data, so they appear to complete at the endpoint
Writes can be buffered/merged and therefore may complete early at the point of

serialisaƟon (e.g. posted write)

14 © 2018 Arm Limited

Ordering vs compleƟon
Ordering requires that two accesses to the same endpoint will be remain in-order on their way to
that endpoint.

CompleƟon requires that a prior access reaches a certain point before iniƟaƟng a later access:
Reads complete when they have their data, so they appear to complete at the endpoint
Writes can be buffered/merged and therefore may complete early at the point of

serialisaƟon (e.g. posted write)

14 © 2018 Arm Limited

The pracƟce: I/O ordering in Linux

15 © 2018 Arm Limited

Caveat: assumpƟons
I/O ordering is like a melƟng pot of other memory models:

The CPU architecture provides soŌware mechanisms for ordering

A bus/interconnect has its own ordering rules (e.g. AXI, PCI)

These worlds are bridged together unƟl they hit an endpoint

Endpoints can have their own constraints too

Linux assumes some basic sanity such as a point of coherence and the ability to enforce ordering in
the ISA (i.e. not IMP DEF magic). Correct bridging is crucial!

DMA buffers are allocated via dma_alloc_coherent or mapped using the streaming API.
Devices are either coherent or they aren’t.

MMIO regions are mapped using ioremap(), which requires aligned access and guarantees
atomicity, access size and lack of speculaƟon. ioremap_wc() is weaker (more like
memory) and ioremap_nocache() is stronger (no buffering).

16 © 2018 Arm Limited

Default I/O accessors

Dereferencing an __iomem *must use a suitable I/O accessor:

inX/outX Legacy x86 port I/O access instrucƟons

readX/writeX MMIO accessors

ioreadX/iowriteX Expand to appropriate underlying accessors

LiƩle-endian by default

Ordered against other accesses to the same endpoint: reads can ‘push’ writes

Write accessor iniƟates aŌer compleƟng prior memory writes

Read accessor completes before iniƟaƟng later memory reads and delay() loops

If you’re crazy, can inter-operate with spinlock_t using mmiowb().
Very expensive on non-x86 architectures!
17 © 2018 Arm Limited

Relaxed accessors

Not all (most?) MMIO accesses are related to DMA:

readX_relaxed MMIO read access

writeX_relaxed MMIO write access

readsX/writesX, ioreadX_rep/iowriteX_rep, insX/outsX String accessors

Do not provide compleƟon guarantees wrt accesses to memory!
Like the default accessors, _relaxed accesses remain ordered to the same endpoint.
PracƟcally, they will also work with spinlock_t.
18 © 2018 Arm Limited

Mandatory barriers

Fine-grained control over compleƟon guarantees using expensive barrier macros:

Barrier Completes prior Before iniƟaƟng later

mb() Reads/writes Reads/writes
rmb() Reads Reads
wmb() Writes Writes

Can even be used in conjuncƟon with _relaxed I/O accessors:

writel() => wmb(); writel_relaxed()
writel_relaxed(); mb(); READ_ONCE()

Generally don’t need these if you’re using the default accessors for regular DMA

19 © 2018 Arm Limited

DMA barriers

Provide ordering guarantees for CPU accesses to DMA buffers (i.e. dma_alloc_coherent()
allocaƟons):
dma_rmb() Order reads from a DMA buffer
dma_wmb() Order writes to a DMA buffer

Useful for coherent descriptor rings, where the descriptor payload must be read or wriƩen in a
specific order relaƟve to its header.
RelaƟvely cheap, even if the underlying device isn’t cache coherent.
No effect on __iomem accesses

20 © 2018 Arm Limited

Examples

21 © 2018 Arm Limited

Trigger DMA read

drivers/iommu/arm-smmu-v3.c: Submiƫng a command to the SMMU

// queue_write()
for (i = 0; i < n_dwords; ++i)

*dst++ = cpu_to_le64(*src++);

// queue_inc_prod()
u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
writel(q->prod, q->prod_reg);

22 © 2018 Arm Limited

Process DMA write
drivers/net/ethernet/marvell/mvneta.c: Reading RX data

// mvneta_rxq_busy_desc_num_get()
u32 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); // readl
return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;

// mvneta_rx_swbm
int rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {

struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
index = rx_desc - rxq->descs;
page = (struct page *)rxq->buf_virt_addr[index];
data = page_address(page);
memcpy(rxq->skb->data, data + MVNETA_MH_SIZE, copy_size);

23 © 2018 Arm Limited

Batch device configuraƟon

drivers/gpu/drm/mediatek/mtk_disp_rdma.c: Configure DMA parameters

// mtk_rdma_layer_config()
writel_relaxed(con, comp->regs + DISP_RDMA_MEM_CON);
writel_relaxed(addr, comp->regs + DISP_RDMA_MEM_START_ADDR);
writel_relaxed(pitch, comp->regs + DISP_RDMA_MEM_SRC_PITCH);
writel(RDMA_MEM_GMC, comp->regs + DISP_RDMA_MEM_GMC_SETTING_0);

People tend to get this wrong and add wmb()s!

24 © 2018 Arm Limited

Delay-based device configuraƟon

drivers/soc/qcom/cpu_ops.c: Bringing up L2 and SCU…
Take a deep breath…

/* De-assert L2/SCU Logic reset */
writel_relaxed(0x100203, l2_base + L2_PWR_CTL);
mb();
udelay(54);

/* Turn on the PMIC_APC */
writel_relaxed(0x10100203, l2_base + L2_PWR_CTL);

How would you fix this code? (don’t worry, it’s not in mainline)

25 © 2018 Arm Limited

Delay-based device configuraƟon

drivers/soc/qcom/cpu_ops.c: Bringing up L2 and SCU…
Take a deep breath…

/* De-assert L2/SCU Logic reset */
writel_relaxed(0x100203, l2_base + L2_PWR_CTL);
mb();
udelay(54);

/* Turn on the PMIC_APC */
writel_relaxed(0x10100203, l2_base + L2_PWR_CTL);

How would you fix this code? (don’t worry, it’s not in mainline)

25 © 2018 Arm Limited

DMA descriptor rings

drivers/infiniband/hw/bnxt_re/qplib_fp.c: Polling in-memory noƟficaƟon queue

// bnxt_qplib_service_nq() [tasklet]
while (budget--) {

nqe = &nq_ptr[NQE_PG(sw_cons)][NQE_IDX(sw_cons)];
if (!NQE_CMP_VALID(nqe, raw_cons, hwq->max_elements))

break;

/* The valid test of the entry must be done first before
* reading any further. */

dma_rmb();

type = le16_to_cpu(nqe->info10_type) & NQ_BASE_TYPE_MASK;

26 © 2018 Arm Limited

PIO
drivers/net/ethernet/smsc/smc911x.c: Reading from/wriƟng to MMIO FIFO

#define SMC_insl(lp, r, p, l) \
ioread32_rep((int*)((lp)->base + (r)), p, l)

#define SMC_PULL_DATA(lp, p, l) \
SMC_insl (lp, RX_DATA_FIFO, p, (l) >> 2)

#define SMC_outsl(lp, r, p, l) \
iowrite32_rep((int*)((lp)->base + (r)), p, l)

#define SMC_PUSH_DATA(lp, p, l) \
SMC_outsl(lp, TX_DATA_FIFO, p, (l) >> 2)

SMC_PULL_DATA(lp, data, pkt_len+2+3); // smc911x_rcv()
SMC_PUSH_DATA(lp, buf, len); // smc911x_hardware_send_pkt()
27 © 2018 Arm Limited

The read-triggered DMA challenge!

Some adaptec card rumoured to do this
Makes liƩle sense from h/w perspecƟve (reads are slow)
I couldn’t find anything in the tree
Would require explicit mb() before the MMIO read

Please let me know if you find any examples!
28 © 2018 Arm Limited

QuesƟons?

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

References

Desert island – By Timo Newton-Syms from Helsinki, Finland and Chalfont St Giles, Bucks, UK - Desert Island, CC BY-SA 2.0, hƩps://commons.wikimedia.org/w/index.php?curid=26292873

Alpha CPU – CC BY-SA 3.0, hƩps://commons.wikimedia.org/w/index.php?curid=91624

Server racks – By CSIRO, CC BY 3.0, hƩps://commons.wikimedia.org/w/index.php?curid=35458082

MagneƟc core – By Bubba73 (Jud McCranie) - Own work, CC BY-SA 4.0, hƩps://commons.wikimedia.org/w/index.php?curid=39746489

PCI cards – By Hannes Grobe (talk) - Own work, CC BY 3.0, hƩps://commons.wikimedia.org/w/index.php?curid=21932132

Couple relaxing on beach – By Hector AlejandroderivaƟve work: Danapit - This file was derived from: An old couple relaxing on the beach.jpg:, CC BY 2.0,
hƩps://commons.wikimedia.org/w/index.php?curid=26487578

Circular buffer – By I, CburneƩ, CC BY-SA 3.0, hƩps://commons.wikimedia.org/w/index.php?curid=2302964

Reward poster – By Archives New Zealand from New Zealand - Reward Poster, CC BY-SA 2.0, hƩps://commons.wikimedia.org/w/index.php?curid=51250708

30 © 2018 Arm Limited

	
	$ whoami
	My idea of paradise
	My idea of paradise
	The grim reality
	Challenges of concurrency
	
	Example: store buffering
	Lies, damned lies and sequential consistency
	Litmus tests
	
	Out-of-band communication and side-effects
	Generalise to multiple endpoints
	Ordering vs completion
	
	Caveat: assumptions
	Default I/O accessors
	Relaxed accessors
	Mandatory barriers
	DMA barriers
	
	Trigger DMA read
	Process DMA write
	Batch device configuration
	Delay-based device configuration
	DMA descriptor rings
	PIO
	The read-triggered DMA challenge!
	
	References

