
Atomic explosion: evoluƟon
and use of relaxed concurrency

primiƟves
Kernel Recipes, Paris

Will Deacon <will.deacon@arm.com>

September, 2018

© 2018 Arm Limited

Intro

Co-maintainer of arm64 architecture, ARM perf
backends, SMMU drivers, atomics, locking, memory
model, TLB invalidaƟon…

Developer in the Open-Source SoŌware group at Arm

Close working relaƟonship with Architecture and
Technology Group

Co-author of Armv8 architectural memory model

Involved in C/C++ memory model working group

Unsurprisingly, I’m going to talk about concurrency.

2 © 2018 Arm Limited

Concurrency is the problem, not the soluƟon
Imagine paying for an upgrade on a flight…

3 © 2018 Arm Limited

Concurrency is the problem, not the soluƟon

…but geƫng given this instead.

We asked for performance, and
they gave us concurrency.

Just say no!

Unfortunately, it’s unavoidable in the kernel

4 © 2018 Arm Limited

Concurrency is the problem, not the soluƟon

…but geƫng given this instead.

We asked for performance, and
they gave us concurrency.

Just say no!

Unfortunately, it’s unavoidable in the kernel

4 © 2018 Arm Limited

Concurrency is the problem, not the soluƟon

…but geƫng given this instead.

We asked for performance, and
they gave us concurrency.

Just say no!

Unfortunately, it’s unavoidable in the kernel

4 © 2018 Arm Limited

Low-level concurrency in Linux

Interrupts and preempƟon

spin_lock(), mutex_lock(), rwsem

seqlock

RCU

cmpxchg(), xchg()

lockref

percpu-rwsem

atomic_t, atomic64_t

READ_ONCE(), WRITE_ONCE()

smp_load_acquire(), smp_store_release()

smp_mb(), smp_rmb(), smp_wmb()

and there’s more…

5 © 2018 Arm Limited

Atomics

Accesses to atomic_t guaranteed to be ‘indivisible’ (single-copy atomic)
(Badly) described in memory_barriers.txt; atomic_t.txtmuch beƩer.
Core code provides lock/hash-based implementaƟon which you probably don’t want
TradiƟonally, separated into three classes:

get/set Unordered access similar to READ_ONCE/WRITE_ONCE e.g. atomic64_read()
read-modify-write (rmw) Unordered posted operaƟon e.g. atomic_long_inc()
value-returning rmw Returns new value with full ordering e.g. atomic_add_return()

6 © 2018 Arm Limited

Five historic limitaƟons of atomic_t and friends

1. Limited set of operaƟons

2. Unordered or fully ordered: nothing in-between

3. ImplementaƟon enƟrely duplicated per-arch

4. Independent of cmpxchg() etc

5. Not well defined or understood

Concurrency is hard: shouldn’t force arch maintainers to take on burden of implemenƟng atomics.

7 © 2018 Arm Limited

Milestones
47933ad4 ("arch: Introduce smp_load_acquire(), smp_store_release()"), Nov 2013
e6942b7d ("atomic: Provide atomic_{or,xor,and}"), April 2014
654672d4 ("locking/atomics: Add _{acquire|release|relaxed}() variants of some
atomic operations"), Aug 2015
28aa2bda ("locking/atomic: Implement
atomic{,64,_long}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()"),
April 2016
1f03e8d2 ("locking/barriers: Replace smp_cond_acquire() with
smp_cond_load_acquire()"), April 2016
3942b771 ("MAINTAINERS: Claim atomic*_t maintainership"), Nov 2016
087133ac ("locking/qrwlock, arm64: Move rwlock implementation over to
qrwlocks"), Oct 2017
1c27b644 ("Automate memory-barriers.txt; provide Linux-kernel memory model"),
Jan 2018
c1109047 ("arm64: locking: Replace ticket lock implementation with
qspinlock"), March 2018

8 © 2018 Arm Limited

SemanƟcs
Extensions include:

Bitwise operaƟons

*_fetch ops return old value prior to atomic update

*_relaxed no ordering required

*_{acquire,release} message passing

smp_cond_load_acquire() poll with acquire semanƟcs unƟl condiƟon is saƟsfied

Core code will generate what the arch doesn’t provide!

cmpxchg-based atomics in asm-generic/atomic.h

atomic-based bitops in asm-generic/bitops/*

Old API remains for unordered and fully-ordered atomics.
9 © 2018 Arm Limited

Relaxed

Unordered – even the compiler can reorder!

Single-copy atomic

Fiddly to use (esp. value-returning variants) but indispensable at
Ɵmes

OŌen (but not always) used in conjuncƟon with fences

P0 P1
atomic_fetch_inc_relaxed(&x); | atomic_fetch_inc_relaxed(&x);

10 © 2018 Arm Limited

AdopƟon of _relaxed atomics in mainline
Unfortunately, adopƟon of the atomic extensions has been slow…

Author Number of _relaxed atomics

Will Deacon: 12
Catalin Marinas: 5
Peter Z: 3
Robin Murphy: 2
Kevin Brodsky: 1
David Howells: 1
Waiman Long: 1
Davidlohr Bueso: 1
Trond Myklebust: 1

smp_load_acquire, smp_store_release are doing much beƩer, but have a headstart
and are generally ‘safer’.

11 © 2018 Arm Limited

AdopƟon of _relaxed atomics in mainline
Unfortunately, adopƟon of the atomic extensions has been slow…

Author Number of _relaxed atomics

Will Deacon: 12
Catalin Marinas: 5
Peter Z: 3
Robin Murphy: 2
Kevin Brodsky: 1
David Howells: 1
Waiman Long: 1
Davidlohr Bueso: 1
Trond Myklebust: 1

smp_load_acquire, smp_store_release are doing much beƩer, but have a headstart
and are generally ‘safer’.
11 © 2018 Arm Limited

Fully-ordered

As if there’s an smp_mb() on either side of the operaƟon

(See smp_mb__{before,after}_atomic)

Orders all access types across the operaƟon (inc. ST->LD)

Expensive on all architectures (inc. x86)

SomeƟmes referred to as ‘SC-restoring’

Even in the presence of racy writes:

P0 P1
WRITE_ONCE(*x, 1); | WRITE_ONCE(*y, 2);
atomic_inc_return(&p); | atomic_inc_return(&q)
WRITE_ONCE(*y, 1); | READ_ONCE(*x)

12 © 2018 Arm Limited

Acquire/Release

Middle-ground between relaxed and fully-ordered:

Appeals to “message-passing” idiom

Producer thread writes/releases data

Consumer thread reads/acquires the same data

Maps efficiently to exisƟng architectures and C/C11

‘Roach-motel’ semanƟcs

Everthing before a release is visible to everything aŌer an acquire that reads from the release.

More flexible than smp_wmb()/smp_rmb() but without enforcing ST->LD ordering of
smp_mb().

13 © 2018 Arm Limited

Acquire/Release

Acquire/release operaƟons can be chained together without loss of cumulaƟvity:

P0 P1 P2
WRITE_ONCE(*x,1); | atomic_read_acquire(y); | atomic_xchg_acquire(z,2);
atomic_set_release(y,1); | atomic_fetch_inc_release(z); | READ_ONCE(*x);

Try doing this with fences.

14 © 2018 Arm Limited

Show me the code!

x86 arm64 ppc

smp_load_acquire MOV LDAR LD; LWSYNC
smp_store_release MOV STLR LWSYNC; ST
atomic_fetch_add_release LOCK XADD LDADDL LWSYNC; LL/SC
smp_mb() LOCK ADDL DMB ISH SYNC

RISC-V also has naƟve support.
15 © 2018 Arm Limited

Generic locking code:
kernel/locking/*

16 © 2018 Arm Limited

Generic locking implementaƟons
Can we really have our cake and eat it?

Portability: implemented enƟrely using in-kernel concurrency APIs. No need for addiƟonal
assembly code! Can also be ported to userspace/bare-metal.

Performance: use of relaxed atomics to implement complex, scalable, fair algorithms
Correctness: formal modelling as well as extensive tesƟng on mulƟple architectures

Let’s look at some examples…
17 © 2018 Arm Limited

qrwlock layout

typedef struct qrwlock {
union {

atomic_t cnts;
struct {

u8 wmode; /* Writer mode: 0 or LOCKED (0xff) */
u8 __lstate[3]; /* 23-bit reader count + WAITING bit */

};
};
arch_spinlock_t wait_lock;

} arch_rwlock_t;

Put the writer count in its own byte and use a spinlock for implicit queueing.

18 © 2018 Arm Limited

qrwlock

write_lock() cmpxchg on lockword 0 => LOCKED (acquire)

write_unlock() Clear wmode to 0 (release)

read_lock() Increment reader count if wmode is 0 (acquire)

read_unlock() Decrement reader count (release)

If a lock() operaƟon fails, then take the wait_lock which gives us queueing for free!

spin_lock() acquisiƟon implies head of queue

Writers poll for all others to drain (set WAITING bit)

Readers poll for writers to drain

19 © 2018 Arm Limited

qrwlock results
// locktorture 2w/8r/rw_lock_irq
rwlock: (191:1)

Writes: Total: 6612 Max/Min: 0/0 Fail: 0
Reads : Total: 1265230 Max/Min: 0/0 Fail: 0
Writes: Total: 6709 Max/Min: 0/0 Fail: 0
Reads : Total: 1916418 Max/Min: 0/0 Fail: 0
Writes: Total: 6725 Max/Min: 0/0 Fail: 0
Reads : Total: 5103727 Max/Min: 0/0 Fail: 0

qrwlock: (6:1)
Writes: Total: 47962 Max/Min: 0/0 Fail: 0
Reads : Total: 277903 Max/Min: 0/0 Fail: 0
Writes: Total: 100151 Max/Min: 0/0 Fail: 0
Reads : Total: 525781 Max/Min: 0/0 Fail: 0
Writes: Total: 155284 Max/Min: 0/0 Fail: 0
Reads : Total: 767703 Max/Min: 0/0 Fail: 0

20 © 2018 Arm Limited

qspinlock: generic spinlock implementaƟon

Complex locking implementaƟon based around MCS locks:

Lockword points to end of linked waiter list

Each CPU spins on their own cacheline within their list node

When unlocking, write to the next node in the queue

Linux implementaƟon opƟmises the low-contenƟon case, avoids
dynamic node allocaƟon and squeezes everything into a 32-bit
word (atomic_t)

Algorithms for Scalable SynchronizaƟon on Shared-Memory MulƟprocessors – Mellor-Crummey Θ ScoƩ, 1991

21 © 2018 Arm Limited

qspinlock: scaling under contenƟon

22 © 2018 Arm Limited

VerificaƟon tools
‘Beware of bugs in the above code; I have only proved it correct, not tried it.’

23 © 2018 Arm Limited

LKMM

‘Frightening Small Children and DisconcerƟng Grown-ups: Concurrency in the Linux Kernel’ –
https://dl.acm.org/citation.cfm"id=3177156

C MP+polocks

P0(int *x, int *y, spinlock_t *mylock)
{

WRITE_ONCE(*x, 1);
spin_lock(mylock);
WRITE_ONCE(*y, 1);
spin_unlock(mylock);

}

P1(int *x, int *y, spinlock_t *mylock)
{
int r0;
int r1;

spin_lock(mylock);
r0 = READ_ONCE(*y);
spin_unlock(mylock);
r1 = READ_ONCE(*x);

}

exists (1:r0=1 /\ 1:r1=0)

24 © 2018 Arm Limited

https://dl.acm.org/citation.cfm?id=3177156

tools/memory-model/

$ herd7 -conf linux-kernel.cfg litmus-tests/MP+polocks.litmus
Test MP+polocks Allowed
States 3
1:r0=0; 1:r1=0;
1:r0=0; 1:r1=1;
1:r0=1; 1:r1=1;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r0=1 /\ 1:r1=0)
Observation MP+polocks Never 0 3
Time MP+polocks 0.01
Hash=602e4c28ae61714bf6072f8a98078bd7

Strong vs weak

Compiler transforms

PreempƟon

I/O

Tests as modules

25 © 2018 Arm Limited

TLA+

TLA+ (Temporal Logic of AcƟons) is a formal specificaƟon language developed by Leslie
Lamport

Based on set theory and temporal logic, can specify invariant and liveness properƟes
SpecificaƟon wriƩen in formal logic is amenable to finite model checking (using TLCmodel checker)
Can also be used for machine-checked proofs of correctness

PlusCal is a formal specificaƟon language which transpiles to TLA+

Pseudocode like, beƩer suited to specify sequenƟal algorithms
Simple to describe SC concurrent threads/processes

Used to model qrwlock, qspinlock and parts of the arm64 kernel!
git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git
Proved exclusiveness of locking algorithms
Proved that forward progress is always made by each thread
qrwlock: 2+2 reader/writer
qspinlock: 3 lockers

26 © 2018 Arm Limited

git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git

https://github.com/herd/herdtools7

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | LDR W2,[X3] ;
MOV W2,#1 | ;
STLR W2,[X3] | ;

exists
(1:X0=1 /\ 1:X2=0)

Thread 0

a: Wx=1

b: WyRel=1

po

c: Ry=1
rf

Thread 1

d: Rx=0

po
fr

27 © 2018 Arm Limited

https://github.com/herd/herdtools7

Example litmus test: MP+popl+po

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | LDR W2,[X3] ;
MOV W2,#1 | ;
STLR W2,[X3] | ;

exists
(1:X0=1 /\ 1:X2=0)

Test MP+popl+po Allowed
States 4
1:X0=0; 1:X2=0;
1:X0=0; 1:X2=1;
1:X0=1; 1:X2=0;
1:X0=1; 1:X2=1;
Ok
Witnesses
Positive: 1 Negative: 3
Condition exists (1:X0=1 /\ 1:X2=0)
Observation MP+popl+po Sometimes 1 3
Time MP+popl+po 0.01
Hash=75d804cb38f3f607de6ab3cc9925140e

28 © 2018 Arm Limited

TesƟng

Ongoing work in academia to improve formal tools, but unƟl then…

locktorture to stress mutex, spinlock, rwlock, rwsem

rcutorture to stress RCU, CPU hotplug

lkmm modules to run a ‘litmus test’ from within the kernel

Generic locking implementaƟons automaƟcally get cross-arch tesƟng!

29 © 2018 Arm Limited

But what does this have to do with
YOU?

30 © 2018 Arm Limited

Patch review

So you’ve received a patch using relaxed/weak atomics?

Most people don’t need this stuff: use RCU, locking or exisƟng high-level interfaces where
possible

Acquire/release in preference to smp_*mb()

Discourage legacy atomic_*_return() ops

Acquire/release should be paired; don’t mix-and-match with barriers if you can avoid it

Require comments showing the pairing

Heavy fences generally only needed for racy writes

Try to express the problem as a litmus test for LKMM.

and last, but not least…

31 © 2018 Arm Limited

Who are we?

We’re here to help!

Will Deacon <will.deacon@arm.com>

Boqun Feng <boqun.feng@gmail.com>

Paul McKenney <paulmck@linux.vnet.ibm.com>

Ingo Molnar <mingo@redhat.com>

Alan Stern <stern@rowland.harvard.edu>

Peter Zijlstra <peterz@infradead.org>

…and others in MAINTAINERS.

32 © 2018 Arm Limited

Conclusion

The kernel’s low-level concurrency primiƟves have never looked so good:

Portable and efficient abstracƟon of the underlying machine

Parity with modern programming languages

Off-the-shelf synchronisaƟon code suitable for producƟon

Ability to reason about concurrent behaviours

AcƟve group of maintainers

Generic concurrent code doesn’t have to suck!
33 © 2018 Arm Limited

QuesƟons?

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

	
	Intro
	Concurrency is the problem, not the solution
	Concurrency is the problem, not the solution
	Low-level concurrency in Linux
	Atomics
	Five historic limitations of atomic_t and friends
	Milestones
	Semantics
	Relaxed
	Adoption of _relaxed atomics in mainline
	Fully-ordered
	Acquire/Release
	Acquire/Release
	Show me the code!
	
	Generic locking implementations
	qrwlock layout
	qrwlock
	qrwlock results
	qspinlock: generic spinlock implementation
	qspinlock: scaling under contention
	
	LKMM
	tools/memory-model/
	TLA+
	` `%%%`#`&12_`__~~~ౡ氀猀e
	Example litmus test: MP+popl+po
	Testing
	
	Patch review
	Who are we?
	Conclusion
	

