
Formalising the Armv8 memory
consistency model

OpenSHMEM workshop, BalƟmore MD

Will Deacon <will.deacon@arm.com>

August, 2018

© 2018 Arm Limited



Hello!

MEng in CompuƟng: interested in low-level systems
programming and computer architecture

Senior Principal SoŌware Engineer in the Open-Source
SoŌware group at Arm

Upstream Linux kernel maintainer for arm64 and
others

Close working relaƟonship with Architecture and
Technology Group

Co-author of Armv8 memory model

I have never used OpenSHMEM!

2 © 2018 Arm Limited



Hello!

MEng in CompuƟng: interested in low-level systems
programming and computer architecture

Senior Principal SoŌware Engineer in the Open-Source
SoŌware group at Arm

Upstream Linux kernel maintainer for arm64 and
others

Close working relaƟonship with Architecture and
Technology Group

Co-author of Armv8 memory model

I have never used OpenSHMEM!
2 © 2018 Arm Limited



Why am I here?

Earlier this year, I gave a version of this talk to a small group of people at Oak Ridge about
memory consistency models and the recent revision of the Armv8 memory model…

AŌerwards, Manju told me about something called OpenSHMEM and the desire for a concrete
specificaƟon of its memory model.

It took less than 5 minutes of discussion around a whiteboard before we were both totally
confused, so he suggested I came here and spoke to the community. Hopefully the same
principles for the CPU can be applied to OpenSHMEM.

I have never used OpenSHMEM!

3 © 2018 Arm Limited



Why am I here?

Earlier this year, I gave a version of this talk to a small group of people at Oak Ridge about
memory consistency models and the recent revision of the Armv8 memory model…

AŌerwards, Manju told me about something called OpenSHMEM and the desire for a concrete
specificaƟon of its memory model.

It took less than 5 minutes of discussion around a whiteboard before we were both totally
confused, so he suggested I came here and spoke to the community. Hopefully the same
principles for the CPU can be applied to OpenSHMEM.

I have never used OpenSHMEM!

3 © 2018 Arm Limited



Why am I here?

Earlier this year, I gave a version of this talk to a small group of people at Oak Ridge about
memory consistency models and the recent revision of the Armv8 memory model…

AŌerwards, Manju told me about something called OpenSHMEM and the desire for a concrete
specificaƟon of its memory model.

It took less than 5 minutes of discussion around a whiteboard before we were both totally
confused, so he suggested I came here and spoke to the community. Hopefully the same
principles for the CPU can be applied to OpenSHMEM.

I have never used OpenSHMEM!

3 © 2018 Arm Limited



Why am I here?

Earlier this year, I gave a version of this talk to a small group of people at Oak Ridge about
memory consistency models and the recent revision of the Armv8 memory model…

AŌerwards, Manju told me about something called OpenSHMEM and the desire for a concrete
specificaƟon of its memory model.

It took less than 5 minutes of discussion around a whiteboard before we were both totally
confused, so he suggested I came here and spoke to the community. Hopefully the same
principles for the CPU can be applied to OpenSHMEM.

I have never used OpenSHMEM!

3 © 2018 Arm Limited



Background and Terminology

I’m used to dealing with CPUs running assembly programs:

Coherent shared memory directly addressable by the instrucƟon set with ns access Ɵmes

Physically small machines with <1000 h/w threads

Single-copy and mulƟ-copy atomicity

When I say…

load you say get

store you say put

barrier you say fence

When you say…

barrier I say synchronize

non-blocking I look blank

quiet I shut up
We both need a memory consistency model to reason about the behaviour of concurrent
interacƟons on a globally mutable state for a large body of exisƟng code and implementaƟons

4 © 2018 Arm Limited



Background and Terminology

I’m used to dealing with CPUs running assembly programs:

Coherent shared memory directly addressable by the instrucƟon set with ns access Ɵmes

Physically small machines with <1000 h/w threads

Single-copy and mulƟ-copy atomicity

When I say…

load you say get

store you say put

barrier you say fence

When you say…

barrier I say synchronize

non-blocking I look blank

quiet I shut up
We both need a memory consistency model to reason about the behaviour of concurrent
interacƟons on a globally mutable state for a large body of exisƟng code and implementaƟons

4 © 2018 Arm Limited



Background and Terminology

I’m used to dealing with CPUs running assembly programs:

Coherent shared memory directly addressable by the instrucƟon set with ns access Ɵmes

Physically small machines with <1000 h/w threads

Single-copy and mulƟ-copy atomicity

When I say…

load you say get

store you say put

barrier you say fence

When you say…

barrier I say synchronize

non-blocking I look blank

quiet I shut up

We both need a memory consistency model to reason about the behaviour of concurrent
interacƟons on a globally mutable state for a large body of exisƟng code and implementaƟons

4 © 2018 Arm Limited



Background and Terminology

I’m used to dealing with CPUs running assembly programs:

Coherent shared memory directly addressable by the instrucƟon set with ns access Ɵmes

Physically small machines with <1000 h/w threads

Single-copy and mulƟ-copy atomicity

When I say…

load you say get

store you say put

barrier you say fence

When you say…

barrier I say synchronize

non-blocking I look blank

quiet I shut up
We both need a memory consistency model to reason about the behaviour of concurrent
interacƟons on a globally mutable state for a large body of exisƟng code and implementaƟons

4 © 2018 Arm Limited



What is a memory consistency model?

Given a potenƟally concurrent program, a memory (consistency) model defines the possible values
returned for each read in the program as well as the final values of each locaƟon in memory.

Illusion of program order for a uniprocessor system

Barrier/fence instrucƟons

Dependencies

Write propagaƟon between threads

The ‘order’ of loads and stores

Can be used to idenƟfy unwanted results in an under-constrained environment.

But why should I care?

5 © 2018 Arm Limited



Ponies

Pony courtesy of Jade Alglave

Failure to enforce ordering between concurrent producer and consumer.
Hardware and soŌware are far less conservaƟve than they used to be!

6 © 2018 Arm Limited



Ponies

Ponies courtesy of Jade Alglave

Failure to enforce ordering between concurrent producer and consumer.
Hardware and soŌware are far less conservaƟve than they used to be!
6 © 2018 Arm Limited



File writeback
msync() flushes changes made to the in-core copy of a file that was mapped into
memory using mmap(2) back to the filesystem. ʹ man msync

ARM64: kernel panics in DABT in sys_msync path ʹ Yury Norov, LKML, Sept 2017

Unable to handle kernel paging request at virtual address ffffffffc0000d68
swapper pgtable: 4k pages, 48-bit VAs, pgd = ffff00000901f000
[ffffffffc0000d68] *pgd=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 9861 Comm: doio Not tainted 4.13.0-00027-g2fdc18baa2ae #196
Hardware name: linux,dummy-virt (DT)
task: ffff80000300d400 task.stack: ffff80003d28c000
PC is at check_pte+0x8/0x130
LR is at page_vma_mapped_walk+0x240/0x498
...

7 © 2018 Arm Limited



File writeback
msync() flushes changes made to the in-core copy of a file that was mapped into
memory using mmap(2) back to the filesystem. ʹ man msync

ARM64: kernel panics in DABT in sys_msync path ʹ Yury Norov, LKML, Sept 2017

Unable to handle kernel paging request at virtual address ffffffffc0000d68
swapper pgtable: 4k pages, 48-bit VAs, pgd = ffff00000901f000
[ffffffffc0000d68] *pgd=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 9861 Comm: doio Not tainted 4.13.0-00027-g2fdc18baa2ae #196
Hardware name: linux,dummy-virt (DT)
task: ffff80000300d400 task.stack: ffff80003d28c000
PC is at check_pte+0x8/0x130
LR is at page_vma_mapped_walk+0x240/0x498
...

7 © 2018 Arm Limited



File writeback
msync() flushes changes made to the in-core copy of a file that was mapped into
memory using mmap(2) back to the filesystem. ʹ man msync

ARM64: kernel panics in DABT in sys_msync path ʹ Yury Norov, LKML, Sept 2017

Unable to handle kernel paging request at virtual address ffffffffc0000d68
swapper pgtable: 4k pages, 48-bit VAs, pgd = ffff00000901f000
[ffffffffc0000d68] *pgd=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 9861 Comm: doio Not tainted 4.13.0-00027-g2fdc18baa2ae #196
Hardware name: linux,dummy-virt (DT)
task: ffff80000300d400 task.stack: ffff80003d28c000
PC is at check_pte+0x8/0x130
LR is at page_vma_mapped_walk+0x240/0x498
...
7 © 2018 Arm Limited



Ok, so what do I need to know?

Architects, CPU vendors and programming languages have helpfully documented their memory
models, so we just need to read their specificaƟons…

C++ good intenƟons and well wriƩen, but flawed (thin-air, unsound wrt h/w)

x86 TSO, except where it isn’t (IRIW)

Armv7/PPC Mind-bending recursion aƩempts to place accesses into ‘groups’

JMM defined empirically in terms of a crypƟc set of tests

Perl6(!) can’t tell if it’s a joke. I hope that it is.

No formal wording. No common nomenclature. No common abstracƟon. No official tooling. No
accountability.

It mostly works by magic…

…Engineering shouldn’t be magic.

8 © 2018 Arm Limited



Ok, so what do I need to know?

Architects, CPU vendors and programming languages have helpfully documented their memory
models, so we just need to read their specificaƟons…

C++ good intenƟons and well wriƩen, but flawed (thin-air, unsound wrt h/w)

x86 TSO, except where it isn’t (IRIW)

Armv7/PPC Mind-bending recursion aƩempts to place accesses into ‘groups’

JMM defined empirically in terms of a crypƟc set of tests

Perl6(!) can’t tell if it’s a joke. I hope that it is.

No formal wording. No common nomenclature. No common abstracƟon. No official tooling. No
accountability.

It mostly works by magic…

…Engineering shouldn’t be magic.

8 © 2018 Arm Limited



Ok, so what do I need to know?

Architects, CPU vendors and programming languages have helpfully documented their memory
models, so we just need to read their specificaƟons…

C++ good intenƟons and well wriƩen, but flawed (thin-air, unsound wrt h/w)

x86 TSO, except where it isn’t (IRIW)

Armv7/PPC Mind-bending recursion aƩempts to place accesses into ‘groups’

JMM defined empirically in terms of a crypƟc set of tests

Perl6(!) can’t tell if it’s a joke. I hope that it is.

No formal wording. No common nomenclature. No common abstracƟon. No official tooling. No
accountability.

It mostly works by magic…

…Engineering shouldn’t be magic.

8 © 2018 Arm Limited



Ok, so what do I need to know?

Architects, CPU vendors and programming languages have helpfully documented their memory
models, so we just need to read their specificaƟons…

C++ good intenƟons and well wriƩen, but flawed (thin-air, unsound wrt h/w)

x86 TSO, except where it isn’t (IRIW)

Armv7/PPC Mind-bending recursion aƩempts to place accesses into ‘groups’

JMM defined empirically in terms of a crypƟc set of tests

Perl6(!) can’t tell if it’s a joke. I hope that it is.

No formal wording. No common nomenclature. No common abstracƟon. No official tooling. No
accountability.

It mostly works by magic…

…Engineering shouldn’t be magic.

8 © 2018 Arm Limited



Ok, so what do I need to know?

Architects, CPU vendors and programming languages have helpfully documented their memory
models, so we just need to read their specificaƟons…

C++ good intenƟons and well wriƩen, but flawed (thin-air, unsound wrt h/w)

x86 TSO, except where it isn’t (IRIW)

Armv7/PPC Mind-bending recursion aƩempts to place accesses into ‘groups’

JMM defined empirically in terms of a crypƟc set of tests

Perl6(!) can’t tell if it’s a joke. I hope that it is.

No formal wording. No common nomenclature. No common abstracƟon. No official tooling. No
accountability.

It mostly works by magic…

…Engineering shouldn’t be magic.

8 © 2018 Arm Limited



The trouble with prose
Unsurprisingly, people are confused by memory models.

“Sequenced before is an asymmetric, transiƟve, pair-wise relaƟon between evaluaƟons
executed by a single thread, which induces a parƟal order among those evaluaƟons.”

“…This means that ACQUIRE acts as a minimal ‘acquire’ operaƟon and RELEASE acts as a
minimal ‘release’ operaƟon.”

“A DMB creates two groups of memory accesses, Group A and Group B:…”

9 © 2018 Arm Limited



A cacophony of confusion

“AFAIK, on x86 cpu fence is no-op. My understanding that on ARM I have to use ISB?”

“Currently this is implemented using a full barrier. Is it sƟll OK to use acquire/release ordering
in this case?”

“IOW, is ‘full barrier’ a more strong version of ‘fully ordered’ or not?”

“my head is here: o and memory barriers are over there mb”

“I, for one, understand nothing about memory barriers…

so I use them religiously”

10 © 2018 Arm Limited



A cacophony of confusion

“AFAIK, on x86 cpu fence is no-op. My understanding that on ARM I have to use ISB?”

“Currently this is implemented using a full barrier. Is it sƟll OK to use acquire/release ordering
in this case?”

“IOW, is ‘full barrier’ a more strong version of ‘fully ordered’ or not?”

“my head is here: o and memory barriers are over there mb”

“I, for one, understand nothing about memory barriers…so I use them religiously”

10 © 2018 Arm Limited



Example: store buffering

IniƟally, X and Y are 0 in memory; foo and bar are local (register) variables:

p0

a: X = 1;
b: foo = Y;

p1

c: Y = 1;
d: bar = X;

What are the permissible values for foo and bar?

All producƟon architectures permit foo == bar == 0.

11 © 2018 Arm Limited



Example: store buffering

IniƟally, X and Y are 0 in memory; foo and bar are local (register) variables:

p0

a: X = 1;
b: foo = Y;

p1

c: Y = 1;
d: bar = X;

What are the permissible values for foo and bar?

All producƟon architectures permit foo == bar == 0.

11 © 2018 Arm Limited



Lies, damned lies and sequenƟal consistency

p0

a: X = 1;
b: foo = Y;

p1

c: Y = 1;
d: bar = x;

Interleavings

{a,b,c,d}
{c,d,a,b}
{a,c,b,d}
...

‘A mulƟprocessor is sequenƟally consistent if the result of any execuƟon is the same as if
the operaƟons of all the processors were executed in some sequenƟal order, and the
operaƟons of each individual processor appear in this sequence in the order specified by
its program.’ ʹ Leslie Lamport (1979)

SequenƟal consistency is ‘easy’ to reason about, as there is a single global ordering consistent with
program order for each thread.

It also tells us that foo == bar == 0 is forbidden in the previous example.

12 © 2018 Arm Limited



Lies, damned lies and sequenƟal consistency

p0

a: X = 1;
b: foo = Y;

p1

c: Y = 1;
d: bar = x;

Interleavings

{a,b,c,d}
{c,d,a,b}
{a,c,b,d}
...

‘A mulƟprocessor is sequenƟally consistent if the result of any execuƟon is the same as if
the operaƟons of all the processors were executed in some sequenƟal order, and the
operaƟons of each individual processor appear in this sequence in the order specified by
its program.’ ʹ Leslie Lamport (1979)

SequenƟal consistency is ‘easy’ to reason about, as there is a single global ordering consistent with
program order for each thread.
It also tells us that foo == bar == 0 is forbidden in the previous example.
12 © 2018 Arm Limited



Real hardware and architectures
RR RW WW WR RA WA DR IC

Alpha Y Y Y Y Y Y Y Y
AMD64 Y
ARMv7-A/R Y Y Y Y Y Y Y
IA64 Y Y Y Y Y Y Y
(PA-RISC) Y Y Y Y
PA-RISC CPUs
POWER™ Y Y Y Y Y Y Y
(SPARC RMO) Y Y Y Y Y Y Y
(SPARC PSO) Y Y Y Y
SPARC TSO Y Y
x86 Y Y
(x86 OOStore) Y Y Y Y Y
zSeries® Y Y

Variety of CPU behaviours within the scope of a single architecture.
Table courtesy of Paul McKenney (‘perĩook’)

13 © 2018 Arm Limited



Overview of Armv8

Armv8 is weakly-ordered and requires special instrucƟons to restore SC. Explicitly designed with
C/C++11 (SC-DRF) in mind.

Dependencies from a Load to a subsequent instrucƟon. Control, Data and Address.

Barrier instrucƟons with access-type restricƟons (DMB, DSB)

Acquire/release instrucƟons (LDAR, STLR) are RCsc with roach motel semanƟcs

Revised to be mulƟ-copy atomic…

14 © 2018 Arm Limited



Litmus tests
Memory ordering problems can be expressed as litmus tests with funny names:
AArch64 S
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#2 | LDR W0,[X1] ;
STR W0,[X1] | MOV W2,#1 ;
MOV W2,#1 | STR W2,[X3] ;
STR W2,[X3] | ;
exists
(x=2 /\ 1:X0=1)

These tests are constructed from a program and a constraint.

Search Google for ‘test6.pdf’

15 © 2018 Arm Limited



Litmus tests
Memory ordering problems can be expressed as litmus tests with funny names:
AArch64 S
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#2 | LDR W0,[X1] ;
STR W0,[X1] | MOV W2,#1 ;
MOV W2,#1 | STR W2,[X3] ;
STR W2,[X3] | ;
exists
(x=2 /\ 1:X0=1)

These tests are constructed from a program and a constraint.
Search Google for ‘test6.pdf’
15 © 2018 Arm Limited



Programs

A program describes the memory-related (read, write and barrier) instrucƟons in each thread, and
any dependencies they may have:

Program order

a: Rx=0

b: Wy=1

po

Dependency

a: Rx=0

b: Wy=1

addr

Release

a: Rx=0

b: WyRel=1

po

Barrier

a: Rx=0

b: Wy=1

dmb.sy

NoƟce that the program relaƟons are strictly intra-thread.

16 © 2018 Arm Limited



Candidate execuƟons
For a given litmus test, a candidate execuƟon binds the values of reads and the final values in
memory by providing two relaƟons:

Reads-from (rf) pairs each read with a write to the same locaƟon

Coherence-order (co) pairs stores to the same locaƟon in a total order (the overwrite order)

P0 | P1 ;
MOV W0,#2 | c:LDR W0,[X1] ;

a:STR W0,[X1] | MOV W2,#1 ;
MOV W2,#1 | d:STR W2,[X3] ;

b:STR W2,[X3] | ;

a: Wx=2

b: Wy=1

po

c: Ry=1
rf

d: Wx=1

po
co

rf = {(b, c)}
co = {x 7→ {(x0, d), (d, a), (x0, a)}, y 7→ {(y0, b)}}
We can generate all possible candidate execuƟons and feed them to a parƟcular memory model.
17 © 2018 Arm Limited



Deriving from-reads (fr)

a: Wx=2 b: Wx=1
co

c: Rx=1

rf

The from-reads relaƟon links a read to all writes appearing later in the coherence order than the
write from which the read reads-from.

co, rf and fr encapsulate the three forms of inter-thread communicaƟon.

18 © 2018 Arm Limited



Deriving from-reads (fr)

a: Wx=2 b: Wx=1
co

c: Rx=1

fr r f

The from-reads relaƟon links a read to all writes appearing later in the coherence order than the
write from which the read reads-from.

co, rf and fr encapsulate the three forms of inter-thread communicaƟon.

19 © 2018 Arm Limited



Formal modelling

EvaluaƟng litmus tests by hand is cumbersome and error-prone…

Formal models to the rescue!

ExhausƟvely generate all possible outcomes for a test

Generate more tests of interest

Run tests on real hardware

Generate tests that differ between memory models

Develop an intuiƟon for the limitaƟons of a memory model whilst ensuring correctness of code.

20 © 2018 Arm Limited



Formal modelling

EvaluaƟng litmus tests by hand is cumbersome and error-prone…

Formal models to the rescue!

ExhausƟvely generate all possible outcomes for a test

Generate more tests of interest

Run tests on real hardware

Generate tests that differ between memory models

Develop an intuiƟon for the limitaƟons of a memory model whilst ensuring correctness of code.

20 © 2018 Arm Limited



Example litmus test: MP+popl+po

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | LDR W2,[X3] ;
MOV W2,#1 | ;
STLR W2,[X3] | ;

exists
(1:X0=1 /\ 1:X2=0)

Thread 0

a: Wx=1

b: WyRel=1

po

c: Ry=1
rf

Thread 1

d: Rx=0

po
fr

21 © 2018 Arm Limited



Example litmus test: MP+popl+po

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | LDR W2,[X3] ;
MOV W2,#1 | ;
STLR W2,[X3] | ;

exists
(1:X0=1 /\ 1:X2=0)

Test MP+popl+po Allowed
States 4
1:X0=0; 1:X2=0;
1:X0=0; 1:X2=1;
1:X0=1; 1:X2=0;
1:X0=1; 1:X2=1;
Ok
Witnesses
Positive: 1 Negative: 3
Condition exists (1:X0=1 /\ 1:X2=0)
Observation MP+popl+po Sometimes 1 3
Time MP+popl+po 0.01
Hash=75d804cb38f3f607de6ab3cc9925140e

22 © 2018 Arm Limited



OperaƟonal models
rmem

http://www.cl.cam.ac.uk/
~sf502/regressions/rmem/

23 © 2018 Arm Limited

http://www.cl.cam.ac.uk/~sf502/regressions/rmem/
http://www.cl.cam.ac.uk/~sf502/regressions/rmem/


OperaƟonal models

An operaƟonal model is a complex transiƟon system that incrementally explores possible states of
an abstract machine.

Close to an ‘abstract’, maximally permissive
CPU design

Split each instrucƟon into mulƟple steps

Allows the user to build an intuiƟon based
upon a trace of events

Emergent behaviour, but relaƟvely slow
execuƟon speed

Incrementally generates all possible outcomes for a given program.

24 © 2018 Arm Limited



Example: Armv8 STR instrucƟon

Pseudocode for an instrucƟon can be broken down into sub-transiƟons. For a store (roughly):

1. Fetch instrucƟon

2. Read input registers

3. IniƟate writes with memory footprint

4. InstanƟate write values

5. Commit store

6. Propagate to all other threads

7. Complete instrucƟon

8. Finish instrucƟon

25 © 2018 Arm Limited



OperaƟonal semanƟcs for SHMEM_PUT_NBI?

The rouƟnes return aŌer posƟng the operaƟon. The operaƟon is considered complete
aŌer a subsequent call to shmem_quiet. At the compleƟon of shmem_quiet, the
data has been copied into the dest array on the desƟnaƟon PE. The delivery of data words
into the data object on the desƟnaƟon PE may occur in any order. Furthermore, two
successive put rouƟnes may deliver data out of order unless a call to shmem_fence is
introduced between the two calls.

26 © 2018 Arm Limited



AxiomaƟc models
herdtools7

https://github.com/herd/
herdtools7

27 © 2018 Arm Limited

https://github.com/herd/herdtools7
https://github.com/herd/herdtools7


AxiomaƟc models

An axiomaƟc model places mathemaƟcal constraints on relaƟons over events derived from the
execuƟon of a program.

For each candidate execuƟon:

Construct the rf and co relaƟons

Construct the derived fr relaƟon

Construct high-level derived relaƟons

Validate against acyclicity constraints

In other words, define relaƟons that are strict
parƟal orders over the set of events.

Generate all possible execuƟons and test against a predicate.

28 © 2018 Arm Limited



OperaƟon of herd

For a given litmus test, herd helpfully constructs the event sets and basic relaƟons for you:

Reads (R), Writes (W), Fences …

rf, fr, co, po, …

A .cat file defines the derived relaƟons and their constraints for a given memory model

All candidate execuƟons are generated by herd and evaluated in-turn by the .cat file

A litmus test will be permiƩed always, someƟmes or never

29 © 2018 Arm Limited



Candidate generaƟon

AArch64
{
0:X1=x; 1:X1=x
}
P0 | P1 ;
MOV W0,#1 | LDR W0,[X1] ;
STR W0,[X1] | ;

Thread 0

a: Wx=1

Thread 1

b: Rx=0
fr

Thread 0

a: Wx=1 b: Rx=1
rf

Thread 1

30 © 2018 Arm Limited



Syntax of the cat DSL

A bit like ML, but focussed on defining constrained relaƟons:

Event sets and selectors W, [W], L, R, A

Set theory ComposiƟon (;), closure (+), Kleene star (*), intersecƟon (&), union (|), difference (\)

DefiniƟon let myrelation = ...

Built-in relaƟons int, ext, loc

Constraints acyclic, irreflexive, empty

let po-loc = po & loc
let rfe = rf & ext

31 © 2018 Arm Limited



Examples for Arm (CoWW)

c: Wxq=0
Init

a: Wx=1
proc:0 poi:1
STR W0,[X1]

co

b: Wx=2
proc:0 poi:3
STR W2,[X1]

poco

acyclic po-loc | fr | co | rf as coherence
32 © 2018 Arm Limited



Examples for Arm (MP+popl+poap)

Thread 0 Thread 1

a: Wx=1
proc:0 poi:1
STR W0,[X1]

ob

b: WyRel=1
proc:0 poi:3
STLR W2,[X3]

po obbob

c: RyAcq=1
proc:1 poi:0
LDAR W0,[X1]

ob

d: Rx=0
proc:1 poi:1
LDR W2,[X3]

obob

ob

rf obs ob

ob

ob

ob

ob

po ob bobobs obfr

ob

ob

ob

let bob = ([A | Q]; po) | (po; [L])
let obs = rfe | fre | coe
let rec ob = obs | bob | ob; ob
irreflexive ob
33 © 2018 Arm Limited



The revised Armv8 memory model

34 © 2018 Arm Limited



MulƟ-copy atomicity
MulƟ-copy atomicity forbids a number of litmus tests, but is difficult to characterise:

A store from a thread becomes visible to all other threads at the same Ɵme
i.e. the cache coherency protocol hides write-propagaƟon delays from soŌware
Reduces memory ordering to intra-thread re-ordering
ComposiƟonal reasoning without overhead of SC
The following is forbidden by MCA:

Test WRC+addrs, Generic(ARMv8 AArch64)

Thread 0

a: Wx=1 b: Rx=1
rf

Thread 1

c: Wy=1

addr

d: Ry=1
rf

Thread 2

e: Rx=0

fr addr

35 © 2018 Arm Limited



Revised Armv8 memory model

EvoluƟon to mulƟ-copy atomicity means all ordering rules are created equal and largely restricted to
intra-thread accesses:

Architected in an ‘axiomaƟc’ style

Each line of English corresponds directly to an axiomaƟc definiƟon

Requires acyclicity of the ordered-before relaƟon

Abstracts away implementaƟon details, but what about incremental debugging?

Proof of equivalance between axiomaƟc and operaƟonal models:

http://www.cl.cam.ac.uk/~pes20/armv8-mca/armv8-mca-draft.pdf

36 © 2018 Arm Limited

http://www.cl.cam.ac.uk/~pes20/armv8-mca/armv8-mca-draft.pdf


Revised Armv8 memory model

EvoluƟon to mulƟ-copy atomicity means all ordering rules are created equal and largely restricted to
intra-thread accesses:

Architected in an ‘axiomaƟc’ style

Each line of English corresponds directly to an axiomaƟc definiƟon

Requires acyclicity of the ordered-before relaƟon

Abstracts away implementaƟon details, but what about incremental debugging?

Proof of equivalance between axiomaƟc and operaƟonal models:

http://www.cl.cam.ac.uk/~pes20/armv8-mca/armv8-mca-draft.pdf

36 © 2018 Arm Limited

http://www.cl.cam.ac.uk/~pes20/armv8-mca/armv8-mca-draft.pdf


Example: barrier-ordered-before
A read or a write RW1 is Barrier-ordered-before a read or a write RW2 from the same Observer if
and only if RW1 appears in program order before RW2 and any of the following cases apply:

…
RW1 is a writeW1 generated by an instrucƟon with Release semanƟcs and RW2 is a read R2
generated by an instrucƟon with Acquire semanƟcs.
RW1 is a read R1 and either:

R1 appears in program order before a DMB LD that appears in program order before RW2

R1 is generated by an instrucƟon with Acquire or AcquirePC semanƟcs

…

let bob = ...
| [L]; po; [A]
| [R]; po; [dmb.ld]; po
| [A | Q]; po
| ...

37 © 2018 Arm Limited



Example: barrier-ordered-before
A read or a write RW1 is Barrier-ordered-before a read or a write RW2 from the same Observer if
and only if RW1 appears in program order before RW2 and any of the following cases apply:

…
RW1 is a writeW1 generated by an instrucƟon with Release semanƟcs and RW2 is a read R2
generated by an instrucƟon with Acquire semanƟcs.
RW1 is a read R1 and either:

R1 appears in program order before a DMB LD that appears in program order before RW2

R1 is generated by an instrucƟon with Acquire or AcquirePC semanƟcs

…
let bob = ...

| [L]; po; [A]
| [R]; po; [dmb.ld]; po
| [A | Q]; po
| ...

37 © 2018 Arm Limited



Litmus tests in OpenSHMEM
(my first aƩempt)

38 © 2018 Arm Limited



Event syntax

Memory iniƟalised to zero

Local variables named rN

All non-local (symmetric) variables accessed by implicit pointer dereference

Simple C assignment: x=42, r0=y

Basic tests around put, get etc

put(x=1,5) => char _x = 1; openshmem_put(&x, &_x, 1, 5)

r0 = get(x,5) => openshmem_get(&r0, &x, 1, 5)

Warning! Based on quick reading of OpenSHMEM spec: tests may be nonsensical

39 © 2018 Arm Limited



Coherence

…two successive put rouƟnes may deliver data out of order unless a call to
shmem_fence is introduced between the two calls.

We can adapt CoWW in a couple of ways:

P0 | P1 ;
put(x=1, 1) | ;
put(x=2, 1) | ;
r0=get(x, 1) | ;

exists 0:r0=1

P0 | P1 ;
put(x=1, 1) | wait_until(x=2) ;
put(x=2, 1) | r0=x ;

exists 1:r0=1

40 © 2018 Arm Limited



Coherence

…two successive put rouƟnes may deliver data out of order unless a call to
shmem_fence is introduced between the two calls.

We can adapt CoWW in a couple of ways:

P0 | P1 ;
put(x=1, 1) | ;
put(x=2, 1) | ;
r0=get(x, 1) | ;

exists 0:r0=1

P0 | P1 ;
put(x=1, 1) | wait_until(x=2) ;
put(x=2, 1) | r0=x ;

exists 1:r0=1

40 © 2018 Arm Limited



MP

P0 | P1 ;
put(x=1, 1) | wait_until(y=1) ;
fence() | r0=x ;
put(y=1, 1) | ;

exists 1:r0=0

What about interacƟon with C11 (data races) and dependencies?
P0 | P1 ;
atomic_store(x, 1) | r0=get(y, 0) ;
atomic_store(y, 1) | if (r0 == 1) ;

| r1=get_nbi(x, 0) ;

exists 1:r0=1 /\ 1:r1=0

41 © 2018 Arm Limited



MP

P0 | P1 ;
put(x=1, 1) | wait_until(y=1) ;
fence() | r0=x ;
put(y=1, 1) | ;

exists 1:r0=0

What about interacƟon with C11 (data races) and dependencies?
P0 | P1 ;
atomic_store(x, 1) | r0=get(y, 0) ;
atomic_store(y, 1) | if (r0 == 1) ;

| r1=get_nbi(x, 0) ;

exists 1:r0=1 /\ 1:r1=0
41 © 2018 Arm Limited



SB

Need quiet() for Store->Load ordering:

P0 | P1 ;
x=1 | y=1 ;
quiet() | quiet() ;
r0=get(y, 1) | r0=get(x, 0) ;

exists 0:r0=0 /\ 1:r0=0

42 © 2018 Arm Limited



ISA2

Three threads:

P0 | P1 | P2 ;
x=1 | wait_until(y=1) | wait_until(z=1) ;
quiet() | put(z=1, 2) | r0=get(x, 0) ;
put(y=1, 1) | | ;

exists 2:r0=0

Can we avoid the quiet() on P0?

43 © 2018 Arm Limited



IRIW

Four threads:

P0 | P1 | P2 | P3 ;
x=1 | r0=get(x, 0) | r0=get(x, 3) | x=1 ;

| r1=get(x, 3) | r1=get(x, 0) | ;

exists 1:r0=1 /\ 1:r1=0 /\ 2:r0=1 /\ 2:r1=0

barrier() required?

44 © 2018 Arm Limited



QuesƟons?

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited


	
	Hello!
	Why am I here?
	Background and Terminology
	What is a memory consistency model?
	Ponies
	File writeback
	Ok, so what do I need to know?
	The trouble with prose
	A cacophony of confusion
	Example: store buffering
	Lies, damned lies and sequential consistency
	Real hardware and architectures
	Overview of Armv8
	Litmus tests
	Programs
	Candidate executions
	Deriving from-reads (fr)
	Deriving from-reads (fr)
	Formal modelling
	Example litmus test: MP+popl+po
	Example litmus test: MP+popl+po
	
	Operational models
	Example: Armv8 STR instruction
	Operational semantics for SHMEM_PUT_NBI?
	
	Axiomatic models
	Operation of herd
	Candidate generation
	Syntax of the cat DSL
	Examples for Arm (CoWW)
	Examples for Arm (MP+popl+poap)
	
	Multi-copy atomicity
	Revised Armv8 memory model
	Example: barrier-ordered-before
	
	Event syntax
	Coherence
	MP
	SB
	ISA2
	IRIW
	

