LLVM OpenMP* Runtime Library
kmp.h
1 
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22  the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 #define KMP_WEIGHTED_ITERATIONS_SUPPORTED \
31  (KMP_AFFINITY_SUPPORTED && KMP_STATIC_STEAL_ENABLED && \
32  (KMP_ARCH_X86 || KMP_ARCH_X86_64))
33 
34 #define TASK_CURRENT_NOT_QUEUED 0
35 #define TASK_CURRENT_QUEUED 1
36 
37 #ifdef BUILD_TIED_TASK_STACK
38 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
39 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
40 // Number of entries in each task stack array
41 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
42 // Mask for determining index into stack block
43 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
44 #endif // BUILD_TIED_TASK_STACK
45 
46 #define TASK_NOT_PUSHED 1
47 #define TASK_SUCCESSFULLY_PUSHED 0
48 #define TASK_TIED 1
49 #define TASK_UNTIED 0
50 #define TASK_EXPLICIT 1
51 #define TASK_IMPLICIT 0
52 #define TASK_PROXY 1
53 #define TASK_FULL 0
54 #define TASK_DETACHABLE 1
55 #define TASK_UNDETACHABLE 0
56 
57 #define KMP_CANCEL_THREADS
58 #define KMP_THREAD_ATTR
59 
60 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
61 // built on Android
62 #if defined(__ANDROID__)
63 #undef KMP_CANCEL_THREADS
64 #endif
65 
66 // Some WASI targets (e.g., wasm32-wasi-threads) do not support thread
67 // cancellation.
68 #if KMP_OS_WASI
69 #undef KMP_CANCEL_THREADS
70 #endif
71 
72 #if !KMP_OS_WASI
73 #include <signal.h>
74 #endif
75 #include <stdarg.h>
76 #include <stddef.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <string.h>
80 #include <limits>
81 #include <type_traits>
82 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
83  Microsoft library. Some macros provided below to replace these functions */
84 #ifndef __ABSOFT_WIN
85 #include <sys/types.h>
86 #endif
87 #include <limits.h>
88 #include <time.h>
89 
90 #include <errno.h>
91 
92 #include "kmp_os.h"
93 
94 #include "kmp_safe_c_api.h"
95 
96 #if KMP_STATS_ENABLED
97 class kmp_stats_list;
98 #endif
99 
100 #if KMP_USE_HIER_SCHED
101 // Only include hierarchical scheduling if affinity is supported
102 #undef KMP_USE_HIER_SCHED
103 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
104 #endif
105 
106 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
107 #include "hwloc.h"
108 #ifndef HWLOC_OBJ_NUMANODE
109 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
110 #endif
111 #ifndef HWLOC_OBJ_PACKAGE
112 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
113 #endif
114 #endif
115 
116 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
117 #include <xmmintrin.h>
118 #endif
119 
120 // The below has to be defined before including "kmp_barrier.h".
121 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
122 #define KMP_INTERNAL_FREE(p) free(p)
123 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
124 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
125 
126 #include "kmp_debug.h"
127 #include "kmp_lock.h"
128 #include "kmp_version.h"
129 #include "kmp_barrier.h"
130 #if USE_DEBUGGER
131 #include "kmp_debugger.h"
132 #endif
133 #include "kmp_i18n.h"
134 
135 #define KMP_HANDLE_SIGNALS ((KMP_OS_UNIX && !KMP_OS_WASI) || KMP_OS_WINDOWS)
136 
137 #include "kmp_wrapper_malloc.h"
138 #if KMP_OS_UNIX
139 #include <unistd.h>
140 #if !defined NSIG && defined _NSIG
141 #define NSIG _NSIG
142 #endif
143 #endif
144 
145 #if KMP_OS_LINUX
146 #pragma weak clock_gettime
147 #endif
148 
149 #if OMPT_SUPPORT
150 #include "ompt-internal.h"
151 #endif
152 
153 #if OMPD_SUPPORT
154 #include "ompd-specific.h"
155 #endif
156 
157 #ifndef UNLIKELY
158 #define UNLIKELY(x) (x)
159 #endif
160 
161 // Affinity format function
162 #include "kmp_str.h"
163 
164 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
165 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
166 // free lists of limited size.
167 #ifndef USE_FAST_MEMORY
168 #define USE_FAST_MEMORY 3
169 #endif
170 
171 #ifndef KMP_NESTED_HOT_TEAMS
172 #define KMP_NESTED_HOT_TEAMS 0
173 #define USE_NESTED_HOT_ARG(x)
174 #else
175 #if KMP_NESTED_HOT_TEAMS
176 #define USE_NESTED_HOT_ARG(x) , x
177 #else
178 #define USE_NESTED_HOT_ARG(x)
179 #endif
180 #endif
181 
182 // Assume using BGET compare_exchange instruction instead of lock by default.
183 #ifndef USE_CMP_XCHG_FOR_BGET
184 #define USE_CMP_XCHG_FOR_BGET 1
185 #endif
186 
187 // Test to see if queuing lock is better than bootstrap lock for bget
188 // #ifndef USE_QUEUING_LOCK_FOR_BGET
189 // #define USE_QUEUING_LOCK_FOR_BGET
190 // #endif
191 
192 #define KMP_NSEC_PER_SEC 1000000000L
193 #define KMP_USEC_PER_SEC 1000000L
194 #define KMP_NSEC_PER_USEC 1000L
195 
204 enum {
209  /* 0x04 is no longer used */
218  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
219  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
220  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
221 
222  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
223  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
224 
236  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
237  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
238  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
239  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
240  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
241 };
242 
246 typedef struct ident {
247  kmp_int32 reserved_1;
248  kmp_int32 flags;
250  kmp_int32 reserved_2;
251 #if USE_ITT_BUILD
252 /* but currently used for storing region-specific ITT */
253 /* contextual information. */
254 #endif /* USE_ITT_BUILD */
255  kmp_int32 reserved_3;
256  char const *psource;
260  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
261  kmp_int32 get_openmp_version() {
262  return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
263  }
269 // Some forward declarations.
270 typedef union kmp_team kmp_team_t;
271 typedef struct kmp_taskdata kmp_taskdata_t;
272 typedef union kmp_task_team kmp_task_team_t;
273 typedef union kmp_team kmp_team_p;
274 typedef union kmp_info kmp_info_p;
275 typedef union kmp_root kmp_root_p;
276 
277 template <bool C = false, bool S = true> class kmp_flag_32;
278 template <bool C = false, bool S = true> class kmp_flag_64;
279 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
280 class kmp_flag_oncore;
281 
282 #ifdef __cplusplus
283 extern "C" {
284 #endif
285 
286 /* ------------------------------------------------------------------------ */
287 
288 /* Pack two 32-bit signed integers into a 64-bit signed integer */
289 /* ToDo: Fix word ordering for big-endian machines. */
290 #define KMP_PACK_64(HIGH_32, LOW_32) \
291  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
292 
293 // Generic string manipulation macros. Assume that _x is of type char *
294 #define SKIP_WS(_x) \
295  { \
296  while (*(_x) == ' ' || *(_x) == '\t') \
297  (_x)++; \
298  }
299 #define SKIP_DIGITS(_x) \
300  { \
301  while (*(_x) >= '0' && *(_x) <= '9') \
302  (_x)++; \
303  }
304 #define SKIP_TOKEN(_x) \
305  { \
306  while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
307  (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
308  (_x)++; \
309  }
310 #define SKIP_TO(_x, _c) \
311  { \
312  while (*(_x) != '\0' && *(_x) != (_c)) \
313  (_x)++; \
314  }
315 
316 /* ------------------------------------------------------------------------ */
317 
318 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
319 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
320 
321 /* ------------------------------------------------------------------------ */
322 /* Enumeration types */
323 
324 enum kmp_state_timer {
325  ts_stop,
326  ts_start,
327  ts_pause,
328 
329  ts_last_state
330 };
331 
332 enum dynamic_mode {
333  dynamic_default,
334 #ifdef USE_LOAD_BALANCE
335  dynamic_load_balance,
336 #endif /* USE_LOAD_BALANCE */
337  dynamic_random,
338  dynamic_thread_limit,
339  dynamic_max
340 };
341 
342 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
343  * not include it here */
344 #ifndef KMP_SCHED_TYPE_DEFINED
345 #define KMP_SCHED_TYPE_DEFINED
346 typedef enum kmp_sched {
347  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
348  // Note: need to adjust __kmp_sch_map global array in case enum is changed
349  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
350  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
351  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
352  kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
353  kmp_sched_upper_std = 5, // upper bound for standard schedules
354  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
355  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
356 #if KMP_STATIC_STEAL_ENABLED
357  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
358 #endif
359  kmp_sched_upper,
360  kmp_sched_default = kmp_sched_static, // default scheduling
361  kmp_sched_monotonic = 0x80000000
362 } kmp_sched_t;
363 #endif
364 
369 enum sched_type : kmp_int32 {
371  kmp_sch_static_chunked = 33,
373  kmp_sch_dynamic_chunked = 35,
375  kmp_sch_runtime = 37,
377  kmp_sch_trapezoidal = 39,
378 
379  /* accessible only through KMP_SCHEDULE environment variable */
380  kmp_sch_static_greedy = 40,
381  kmp_sch_static_balanced = 41,
382  /* accessible only through KMP_SCHEDULE environment variable */
383  kmp_sch_guided_iterative_chunked = 42,
384  kmp_sch_guided_analytical_chunked = 43,
385  /* accessible only through KMP_SCHEDULE environment variable */
386  kmp_sch_static_steal = 44,
387 
388  /* static with chunk adjustment (e.g., simd) */
389  kmp_sch_static_balanced_chunked = 45,
393  /* accessible only through KMP_SCHEDULE environment variable */
397  kmp_ord_static_chunked = 65,
399  kmp_ord_dynamic_chunked = 67,
400  kmp_ord_guided_chunked = 68,
401  kmp_ord_runtime = 69,
403  kmp_ord_trapezoidal = 71,
406  /* Schedules for Distribute construct */
410  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
411  single iteration/chunk, even if the loop is serialized. For the schedule
412  types listed above, the entire iteration vector is returned if the loop is
413  serialized. This doesn't work for gcc/gcomp sections. */
414  kmp_nm_lower = 160,
416  kmp_nm_static_chunked =
417  (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
419  kmp_nm_dynamic_chunked = 163,
421  kmp_nm_runtime = 165,
422  kmp_nm_auto = 166,
423  kmp_nm_trapezoidal = 167,
424 
425  /* accessible only through KMP_SCHEDULE environment variable */
426  kmp_nm_static_greedy = 168,
427  kmp_nm_static_balanced = 169,
428  /* accessible only through KMP_SCHEDULE environment variable */
429  kmp_nm_guided_iterative_chunked = 170,
430  kmp_nm_guided_analytical_chunked = 171,
431  kmp_nm_static_steal =
432  172, /* accessible only through OMP_SCHEDULE environment variable */
433 
434  kmp_nm_ord_static_chunked = 193,
436  kmp_nm_ord_dynamic_chunked = 195,
437  kmp_nm_ord_guided_chunked = 196,
438  kmp_nm_ord_runtime = 197,
440  kmp_nm_ord_trapezoidal = 199,
443  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
444  we need to distinguish the three possible cases (no modifier, monotonic
445  modifier, nonmonotonic modifier), we need separate bits for each modifier.
446  The absence of monotonic does not imply nonmonotonic, especially since 4.5
447  says that the behaviour of the "no modifier" case is implementation defined
448  in 4.5, but will become "nonmonotonic" in 5.0.
449 
450  Since we're passing a full 32 bit value, we can use a couple of high bits
451  for these flags; out of paranoia we avoid the sign bit.
452 
453  These modifiers can be or-ed into non-static schedules by the compiler to
454  pass the additional information. They will be stripped early in the
455  processing in __kmp_dispatch_init when setting up schedules, so most of the
456  code won't ever see schedules with these bits set. */
458  (1 << 29),
460  (1 << 30),
462 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
463  (enum sched_type)( \
465 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
466 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
467 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
468  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
469 #define SCHEDULE_GET_MODIFIERS(s) \
470  ((enum sched_type)( \
471  (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
472 #define SCHEDULE_SET_MODIFIERS(s, m) \
473  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
474 #define SCHEDULE_NONMONOTONIC 0
475 #define SCHEDULE_MONOTONIC 1
476 
478 };
479 
480 // Apply modifiers on internal kind to standard kind
481 static inline void
482 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
483  enum sched_type internal_kind) {
484  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
485  *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
486  }
487 }
488 
489 // Apply modifiers on standard kind to internal kind
490 static inline void
491 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
492  enum sched_type *internal_kind) {
493  if ((int)kind & (int)kmp_sched_monotonic) {
494  *internal_kind = (enum sched_type)((int)*internal_kind |
496  }
497 }
498 
499 // Get standard schedule without modifiers
500 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
501  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
502 }
503 
504 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
505 typedef union kmp_r_sched {
506  struct {
507  enum sched_type r_sched_type;
508  int chunk;
509  };
510  kmp_int64 sched;
511 } kmp_r_sched_t;
512 
513 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
514 // internal schedule types
515 
516 enum library_type {
517  library_none,
518  library_serial,
519  library_turnaround,
520  library_throughput
521 };
522 
523 #if KMP_OS_LINUX
524 enum clock_function_type {
525  clock_function_gettimeofday,
526  clock_function_clock_gettime
527 };
528 #endif /* KMP_OS_LINUX */
529 
530 #if KMP_MIC_SUPPORTED
531 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
532 #endif
533 
534 /* -- fast reduction stuff ------------------------------------------------ */
535 
536 #undef KMP_FAST_REDUCTION_BARRIER
537 #define KMP_FAST_REDUCTION_BARRIER 1
538 
539 #undef KMP_FAST_REDUCTION_CORE_DUO
540 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
541 #define KMP_FAST_REDUCTION_CORE_DUO 1
542 #endif
543 
544 enum _reduction_method {
545  reduction_method_not_defined = 0,
546  critical_reduce_block = (1 << 8),
547  atomic_reduce_block = (2 << 8),
548  tree_reduce_block = (3 << 8),
549  empty_reduce_block = (4 << 8)
550 };
551 
552 // Description of the packed_reduction_method variable:
553 // The packed_reduction_method variable consists of two enum types variables
554 // that are packed together into 0-th byte and 1-st byte:
555 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
556 // barrier that will be used in fast reduction: bs_plain_barrier or
557 // bs_reduction_barrier
558 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
559 // be used in fast reduction;
560 // Reduction method is of 'enum _reduction_method' type and it's defined the way
561 // so that the bits of 0-th byte are empty, so no need to execute a shift
562 // instruction while packing/unpacking
563 
564 #if KMP_FAST_REDUCTION_BARRIER
565 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
566  ((reduction_method) | (barrier_type))
567 
568 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
569  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
570 
571 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
572  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
573 #else
574 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
575  (reduction_method)
576 
577 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
578  (packed_reduction_method)
579 
580 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
581 #endif
582 
583 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
584  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
585  (which_reduction_block))
586 
587 #if KMP_FAST_REDUCTION_BARRIER
588 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
589  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
590 
591 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
592  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
593 #endif
594 
595 typedef int PACKED_REDUCTION_METHOD_T;
596 
597 /* -- end of fast reduction stuff ----------------------------------------- */
598 
599 #if KMP_OS_WINDOWS
600 #define USE_CBLKDATA
601 #if KMP_MSVC_COMPAT
602 #pragma warning(push)
603 #pragma warning(disable : 271 310)
604 #endif
605 #include <windows.h>
606 #if KMP_MSVC_COMPAT
607 #pragma warning(pop)
608 #endif
609 #endif
610 
611 #if KMP_OS_UNIX
612 #if !KMP_OS_WASI
613 #include <dlfcn.h>
614 #endif
615 #include <pthread.h>
616 #endif
617 
618 enum kmp_hw_t : int {
619  KMP_HW_UNKNOWN = -1,
620  KMP_HW_SOCKET = 0,
621  KMP_HW_PROC_GROUP,
622  KMP_HW_NUMA,
623  KMP_HW_DIE,
624  KMP_HW_LLC,
625  KMP_HW_L3,
626  KMP_HW_TILE,
627  KMP_HW_MODULE,
628  KMP_HW_L2,
629  KMP_HW_L1,
630  KMP_HW_CORE,
631  KMP_HW_THREAD,
632  KMP_HW_LAST
633 };
634 
635 typedef enum kmp_hw_core_type_t {
636  KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
637 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
638  KMP_HW_CORE_TYPE_ATOM = 0x20,
639  KMP_HW_CORE_TYPE_CORE = 0x40,
640  KMP_HW_MAX_NUM_CORE_TYPES = 3,
641 #else
642  KMP_HW_MAX_NUM_CORE_TYPES = 1,
643 #endif
644 } kmp_hw_core_type_t;
645 
646 #define KMP_HW_MAX_NUM_CORE_EFFS 8
647 
648 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
649  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
650 #define KMP_ASSERT_VALID_HW_TYPE(type) \
651  KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
652 
653 #define KMP_FOREACH_HW_TYPE(type) \
654  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
655  type = (kmp_hw_t)((int)type + 1))
656 
657 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
658 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
659 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
660 
661 /* Only Linux* OS and Windows* OS support thread affinity. */
662 #if KMP_AFFINITY_SUPPORTED
663 
664 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
665 #if KMP_OS_WINDOWS
666 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
667 typedef struct GROUP_AFFINITY {
668  KAFFINITY Mask;
669  WORD Group;
670  WORD Reserved[3];
671 } GROUP_AFFINITY;
672 #endif /* _MSC_VER < 1600 */
673 #if KMP_GROUP_AFFINITY
674 extern int __kmp_num_proc_groups;
675 #else
676 static const int __kmp_num_proc_groups = 1;
677 #endif /* KMP_GROUP_AFFINITY */
678 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
679 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
680 
681 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
682 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
683 
684 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
685 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
686 
687 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
688  GROUP_AFFINITY *);
689 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
690 #endif /* KMP_OS_WINDOWS */
691 
692 #if KMP_USE_HWLOC
693 extern hwloc_topology_t __kmp_hwloc_topology;
694 extern int __kmp_hwloc_error;
695 #endif
696 
697 extern size_t __kmp_affin_mask_size;
698 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
699 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
700 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
701 #define KMP_CPU_SET_ITERATE(i, mask) \
702  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
703 #define KMP_CPU_SET(i, mask) (mask)->set(i)
704 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
705 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
706 #define KMP_CPU_ZERO(mask) (mask)->zero()
707 #define KMP_CPU_ISEMPTY(mask) (mask)->empty()
708 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
709 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
710 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
711 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
712 #define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src)
713 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
714 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
715 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
716 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
717 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
718 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
719 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
720 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
721  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
722 #define KMP_CPU_FREE_ARRAY(arr, n) \
723  __kmp_affinity_dispatch->deallocate_mask_array(arr)
724 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
725 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
726 #define __kmp_get_system_affinity(mask, abort_bool) \
727  (mask)->get_system_affinity(abort_bool)
728 #define __kmp_set_system_affinity(mask, abort_bool) \
729  (mask)->set_system_affinity(abort_bool)
730 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
731 
732 class KMPAffinity {
733 public:
734  class Mask {
735  public:
736  void *operator new(size_t n);
737  void operator delete(void *p);
738  void *operator new[](size_t n);
739  void operator delete[](void *p);
740  virtual ~Mask() {}
741  // Set bit i to 1
742  virtual void set(int i) {}
743  // Return bit i
744  virtual bool is_set(int i) const { return false; }
745  // Set bit i to 0
746  virtual void clear(int i) {}
747  // Zero out entire mask
748  virtual void zero() {}
749  // Check whether mask is empty
750  virtual bool empty() const { return true; }
751  // Copy src into this mask
752  virtual void copy(const Mask *src) {}
753  // this &= rhs
754  virtual void bitwise_and(const Mask *rhs) {}
755  // this |= rhs
756  virtual void bitwise_or(const Mask *rhs) {}
757  // this = ~this
758  virtual void bitwise_not() {}
759  // this == rhs
760  virtual bool is_equal(const Mask *rhs) const { return false; }
761  // API for iterating over an affinity mask
762  // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
763  virtual int begin() const { return 0; }
764  virtual int end() const { return 0; }
765  virtual int next(int previous) const { return 0; }
766 #if KMP_OS_WINDOWS
767  virtual int set_process_affinity(bool abort_on_error) const { return -1; }
768 #endif
769  // Set the system's affinity to this affinity mask's value
770  virtual int set_system_affinity(bool abort_on_error) const { return -1; }
771  // Set this affinity mask to the current system affinity
772  virtual int get_system_affinity(bool abort_on_error) { return -1; }
773  // Only 1 DWORD in the mask should have any procs set.
774  // Return the appropriate index, or -1 for an invalid mask.
775  virtual int get_proc_group() const { return -1; }
776  int get_max_cpu() const {
777  int cpu;
778  int max_cpu = -1;
779  KMP_CPU_SET_ITERATE(cpu, this) {
780  if (cpu > max_cpu)
781  max_cpu = cpu;
782  }
783  return max_cpu;
784  }
785  };
786  void *operator new(size_t n);
787  void operator delete(void *p);
788  // Need virtual destructor
789  virtual ~KMPAffinity() = default;
790  // Determine if affinity is capable
791  virtual void determine_capable(const char *env_var) {}
792  // Bind the current thread to os proc
793  virtual void bind_thread(int proc) {}
794  // Factory functions to allocate/deallocate a mask
795  virtual Mask *allocate_mask() { return nullptr; }
796  virtual void deallocate_mask(Mask *m) {}
797  virtual Mask *allocate_mask_array(int num) { return nullptr; }
798  virtual void deallocate_mask_array(Mask *m) {}
799  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
800  static void pick_api();
801  static void destroy_api();
802  enum api_type {
803  NATIVE_OS
804 #if KMP_USE_HWLOC
805  ,
806  HWLOC
807 #endif
808  };
809  virtual api_type get_api_type() const {
810  KMP_ASSERT(0);
811  return NATIVE_OS;
812  }
813 
814 private:
815  static bool picked_api;
816 };
817 
818 typedef KMPAffinity::Mask kmp_affin_mask_t;
819 extern KMPAffinity *__kmp_affinity_dispatch;
820 
821 #ifndef KMP_OS_AIX
822 class kmp_affinity_raii_t {
823  kmp_affin_mask_t *mask;
824  bool restored;
825 
826 public:
827  kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
828  : restored(false) {
829  if (KMP_AFFINITY_CAPABLE()) {
830  KMP_CPU_ALLOC(mask);
831  KMP_ASSERT(mask != NULL);
832  __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
833  if (new_mask)
834  __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
835  }
836  }
837  void restore() {
838  if (!restored && KMP_AFFINITY_CAPABLE()) {
839  __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
840  KMP_CPU_FREE(mask);
841  }
842  restored = true;
843  }
844  ~kmp_affinity_raii_t() { restore(); }
845 };
846 #endif // !KMP_OS_AIX
847 
848 // Declare local char buffers with this size for printing debug and info
849 // messages, using __kmp_affinity_print_mask().
850 #define KMP_AFFIN_MASK_PRINT_LEN 1024
851 
852 enum affinity_type {
853  affinity_none = 0,
854  affinity_physical,
855  affinity_logical,
856  affinity_compact,
857  affinity_scatter,
858  affinity_explicit,
859  affinity_balanced,
860  affinity_disabled, // not used outsize the env var parser
861  affinity_default
862 };
863 
864 enum affinity_top_method {
865  affinity_top_method_all = 0, // try all (supported) methods, in order
866 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
867  affinity_top_method_apicid,
868  affinity_top_method_x2apicid,
869  affinity_top_method_x2apicid_1f,
870 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
871  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
872 #if KMP_GROUP_AFFINITY
873  affinity_top_method_group,
874 #endif /* KMP_GROUP_AFFINITY */
875  affinity_top_method_flat,
876 #if KMP_USE_HWLOC
877  affinity_top_method_hwloc,
878 #endif
879  affinity_top_method_default
880 };
881 
882 #define affinity_respect_mask_default (2)
883 
884 typedef struct kmp_affinity_flags_t {
885  unsigned dups : 1;
886  unsigned verbose : 1;
887  unsigned warnings : 1;
888  unsigned respect : 2;
889  unsigned reset : 1;
890  unsigned initialized : 1;
891  unsigned core_types_gran : 1;
892  unsigned core_effs_gran : 1;
893  unsigned omp_places : 1;
894  unsigned reserved : 22;
895 } kmp_affinity_flags_t;
896 KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
897 
898 typedef struct kmp_affinity_ids_t {
899  int os_id;
900  int ids[KMP_HW_LAST];
901 } kmp_affinity_ids_t;
902 
903 typedef struct kmp_affinity_attrs_t {
904  int core_type : 8;
905  int core_eff : 8;
906  unsigned valid : 1;
907  unsigned reserved : 15;
908 } kmp_affinity_attrs_t;
909 #define KMP_AFFINITY_ATTRS_UNKNOWN \
910  { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
911 
912 typedef struct kmp_affinity_t {
913  char *proclist;
914  enum affinity_type type;
915  kmp_hw_t gran;
916  int gran_levels;
917  kmp_affinity_attrs_t core_attr_gran;
918  int compact;
919  int offset;
920  kmp_affinity_flags_t flags;
921  unsigned num_masks;
922  kmp_affin_mask_t *masks;
923  kmp_affinity_ids_t *ids;
924  kmp_affinity_attrs_t *attrs;
925  unsigned num_os_id_masks;
926  kmp_affin_mask_t *os_id_masks;
927  const char *env_var;
928 } kmp_affinity_t;
929 
930 #define KMP_AFFINITY_INIT(env) \
931  { \
932  nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \
933  0, 0, \
934  {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE, \
935  FALSE, FALSE, FALSE}, \
936  0, nullptr, nullptr, nullptr, 0, nullptr, env \
937  }
938 
939 extern enum affinity_top_method __kmp_affinity_top_method;
940 extern kmp_affinity_t __kmp_affinity;
941 extern kmp_affinity_t __kmp_hh_affinity;
942 extern kmp_affinity_t *__kmp_affinities[2];
943 
944 extern void __kmp_affinity_bind_thread(int which);
945 
946 extern kmp_affin_mask_t *__kmp_affin_fullMask;
947 extern kmp_affin_mask_t *__kmp_affin_origMask;
948 extern char *__kmp_cpuinfo_file;
949 
950 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
951 extern int __kmp_first_osid_with_ecore;
952 #endif
953 
954 #endif /* KMP_AFFINITY_SUPPORTED */
955 
956 // This needs to be kept in sync with the values in omp.h !!!
957 typedef enum kmp_proc_bind_t {
958  proc_bind_false = 0,
959  proc_bind_true,
960  proc_bind_primary,
961  proc_bind_close,
962  proc_bind_spread,
963  proc_bind_intel, // use KMP_AFFINITY interface
964  proc_bind_default
965 } kmp_proc_bind_t;
966 
967 typedef struct kmp_nested_proc_bind_t {
968  kmp_proc_bind_t *bind_types;
969  int size;
970  int used;
971 } kmp_nested_proc_bind_t;
972 
973 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
974 extern kmp_proc_bind_t __kmp_teams_proc_bind;
975 
976 extern int __kmp_display_affinity;
977 extern char *__kmp_affinity_format;
978 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
979 #if OMPT_SUPPORT
980 extern int __kmp_tool;
981 extern char *__kmp_tool_libraries;
982 #endif // OMPT_SUPPORT
983 
984 #if KMP_AFFINITY_SUPPORTED
985 #define KMP_PLACE_ALL (-1)
986 #define KMP_PLACE_UNDEFINED (-2)
987 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
988 #define KMP_AFFINITY_NON_PROC_BIND \
989  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
990  __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
991  (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
992 #endif /* KMP_AFFINITY_SUPPORTED */
993 
994 extern int __kmp_affinity_num_places;
995 
996 typedef enum kmp_cancel_kind_t {
997  cancel_noreq = 0,
998  cancel_parallel = 1,
999  cancel_loop = 2,
1000  cancel_sections = 3,
1001  cancel_taskgroup = 4
1002 } kmp_cancel_kind_t;
1003 
1004 // KMP_HW_SUBSET support:
1005 typedef struct kmp_hws_item {
1006  int num;
1007  int offset;
1008 } kmp_hws_item_t;
1009 
1010 extern kmp_hws_item_t __kmp_hws_socket;
1011 extern kmp_hws_item_t __kmp_hws_die;
1012 extern kmp_hws_item_t __kmp_hws_node;
1013 extern kmp_hws_item_t __kmp_hws_tile;
1014 extern kmp_hws_item_t __kmp_hws_core;
1015 extern kmp_hws_item_t __kmp_hws_proc;
1016 extern int __kmp_hws_requested;
1017 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
1018 
1019 /* ------------------------------------------------------------------------ */
1020 
1021 #define KMP_PAD(type, sz) \
1022  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
1023 
1024 // We need to avoid using -1 as a GTID as +1 is added to the gtid
1025 // when storing it in a lock, and the value 0 is reserved.
1026 #define KMP_GTID_DNE (-2) /* Does not exist */
1027 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1028 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1029 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
1030 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1031 
1032 /* OpenMP 5.0 Memory Management support */
1033 
1034 #ifndef __OMP_H
1035 // Duplicate type definitions from omp.h
1036 typedef uintptr_t omp_uintptr_t;
1037 
1038 typedef enum {
1039  omp_atk_sync_hint = 1,
1040  omp_atk_alignment = 2,
1041  omp_atk_access = 3,
1042  omp_atk_pool_size = 4,
1043  omp_atk_fallback = 5,
1044  omp_atk_fb_data = 6,
1045  omp_atk_pinned = 7,
1046  omp_atk_partition = 8
1047 } omp_alloctrait_key_t;
1048 
1049 typedef enum {
1050  omp_atv_false = 0,
1051  omp_atv_true = 1,
1052  omp_atv_contended = 3,
1053  omp_atv_uncontended = 4,
1054  omp_atv_serialized = 5,
1055  omp_atv_sequential = omp_atv_serialized, // (deprecated)
1056  omp_atv_private = 6,
1057  omp_atv_all = 7,
1058  omp_atv_thread = 8,
1059  omp_atv_pteam = 9,
1060  omp_atv_cgroup = 10,
1061  omp_atv_default_mem_fb = 11,
1062  omp_atv_null_fb = 12,
1063  omp_atv_abort_fb = 13,
1064  omp_atv_allocator_fb = 14,
1065  omp_atv_environment = 15,
1066  omp_atv_nearest = 16,
1067  omp_atv_blocked = 17,
1068  omp_atv_interleaved = 18
1069 } omp_alloctrait_value_t;
1070 #define omp_atv_default ((omp_uintptr_t)-1)
1071 
1072 typedef void *omp_memspace_handle_t;
1073 extern omp_memspace_handle_t const omp_default_mem_space;
1074 extern omp_memspace_handle_t const omp_large_cap_mem_space;
1075 extern omp_memspace_handle_t const omp_const_mem_space;
1076 extern omp_memspace_handle_t const omp_high_bw_mem_space;
1077 extern omp_memspace_handle_t const omp_low_lat_mem_space;
1078 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1079 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1080 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1081 
1082 typedef struct {
1083  omp_alloctrait_key_t key;
1084  omp_uintptr_t value;
1085 } omp_alloctrait_t;
1086 
1087 typedef void *omp_allocator_handle_t;
1088 extern omp_allocator_handle_t const omp_null_allocator;
1089 extern omp_allocator_handle_t const omp_default_mem_alloc;
1090 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1091 extern omp_allocator_handle_t const omp_const_mem_alloc;
1092 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1093 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1094 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1095 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1096 extern omp_allocator_handle_t const omp_thread_mem_alloc;
1097 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1098 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1099 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1100 extern omp_allocator_handle_t const kmp_max_mem_alloc;
1101 extern omp_allocator_handle_t __kmp_def_allocator;
1102 
1103 // end of duplicate type definitions from omp.h
1104 #endif
1105 
1106 extern int __kmp_memkind_available;
1107 
1108 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1109 
1110 typedef struct kmp_allocator_t {
1111  omp_memspace_handle_t memspace;
1112  void **memkind; // pointer to memkind
1113  size_t alignment;
1114  omp_alloctrait_value_t fb;
1115  kmp_allocator_t *fb_data;
1116  kmp_uint64 pool_size;
1117  kmp_uint64 pool_used;
1118  bool pinned;
1119 } kmp_allocator_t;
1120 
1121 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1122  omp_memspace_handle_t,
1123  int ntraits,
1124  omp_alloctrait_t traits[]);
1125 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1126 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1127 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1128 // external interfaces, may be used by compiler
1129 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1130 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1131  omp_allocator_handle_t al);
1132 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1133  omp_allocator_handle_t al);
1134 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1135  omp_allocator_handle_t al,
1136  omp_allocator_handle_t free_al);
1137 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1138 // internal interfaces, contain real implementation
1139 extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1140  omp_allocator_handle_t al);
1141 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1142  omp_allocator_handle_t al);
1143 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1144  omp_allocator_handle_t al,
1145  omp_allocator_handle_t free_al);
1146 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1147 
1148 extern void __kmp_init_memkind();
1149 extern void __kmp_fini_memkind();
1150 extern void __kmp_init_target_mem();
1151 
1152 /* ------------------------------------------------------------------------ */
1153 
1154 #if ENABLE_LIBOMPTARGET
1155 extern void __kmp_init_target_task();
1156 #endif
1157 
1158 /* ------------------------------------------------------------------------ */
1159 
1160 #define KMP_UINT64_MAX \
1161  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1162 
1163 #define KMP_MIN_NTH 1
1164 
1165 #ifndef KMP_MAX_NTH
1166 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1167 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1168 #else
1169 #ifdef __ve__
1170 // VE's pthread supports only up to 64 threads per a VE process.
1171 // Please check p. 14 of following documentation for more details.
1172 // https://sxauroratsubasa.sakura.ne.jp/documents/veos/en/VEOS_high_level_design.pdf
1173 #define KMP_MAX_NTH 64
1174 #else
1175 #define KMP_MAX_NTH INT_MAX
1176 #endif
1177 #endif
1178 #endif /* KMP_MAX_NTH */
1179 
1180 #ifdef PTHREAD_STACK_MIN
1181 #define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1182 #else
1183 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1184 #endif
1185 
1186 #if KMP_OS_AIX && KMP_ARCH_PPC
1187 #define KMP_MAX_STKSIZE 0x10000000 /* 256Mb max size on 32-bit AIX */
1188 #else
1189 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1190 #endif
1191 
1192 #if KMP_ARCH_X86
1193 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1194 #elif KMP_ARCH_X86_64
1195 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1196 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1197 #elif KMP_ARCH_VE
1198 // Minimum stack size for pthread for VE is 4MB.
1199 // https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm
1200 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1201 #elif KMP_OS_AIX
1202 // The default stack size for worker threads on AIX is 4MB.
1203 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1204 #else
1205 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1206 #endif
1207 
1208 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1209 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1210 #define KMP_MAX_MALLOC_POOL_INCR \
1211  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1212 
1213 #define KMP_MIN_STKOFFSET (0)
1214 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1215 #if KMP_OS_DARWIN
1216 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1217 #else
1218 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1219 #endif
1220 
1221 #define KMP_MIN_STKPADDING (0)
1222 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1223 
1224 #define KMP_BLOCKTIME_MULTIPLIER \
1225  (1000000) /* number of blocktime units per second */
1226 #define KMP_MIN_BLOCKTIME (0)
1227 #define KMP_MAX_BLOCKTIME \
1228  (INT_MAX) /* Must be this for "infinite" setting the work */
1229 
1230 /* __kmp_blocktime is in microseconds */
1231 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000))
1232 
1233 #if KMP_USE_MONITOR
1234 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1235 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1236 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1237 
1238 /* Calculate new number of monitor wakeups for a specific block time based on
1239  previous monitor_wakeups. Only allow increasing number of wakeups */
1240 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1241  (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1242  : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1243  : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1244  ? (monitor_wakeups) \
1245  : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1246 
1247 /* Calculate number of intervals for a specific block time based on
1248  monitor_wakeups */
1249 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1250  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1251  (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1252 #else
1253 #define KMP_BLOCKTIME(team, tid) \
1254  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1255 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1256 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1257 extern kmp_uint64 __kmp_ticks_per_msec;
1258 extern kmp_uint64 __kmp_ticks_per_usec;
1259 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1260 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1261 #else
1262 #define KMP_NOW() __kmp_hardware_timestamp()
1263 #endif
1264 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1265  ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec)
1266 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1267 #else
1268 // System time is retrieved sporadically while blocking.
1269 extern kmp_uint64 __kmp_now_nsec();
1270 #define KMP_NOW() __kmp_now_nsec()
1271 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1272  ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC)
1273 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1274 #endif
1275 #endif // KMP_USE_MONITOR
1276 
1277 #define KMP_MIN_STATSCOLS 40
1278 #define KMP_MAX_STATSCOLS 4096
1279 #define KMP_DEFAULT_STATSCOLS 80
1280 
1281 #define KMP_MIN_INTERVAL 0
1282 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1283 #define KMP_DEFAULT_INTERVAL 0
1284 
1285 #define KMP_MIN_CHUNK 1
1286 #define KMP_MAX_CHUNK (INT_MAX - 1)
1287 #define KMP_DEFAULT_CHUNK 1
1288 
1289 #define KMP_MIN_DISP_NUM_BUFF 1
1290 #define KMP_DFLT_DISP_NUM_BUFF 7
1291 #define KMP_MAX_DISP_NUM_BUFF 4096
1292 
1293 #define KMP_MAX_ORDERED 8
1294 
1295 #define KMP_MAX_FIELDS 32
1296 
1297 #define KMP_MAX_BRANCH_BITS 31
1298 
1299 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1300 
1301 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1302 
1303 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1304 
1305 /* Minimum number of threads before switch to TLS gtid (experimentally
1306  determined) */
1307 /* josh TODO: what about OS X* tuning? */
1308 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1309 #define KMP_TLS_GTID_MIN 5
1310 #else
1311 #define KMP_TLS_GTID_MIN INT_MAX
1312 #endif
1313 
1314 #define KMP_MASTER_TID(tid) (0 == (tid))
1315 #define KMP_WORKER_TID(tid) (0 != (tid))
1316 
1317 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1318 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1319 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1320 
1321 #ifndef TRUE
1322 #define FALSE 0
1323 #define TRUE (!FALSE)
1324 #endif
1325 
1326 /* NOTE: all of the following constants must be even */
1327 
1328 #if KMP_OS_WINDOWS
1329 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1330 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1331 #elif KMP_OS_LINUX
1332 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1333 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1334 #elif KMP_OS_DARWIN
1335 /* TODO: tune for KMP_OS_DARWIN */
1336 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1337 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1338 #elif KMP_OS_DRAGONFLY
1339 /* TODO: tune for KMP_OS_DRAGONFLY */
1340 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1341 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1342 #elif KMP_OS_FREEBSD
1343 /* TODO: tune for KMP_OS_FREEBSD */
1344 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1345 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1346 #elif KMP_OS_NETBSD
1347 /* TODO: tune for KMP_OS_NETBSD */
1348 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1349 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1350 #elif KMP_OS_OPENBSD
1351 /* TODO: tune for KMP_OS_OPENBSD */
1352 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1353 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1354 #elif KMP_OS_HURD
1355 /* TODO: tune for KMP_OS_HURD */
1356 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1357 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1358 #elif KMP_OS_SOLARIS
1359 /* TODO: tune for KMP_OS_SOLARIS */
1360 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1361 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1362 #elif KMP_OS_WASI
1363 /* TODO: tune for KMP_OS_WASI */
1364 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1365 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1366 #elif KMP_OS_AIX
1367 /* TODO: tune for KMP_OS_AIX */
1368 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1369 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1370 #endif
1371 
1372 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1373 typedef struct kmp_cpuid {
1374  kmp_uint32 eax;
1375  kmp_uint32 ebx;
1376  kmp_uint32 ecx;
1377  kmp_uint32 edx;
1378 } kmp_cpuid_t;
1379 
1380 typedef struct kmp_cpuinfo_flags_t {
1381  unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1382  unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1383  unsigned hybrid : 1;
1384  unsigned reserved : 29; // Ensure size of 32 bits
1385 } kmp_cpuinfo_flags_t;
1386 
1387 typedef struct kmp_cpuinfo {
1388  int initialized; // If 0, other fields are not initialized.
1389  int signature; // CPUID(1).EAX
1390  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1391  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1392  // Model << 4 ) + Model)
1393  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1394  kmp_cpuinfo_flags_t flags;
1395  int apic_id;
1396  int physical_id;
1397  int logical_id;
1398  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1399  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1400 } kmp_cpuinfo_t;
1401 
1402 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1403 
1404 #if KMP_OS_UNIX
1405 // subleaf is only needed for cache and topology discovery and can be set to
1406 // zero in most cases
1407 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1408  __asm__ __volatile__("cpuid"
1409  : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1410  : "a"(leaf), "c"(subleaf));
1411 }
1412 // Load p into FPU control word
1413 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1414  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1415 }
1416 // Store FPU control word into p
1417 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1418  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1419 }
1420 static inline void __kmp_clear_x87_fpu_status_word() {
1421 #if KMP_MIC
1422  // 32-bit protected mode x87 FPU state
1423  struct x87_fpu_state {
1424  unsigned cw;
1425  unsigned sw;
1426  unsigned tw;
1427  unsigned fip;
1428  unsigned fips;
1429  unsigned fdp;
1430  unsigned fds;
1431  };
1432  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1433  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1434  "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1435  "fldenv %0\n\t" // load FP env back
1436  : "+m"(fpu_state), "+m"(fpu_state.sw));
1437 #else
1438  __asm__ __volatile__("fnclex");
1439 #endif // KMP_MIC
1440 }
1441 #if __SSE__
1442 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1443 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1444 #else
1445 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1446 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1447 #endif
1448 #else
1449 // Windows still has these as external functions in assembly file
1450 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1451 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1452 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1453 extern void __kmp_clear_x87_fpu_status_word();
1454 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1455 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1456 #endif // KMP_OS_UNIX
1457 
1458 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1459 
1460 // User-level Monitor/Mwait
1461 #if KMP_HAVE_UMWAIT
1462 // We always try for UMWAIT first
1463 #if KMP_HAVE_WAITPKG_INTRINSICS
1464 #if KMP_HAVE_IMMINTRIN_H
1465 #include <immintrin.h>
1466 #elif KMP_HAVE_INTRIN_H
1467 #include <intrin.h>
1468 #endif
1469 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1470 
1471 KMP_ATTRIBUTE_TARGET_WAITPKG
1472 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1473 #if !KMP_HAVE_WAITPKG_INTRINSICS
1474  uint32_t timeHi = uint32_t(counter >> 32);
1475  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1476  char flag;
1477  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1478  "setb %0"
1479  // The "=q" restraint means any register accessible as rl
1480  // in 32-bit mode: a, b, c, and d;
1481  // in 64-bit mode: any integer register
1482  : "=q"(flag)
1483  : "a"(timeLo), "d"(timeHi), "c"(hint)
1484  :);
1485  return flag;
1486 #else
1487  return _tpause(hint, counter);
1488 #endif
1489 }
1490 KMP_ATTRIBUTE_TARGET_WAITPKG
1491 static inline void __kmp_umonitor(void *cacheline) {
1492 #if !KMP_HAVE_WAITPKG_INTRINSICS
1493  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1494  :
1495  : "a"(cacheline)
1496  :);
1497 #else
1498  _umonitor(cacheline);
1499 #endif
1500 }
1501 KMP_ATTRIBUTE_TARGET_WAITPKG
1502 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1503 #if !KMP_HAVE_WAITPKG_INTRINSICS
1504  uint32_t timeHi = uint32_t(counter >> 32);
1505  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1506  char flag;
1507  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1508  "setb %0"
1509  // The "=q" restraint means any register accessible as rl
1510  // in 32-bit mode: a, b, c, and d;
1511  // in 64-bit mode: any integer register
1512  : "=q"(flag)
1513  : "a"(timeLo), "d"(timeHi), "c"(hint)
1514  :);
1515  return flag;
1516 #else
1517  return _umwait(hint, counter);
1518 #endif
1519 }
1520 #elif KMP_HAVE_MWAIT
1521 #if KMP_OS_UNIX
1522 #include <pmmintrin.h>
1523 #else
1524 #include <intrin.h>
1525 #endif
1526 #if KMP_OS_UNIX
1527 __attribute__((target("sse3")))
1528 #endif
1529 static inline void
1530 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1531  _mm_monitor(cacheline, extensions, hints);
1532 }
1533 #if KMP_OS_UNIX
1534 __attribute__((target("sse3")))
1535 #endif
1536 static inline void
1537 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1538  _mm_mwait(extensions, hints);
1539 }
1540 #endif // KMP_HAVE_UMWAIT
1541 
1542 #if KMP_ARCH_X86
1543 extern void __kmp_x86_pause(void);
1544 #elif KMP_MIC
1545 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1546 // regression after removal of extra PAUSE from spin loops. Changing
1547 // the delay from 100 to 300 showed even better performance than double PAUSE
1548 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1549 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1550 #else
1551 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1552 #endif
1553 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1554 #elif KMP_ARCH_PPC64
1555 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1556 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1557 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1558 #define KMP_CPU_PAUSE() \
1559  do { \
1560  KMP_PPC64_PRI_LOW(); \
1561  KMP_PPC64_PRI_MED(); \
1562  KMP_PPC64_PRI_LOC_MB(); \
1563  } while (0)
1564 #else
1565 #define KMP_CPU_PAUSE() /* nothing to do */
1566 #endif
1567 
1568 #define KMP_INIT_YIELD(count) \
1569  { (count) = __kmp_yield_init; }
1570 
1571 #define KMP_INIT_BACKOFF(time) \
1572  { (time) = __kmp_pause_init; }
1573 
1574 #define KMP_OVERSUBSCRIBED \
1575  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1576 
1577 #define KMP_TRY_YIELD \
1578  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1579 
1580 #define KMP_TRY_YIELD_OVERSUB \
1581  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1582 
1583 #define KMP_YIELD(cond) \
1584  { \
1585  KMP_CPU_PAUSE(); \
1586  if ((cond) && (KMP_TRY_YIELD)) \
1587  __kmp_yield(); \
1588  }
1589 
1590 #define KMP_YIELD_OVERSUB() \
1591  { \
1592  KMP_CPU_PAUSE(); \
1593  if ((KMP_TRY_YIELD_OVERSUB)) \
1594  __kmp_yield(); \
1595  }
1596 
1597 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1598 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1599 #define KMP_YIELD_SPIN(count) \
1600  { \
1601  KMP_CPU_PAUSE(); \
1602  if (KMP_TRY_YIELD) { \
1603  (count) -= 2; \
1604  if (!(count)) { \
1605  __kmp_yield(); \
1606  (count) = __kmp_yield_next; \
1607  } \
1608  } \
1609  }
1610 
1611 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1612 // (C0.2) state, which improves performance of other SMT threads on the same
1613 // core, otherwise, use the fast (C0.1) default state, or whatever the user has
1614 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1615 // available, fall back to the regular CPU pause and yield combination.
1616 #if KMP_HAVE_UMWAIT
1617 #define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1618 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1619  { \
1620  if (__kmp_tpause_enabled) { \
1621  if (KMP_OVERSUBSCRIBED) { \
1622  __kmp_tpause(0, (time)); \
1623  } else { \
1624  __kmp_tpause(__kmp_tpause_hint, (time)); \
1625  } \
1626  (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1627  } else { \
1628  KMP_CPU_PAUSE(); \
1629  if ((KMP_TRY_YIELD_OVERSUB)) { \
1630  __kmp_yield(); \
1631  } else if (__kmp_use_yield == 1) { \
1632  (count) -= 2; \
1633  if (!(count)) { \
1634  __kmp_yield(); \
1635  (count) = __kmp_yield_next; \
1636  } \
1637  } \
1638  } \
1639  }
1640 #else
1641 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1642  { \
1643  KMP_CPU_PAUSE(); \
1644  if ((KMP_TRY_YIELD_OVERSUB)) \
1645  __kmp_yield(); \
1646  else if (__kmp_use_yield == 1) { \
1647  (count) -= 2; \
1648  if (!(count)) { \
1649  __kmp_yield(); \
1650  (count) = __kmp_yield_next; \
1651  } \
1652  } \
1653  }
1654 #endif // KMP_HAVE_UMWAIT
1655 
1656 /* ------------------------------------------------------------------------ */
1657 /* Support datatypes for the orphaned construct nesting checks. */
1658 /* ------------------------------------------------------------------------ */
1659 
1660 /* When adding to this enum, add its corresponding string in cons_text_c[]
1661  * array in kmp_error.cpp */
1662 enum cons_type {
1663  ct_none,
1664  ct_parallel,
1665  ct_pdo,
1666  ct_pdo_ordered,
1667  ct_psections,
1668  ct_psingle,
1669  ct_critical,
1670  ct_ordered_in_parallel,
1671  ct_ordered_in_pdo,
1672  ct_master,
1673  ct_reduce,
1674  ct_barrier,
1675  ct_masked
1676 };
1677 
1678 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1679 
1680 struct cons_data {
1681  ident_t const *ident;
1682  enum cons_type type;
1683  int prev;
1684  kmp_user_lock_p
1685  name; /* address exclusively for critical section name comparison */
1686 };
1687 
1688 struct cons_header {
1689  int p_top, w_top, s_top;
1690  int stack_size, stack_top;
1691  struct cons_data *stack_data;
1692 };
1693 
1694 struct kmp_region_info {
1695  char *text;
1696  int offset[KMP_MAX_FIELDS];
1697  int length[KMP_MAX_FIELDS];
1698 };
1699 
1700 /* ---------------------------------------------------------------------- */
1701 /* ---------------------------------------------------------------------- */
1702 
1703 #if KMP_OS_WINDOWS
1704 typedef HANDLE kmp_thread_t;
1705 typedef DWORD kmp_key_t;
1706 #endif /* KMP_OS_WINDOWS */
1707 
1708 #if KMP_OS_UNIX
1709 typedef pthread_t kmp_thread_t;
1710 typedef pthread_key_t kmp_key_t;
1711 #endif
1712 
1713 extern kmp_key_t __kmp_gtid_threadprivate_key;
1714 
1715 typedef struct kmp_sys_info {
1716  long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1717  long minflt; /* the number of page faults serviced without any I/O */
1718  long majflt; /* the number of page faults serviced that required I/O */
1719  long nswap; /* the number of times a process was "swapped" out of memory */
1720  long inblock; /* the number of times the file system had to perform input */
1721  long oublock; /* the number of times the file system had to perform output */
1722  long nvcsw; /* the number of times a context switch was voluntarily */
1723  long nivcsw; /* the number of times a context switch was forced */
1724 } kmp_sys_info_t;
1725 
1726 #if USE_ITT_BUILD
1727 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1728 // required type here. Later we will check the type meets requirements.
1729 typedef int kmp_itt_mark_t;
1730 #define KMP_ITT_DEBUG 0
1731 #endif /* USE_ITT_BUILD */
1732 
1733 typedef kmp_int32 kmp_critical_name[8];
1734 
1744 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1745 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1746  ...);
1747 
1752 /* ---------------------------------------------------------------------------
1753  */
1754 /* Threadprivate initialization/finalization function declarations */
1755 
1756 /* for non-array objects: __kmpc_threadprivate_register() */
1757 
1762 typedef void *(*kmpc_ctor)(void *);
1763 
1768 typedef void (*kmpc_dtor)(
1769  void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1770  compiler */
1775 typedef void *(*kmpc_cctor)(void *, void *);
1776 
1777 /* for array objects: __kmpc_threadprivate_register_vec() */
1778 /* First arg: "this" pointer */
1779 /* Last arg: number of array elements */
1785 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1791 typedef void (*kmpc_dtor_vec)(void *, size_t);
1797 typedef void *(*kmpc_cctor_vec)(void *, void *,
1798  size_t); /* function unused by compiler */
1799 
1804 /* keeps tracked of threadprivate cache allocations for cleanup later */
1805 typedef struct kmp_cached_addr {
1806  void **addr; /* address of allocated cache */
1807  void ***compiler_cache; /* pointer to compiler's cache */
1808  void *data; /* pointer to global data */
1809  struct kmp_cached_addr *next; /* pointer to next cached address */
1810 } kmp_cached_addr_t;
1811 
1812 struct private_data {
1813  struct private_data *next; /* The next descriptor in the list */
1814  void *data; /* The data buffer for this descriptor */
1815  int more; /* The repeat count for this descriptor */
1816  size_t size; /* The data size for this descriptor */
1817 };
1818 
1819 struct private_common {
1820  struct private_common *next;
1821  struct private_common *link;
1822  void *gbl_addr;
1823  void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1824  size_t cmn_size;
1825 };
1826 
1827 struct shared_common {
1828  struct shared_common *next;
1829  struct private_data *pod_init;
1830  void *obj_init;
1831  void *gbl_addr;
1832  union {
1833  kmpc_ctor ctor;
1834  kmpc_ctor_vec ctorv;
1835  } ct;
1836  union {
1837  kmpc_cctor cctor;
1838  kmpc_cctor_vec cctorv;
1839  } cct;
1840  union {
1841  kmpc_dtor dtor;
1842  kmpc_dtor_vec dtorv;
1843  } dt;
1844  size_t vec_len;
1845  int is_vec;
1846  size_t cmn_size;
1847 };
1848 
1849 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1850 #define KMP_HASH_TABLE_SIZE \
1851  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1852 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1853 #define KMP_HASH(x) \
1854  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1855 
1856 struct common_table {
1857  struct private_common *data[KMP_HASH_TABLE_SIZE];
1858 };
1859 
1860 struct shared_table {
1861  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1862 };
1863 
1864 /* ------------------------------------------------------------------------ */
1865 
1866 #if KMP_USE_HIER_SCHED
1867 // Shared barrier data that exists inside a single unit of the scheduling
1868 // hierarchy
1869 typedef struct kmp_hier_private_bdata_t {
1870  kmp_int32 num_active;
1871  kmp_uint64 index;
1872  kmp_uint64 wait_val[2];
1873 } kmp_hier_private_bdata_t;
1874 #endif
1875 
1876 typedef struct kmp_sched_flags {
1877  unsigned ordered : 1;
1878  unsigned nomerge : 1;
1879  unsigned contains_last : 1;
1880  unsigned use_hier : 1; // Used in KMP_USE_HIER_SCHED code
1881  unsigned use_hybrid : 1; // Used in KMP_WEIGHTED_ITERATIONS_SUPPORTED code
1882  unsigned unused : 27;
1883 } kmp_sched_flags_t;
1884 
1885 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1886 
1887 #if KMP_STATIC_STEAL_ENABLED
1888 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1889  kmp_int32 count;
1890  kmp_int32 ub;
1891  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1892  kmp_int32 lb;
1893  kmp_int32 st;
1894  kmp_int32 tc;
1895  kmp_lock_t *steal_lock; // lock used for chunk stealing
1896 
1897  kmp_uint32 ordered_lower;
1898  kmp_uint32 ordered_upper;
1899 
1900  // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1901  // a) parm3 is properly aligned and
1902  // b) all parm1-4 are on the same cache line.
1903  // Because of parm1-4 are used together, performance seems to be better
1904  // if they are on the same cache line (not measured though).
1905 
1906  struct KMP_ALIGN(32) {
1907  kmp_int32 parm1;
1908  kmp_int32 parm2;
1909  kmp_int32 parm3;
1910  kmp_int32 parm4;
1911  };
1912 
1913 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1914  kmp_uint32 pchunks;
1915  kmp_uint32 num_procs_with_pcore;
1916  kmp_int32 first_thread_with_ecore;
1917 #endif
1918 #if KMP_OS_WINDOWS
1919  kmp_int32 last_upper;
1920 #endif /* KMP_OS_WINDOWS */
1921 } dispatch_private_info32_t;
1922 
1923 #if CACHE_LINE <= 128
1924 KMP_BUILD_ASSERT(sizeof(dispatch_private_info32_t) <= 128);
1925 #endif
1926 
1927 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1928  kmp_int64 count; // current chunk number for static & static-steal scheduling
1929  kmp_int64 ub; /* upper-bound */
1930  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1931  kmp_int64 lb; /* lower-bound */
1932  kmp_int64 st; /* stride */
1933  kmp_int64 tc; /* trip count (number of iterations) */
1934  kmp_lock_t *steal_lock; // lock used for chunk stealing
1935 
1936  kmp_uint64 ordered_lower;
1937  kmp_uint64 ordered_upper;
1938  /* parm[1-4] are used in different ways by different scheduling algorithms */
1939 
1940  // KMP_ALIGN(32) ensures ( if the KMP_ALIGN macro is turned on )
1941  // a) parm3 is properly aligned and
1942  // b) all parm1-4 are in the same cache line.
1943  // Because of parm1-4 are used together, performance seems to be better
1944  // if they are in the same line (not measured though).
1945  struct KMP_ALIGN(32) {
1946  kmp_int64 parm1;
1947  kmp_int64 parm2;
1948  kmp_int64 parm3;
1949  kmp_int64 parm4;
1950  };
1951 
1952 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1953  kmp_uint64 pchunks;
1954  kmp_uint64 num_procs_with_pcore;
1955  kmp_int64 first_thread_with_ecore;
1956 #endif
1957 
1958 #if KMP_OS_WINDOWS
1959  kmp_int64 last_upper;
1960 #endif /* KMP_OS_WINDOWS */
1961 } dispatch_private_info64_t;
1962 
1963 #if CACHE_LINE <= 128
1964 KMP_BUILD_ASSERT(sizeof(dispatch_private_info64_t) <= 128);
1965 #endif
1966 
1967 #else /* KMP_STATIC_STEAL_ENABLED */
1968 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1969  kmp_int32 lb;
1970  kmp_int32 ub;
1971  kmp_int32 st;
1972  kmp_int32 tc;
1973 
1974  kmp_int32 parm1;
1975  kmp_int32 parm2;
1976  kmp_int32 parm3;
1977  kmp_int32 parm4;
1978 
1979  kmp_int32 count;
1980 
1981  kmp_uint32 ordered_lower;
1982  kmp_uint32 ordered_upper;
1983 #if KMP_OS_WINDOWS
1984  kmp_int32 last_upper;
1985 #endif /* KMP_OS_WINDOWS */
1986 } dispatch_private_info32_t;
1987 
1988 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1989  kmp_int64 lb; /* lower-bound */
1990  kmp_int64 ub; /* upper-bound */
1991  kmp_int64 st; /* stride */
1992  kmp_int64 tc; /* trip count (number of iterations) */
1993 
1994  /* parm[1-4] are used in different ways by different scheduling algorithms */
1995  kmp_int64 parm1;
1996  kmp_int64 parm2;
1997  kmp_int64 parm3;
1998  kmp_int64 parm4;
1999 
2000  kmp_int64 count; /* current chunk number for static scheduling */
2001 
2002  kmp_uint64 ordered_lower;
2003  kmp_uint64 ordered_upper;
2004 #if KMP_OS_WINDOWS
2005  kmp_int64 last_upper;
2006 #endif /* KMP_OS_WINDOWS */
2007 } dispatch_private_info64_t;
2008 #endif /* KMP_STATIC_STEAL_ENABLED */
2009 
2010 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
2011  union private_info {
2012  dispatch_private_info32_t p32;
2013  dispatch_private_info64_t p64;
2014  } u;
2015  enum sched_type schedule; /* scheduling algorithm */
2016  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
2017  std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
2018  kmp_int32 ordered_bumped;
2019  // Stack of buffers for nest of serial regions
2020  struct dispatch_private_info *next;
2021  kmp_int32 type_size; /* the size of types in private_info */
2022 #if KMP_USE_HIER_SCHED
2023  kmp_int32 hier_id;
2024  void *parent; /* hierarchical scheduling parent pointer */
2025 #endif
2026  enum cons_type pushed_ws;
2027 } dispatch_private_info_t;
2028 
2029 typedef struct dispatch_shared_info32 {
2030  /* chunk index under dynamic, number of idle threads under static-steal;
2031  iteration index otherwise */
2032  volatile kmp_uint32 iteration;
2033  volatile kmp_int32 num_done;
2034  volatile kmp_uint32 ordered_iteration;
2035  // Dummy to retain the structure size after making ordered_iteration scalar
2036  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
2037 } dispatch_shared_info32_t;
2038 
2039 typedef struct dispatch_shared_info64 {
2040  /* chunk index under dynamic, number of idle threads under static-steal;
2041  iteration index otherwise */
2042  volatile kmp_uint64 iteration;
2043  volatile kmp_int64 num_done;
2044  volatile kmp_uint64 ordered_iteration;
2045  // Dummy to retain the structure size after making ordered_iteration scalar
2046  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
2047 } dispatch_shared_info64_t;
2048 
2049 typedef struct dispatch_shared_info {
2050  union shared_info {
2051  dispatch_shared_info32_t s32;
2052  dispatch_shared_info64_t s64;
2053  } u;
2054  volatile kmp_uint32 buffer_index;
2055  volatile kmp_int32 doacross_buf_idx; // teamwise index
2056  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
2057  kmp_int32 doacross_num_done; // count finished threads
2058 #if KMP_USE_HIER_SCHED
2059  void *hier;
2060 #endif
2061 #if KMP_USE_HWLOC
2062  // When linking with libhwloc, the ORDERED EPCC test slows down on big
2063  // machines (> 48 cores). Performance analysis showed that a cache thrash
2064  // was occurring and this padding helps alleviate the problem.
2065  char padding[64];
2066 #endif
2067 } dispatch_shared_info_t;
2068 
2069 typedef struct kmp_disp {
2070  /* Vector for ORDERED SECTION */
2071  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
2072  /* Vector for END ORDERED SECTION */
2073  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2074 
2075  dispatch_shared_info_t *th_dispatch_sh_current;
2076  dispatch_private_info_t *th_dispatch_pr_current;
2077 
2078  dispatch_private_info_t *th_disp_buffer;
2079  kmp_uint32 th_disp_index;
2080  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2081  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2082  kmp_int64 *th_doacross_info; // info on loop bounds
2083 #if KMP_USE_INTERNODE_ALIGNMENT
2084  char more_padding[INTERNODE_CACHE_LINE];
2085 #endif
2086 } kmp_disp_t;
2087 
2088 /* ------------------------------------------------------------------------ */
2089 /* Barrier stuff */
2090 
2091 /* constants for barrier state update */
2092 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2093 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2094 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2095 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2096 
2097 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2098 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2099 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2100 
2101 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2102 #error "Barrier sleep bit must be smaller than barrier bump bit"
2103 #endif
2104 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2105 #error "Barrier unused bit must be smaller than barrier bump bit"
2106 #endif
2107 
2108 // Constants for release barrier wait state: currently, hierarchical only
2109 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2110 #define KMP_BARRIER_OWN_FLAG \
2111  1 // Normal state; worker waiting on own b_go flag in release
2112 #define KMP_BARRIER_PARENT_FLAG \
2113  2 // Special state; worker waiting on parent's b_go flag in release
2114 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2115  3 // Special state; tells worker to shift from parent to own b_go
2116 #define KMP_BARRIER_SWITCHING \
2117  4 // Special state; worker resets appropriate flag on wake-up
2118 
2119 #define KMP_NOT_SAFE_TO_REAP \
2120  0 // Thread th_reap_state: not safe to reap (tasking)
2121 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2122 
2123 // The flag_type describes the storage used for the flag.
2124 enum flag_type {
2125  flag32,
2126  flag64,
2127  atomic_flag64,
2128  flag_oncore,
2129  flag_unset
2130 };
2131 
2132 enum barrier_type {
2133  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2134  barriers if enabled) */
2135  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2136 #if KMP_FAST_REDUCTION_BARRIER
2137  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2138 #endif // KMP_FAST_REDUCTION_BARRIER
2139  bs_last_barrier /* Just a placeholder to mark the end */
2140 };
2141 
2142 // to work with reduction barriers just like with plain barriers
2143 #if !KMP_FAST_REDUCTION_BARRIER
2144 #define bs_reduction_barrier bs_plain_barrier
2145 #endif // KMP_FAST_REDUCTION_BARRIER
2146 
2147 typedef enum kmp_bar_pat { /* Barrier communication patterns */
2148  bp_linear_bar =
2149  0, /* Single level (degenerate) tree */
2150  bp_tree_bar =
2151  1, /* Balanced tree with branching factor 2^n */
2152  bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2153  branching factor 2^n */
2154  bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2155  bp_dist_bar = 4, /* Distributed barrier */
2156  bp_last_bar /* Placeholder to mark the end */
2157 } kmp_bar_pat_e;
2158 
2159 #define KMP_BARRIER_ICV_PUSH 1
2160 
2161 /* Record for holding the values of the internal controls stack records */
2162 typedef struct kmp_internal_control {
2163  int serial_nesting_level; /* corresponds to the value of the
2164  th_team_serialized field */
2165  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2166  thread) */
2167  kmp_int8
2168  bt_set; /* internal control for whether blocktime is explicitly set */
2169  int blocktime; /* internal control for blocktime */
2170 #if KMP_USE_MONITOR
2171  int bt_intervals; /* internal control for blocktime intervals */
2172 #endif
2173  int nproc; /* internal control for #threads for next parallel region (per
2174  thread) */
2175  int thread_limit; /* internal control for thread-limit-var */
2176  int task_thread_limit; /* internal control for thread-limit-var of a task*/
2177  int max_active_levels; /* internal control for max_active_levels */
2178  kmp_r_sched_t
2179  sched; /* internal control for runtime schedule {sched,chunk} pair */
2180  kmp_proc_bind_t proc_bind; /* internal control for affinity */
2181  kmp_int32 default_device; /* internal control for default device */
2182  struct kmp_internal_control *next;
2183 } kmp_internal_control_t;
2184 
2185 static inline void copy_icvs(kmp_internal_control_t *dst,
2186  kmp_internal_control_t *src) {
2187  *dst = *src;
2188 }
2189 
2190 /* Thread barrier needs volatile barrier fields */
2191 typedef struct KMP_ALIGN_CACHE kmp_bstate {
2192  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2193  // uses of it). It is not explicitly aligned below, because we *don't* want
2194  // it to be padded -- instead, we fit b_go into the same cache line with
2195  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2196  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2197  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2198  // same NGO store
2199  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2200  KMP_ALIGN_CACHE volatile kmp_uint64
2201  b_arrived; // STATE => task reached synch point.
2202  kmp_uint32 *skip_per_level;
2203  kmp_uint32 my_level;
2204  kmp_int32 parent_tid;
2205  kmp_int32 old_tid;
2206  kmp_uint32 depth;
2207  struct kmp_bstate *parent_bar;
2208  kmp_team_t *team;
2209  kmp_uint64 leaf_state;
2210  kmp_uint32 nproc;
2211  kmp_uint8 base_leaf_kids;
2212  kmp_uint8 leaf_kids;
2213  kmp_uint8 offset;
2214  kmp_uint8 wait_flag;
2215  kmp_uint8 use_oncore_barrier;
2216 #if USE_DEBUGGER
2217  // The following field is intended for the debugger solely. Only the worker
2218  // thread itself accesses this field: the worker increases it by 1 when it
2219  // arrives to a barrier.
2220  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2221 #endif /* USE_DEBUGGER */
2222 } kmp_bstate_t;
2223 
2224 union KMP_ALIGN_CACHE kmp_barrier_union {
2225  double b_align; /* use worst case alignment */
2226  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2227  kmp_bstate_t bb;
2228 };
2229 
2230 typedef union kmp_barrier_union kmp_balign_t;
2231 
2232 /* Team barrier needs only non-volatile arrived counter */
2233 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2234  double b_align; /* use worst case alignment */
2235  char b_pad[CACHE_LINE];
2236  struct {
2237  kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2238 #if USE_DEBUGGER
2239  // The following two fields are indended for the debugger solely. Only
2240  // primary thread of the team accesses these fields: the first one is
2241  // increased by 1 when the primary thread arrives to a barrier, the second
2242  // one is increased by one when all the threads arrived.
2243  kmp_uint b_master_arrived;
2244  kmp_uint b_team_arrived;
2245 #endif
2246  };
2247 };
2248 
2249 typedef union kmp_barrier_team_union kmp_balign_team_t;
2250 
2251 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2252  threads when a condition changes. This is to workaround an NPTL bug where
2253  padding was added to pthread_cond_t which caused the initialization routine
2254  to write outside of the structure if compiled on pre-NPTL threads. */
2255 #if KMP_OS_WINDOWS
2256 typedef struct kmp_win32_mutex {
2257  /* The Lock */
2258  CRITICAL_SECTION cs;
2259 } kmp_win32_mutex_t;
2260 
2261 typedef struct kmp_win32_cond {
2262  /* Count of the number of waiters. */
2263  int waiters_count_;
2264 
2265  /* Serialize access to <waiters_count_> */
2266  kmp_win32_mutex_t waiters_count_lock_;
2267 
2268  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2269  int release_count_;
2270 
2271  /* Keeps track of the current "generation" so that we don't allow */
2272  /* one thread to steal all the "releases" from the broadcast. */
2273  int wait_generation_count_;
2274 
2275  /* A manual-reset event that's used to block and release waiting threads. */
2276  HANDLE event_;
2277 } kmp_win32_cond_t;
2278 #endif
2279 
2280 #if KMP_OS_UNIX
2281 
2282 union KMP_ALIGN_CACHE kmp_cond_union {
2283  double c_align;
2284  char c_pad[CACHE_LINE];
2285  pthread_cond_t c_cond;
2286 };
2287 
2288 typedef union kmp_cond_union kmp_cond_align_t;
2289 
2290 union KMP_ALIGN_CACHE kmp_mutex_union {
2291  double m_align;
2292  char m_pad[CACHE_LINE];
2293  pthread_mutex_t m_mutex;
2294 };
2295 
2296 typedef union kmp_mutex_union kmp_mutex_align_t;
2297 
2298 #endif /* KMP_OS_UNIX */
2299 
2300 typedef struct kmp_desc_base {
2301  void *ds_stackbase;
2302  size_t ds_stacksize;
2303  int ds_stackgrow;
2304  kmp_thread_t ds_thread;
2305  volatile int ds_tid;
2306  int ds_gtid;
2307 #if KMP_OS_WINDOWS
2308  volatile int ds_alive;
2309  DWORD ds_thread_id;
2310 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2311  However, debugger support (libomp_db) cannot work with handles, because they
2312  uncomparable. For example, debugger requests info about thread with handle h.
2313  h is valid within debugger process, and meaningless within debugee process.
2314  Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2315  within debugee process, but it is a *new* handle which does *not* equal to
2316  any other handle in debugee... The only way to compare handles is convert
2317  them to system-wide ids. GetThreadId() function is available only in
2318  Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2319  on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2320  thread id by call to GetCurrentThreadId() from within the thread and save it
2321  to let libomp_db identify threads. */
2322 #endif /* KMP_OS_WINDOWS */
2323 } kmp_desc_base_t;
2324 
2325 typedef union KMP_ALIGN_CACHE kmp_desc {
2326  double ds_align; /* use worst case alignment */
2327  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2328  kmp_desc_base_t ds;
2329 } kmp_desc_t;
2330 
2331 typedef struct kmp_local {
2332  volatile int this_construct; /* count of single's encountered by thread */
2333  void *reduce_data;
2334 #if KMP_USE_BGET
2335  void *bget_data;
2336  void *bget_list;
2337 #if !USE_CMP_XCHG_FOR_BGET
2338 #ifdef USE_QUEUING_LOCK_FOR_BGET
2339  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2340 #else
2341  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2342 // bootstrap lock so we can use it at library
2343 // shutdown.
2344 #endif /* USE_LOCK_FOR_BGET */
2345 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2346 #endif /* KMP_USE_BGET */
2347 
2348  PACKED_REDUCTION_METHOD_T
2349  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2350  __kmpc_end_reduce*() */
2351 
2352 } kmp_local_t;
2353 
2354 #define KMP_CHECK_UPDATE(a, b) \
2355  if ((a) != (b)) \
2356  (a) = (b)
2357 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2358  if ((a) != (b)) \
2359  TCW_SYNC_PTR((a), (b))
2360 
2361 #define get__blocktime(xteam, xtid) \
2362  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2363 #define get__bt_set(xteam, xtid) \
2364  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2365 #if KMP_USE_MONITOR
2366 #define get__bt_intervals(xteam, xtid) \
2367  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2368 #endif
2369 
2370 #define get__dynamic_2(xteam, xtid) \
2371  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2372 #define get__nproc_2(xteam, xtid) \
2373  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2374 #define get__sched_2(xteam, xtid) \
2375  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2376 
2377 #define set__blocktime_team(xteam, xtid, xval) \
2378  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2379  (xval))
2380 
2381 #if KMP_USE_MONITOR
2382 #define set__bt_intervals_team(xteam, xtid, xval) \
2383  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2384  (xval))
2385 #endif
2386 
2387 #define set__bt_set_team(xteam, xtid, xval) \
2388  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2389 
2390 #define set__dynamic(xthread, xval) \
2391  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2392 #define get__dynamic(xthread) \
2393  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2394 
2395 #define set__nproc(xthread, xval) \
2396  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2397 
2398 #define set__thread_limit(xthread, xval) \
2399  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2400 
2401 #define set__max_active_levels(xthread, xval) \
2402  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2403 
2404 #define get__max_active_levels(xthread) \
2405  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2406 
2407 #define set__sched(xthread, xval) \
2408  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2409 
2410 #define set__proc_bind(xthread, xval) \
2411  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2412 #define get__proc_bind(xthread) \
2413  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2414 
2415 // OpenMP tasking data structures
2416 
2417 typedef enum kmp_tasking_mode {
2418  tskm_immediate_exec = 0,
2419  tskm_extra_barrier = 1,
2420  tskm_task_teams = 2,
2421  tskm_max = 2
2422 } kmp_tasking_mode_t;
2423 
2424 extern kmp_tasking_mode_t
2425  __kmp_tasking_mode; /* determines how/when to execute tasks */
2426 extern int __kmp_task_stealing_constraint;
2427 extern int __kmp_enable_task_throttling;
2428 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2429 // specified, defaults to 0 otherwise
2430 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2431 extern kmp_int32 __kmp_max_task_priority;
2432 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2433 extern kmp_uint64 __kmp_taskloop_min_tasks;
2434 
2435 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2436  taskdata first */
2437 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2438 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2439 
2440 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2441 // were spawned and queued since the previous barrier release.
2442 #define KMP_TASKING_ENABLED(task_team) \
2443  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2451 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2452 
2453 typedef union kmp_cmplrdata {
2454  kmp_int32 priority;
2455  kmp_routine_entry_t
2456  destructors; /* pointer to function to invoke deconstructors of
2457  firstprivate C++ objects */
2458  /* future data */
2459 } kmp_cmplrdata_t;
2460 
2461 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2464 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2465  void *shareds;
2466  kmp_routine_entry_t
2467  routine;
2468  kmp_int32 part_id;
2469  kmp_cmplrdata_t
2470  data1; /* Two known optional additions: destructors and priority */
2471  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2472  /* future data */
2473  /* private vars */
2474 } kmp_task_t;
2475 
2480 typedef struct kmp_taskgroup {
2481  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2482  std::atomic<kmp_int32>
2483  cancel_request; // request for cancellation of this taskgroup
2484  struct kmp_taskgroup *parent; // parent taskgroup
2485  // Block of data to perform task reduction
2486  void *reduce_data; // reduction related info
2487  kmp_int32 reduce_num_data; // number of data items to reduce
2488  uintptr_t *gomp_data; // gomp reduction data
2489 } kmp_taskgroup_t;
2490 
2491 // forward declarations
2492 typedef union kmp_depnode kmp_depnode_t;
2493 typedef struct kmp_depnode_list kmp_depnode_list_t;
2494 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2495 
2496 // macros for checking dep flag as an integer
2497 #define KMP_DEP_IN 0x1
2498 #define KMP_DEP_OUT 0x2
2499 #define KMP_DEP_INOUT 0x3
2500 #define KMP_DEP_MTX 0x4
2501 #define KMP_DEP_SET 0x8
2502 #define KMP_DEP_ALL 0x80
2503 // Compiler sends us this info. Note: some test cases contain an explicit copy
2504 // of this struct and should be in sync with any changes here.
2505 typedef struct kmp_depend_info {
2506  kmp_intptr_t base_addr;
2507  size_t len;
2508  union {
2509  kmp_uint8 flag; // flag as an unsigned char
2510  struct { // flag as a set of 8 bits
2511 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2512  /* Same fields as in the #else branch, but in reverse order */
2513  unsigned all : 1;
2514  unsigned unused : 3;
2515  unsigned set : 1;
2516  unsigned mtx : 1;
2517  unsigned out : 1;
2518  unsigned in : 1;
2519 #else
2520  unsigned in : 1;
2521  unsigned out : 1;
2522  unsigned mtx : 1;
2523  unsigned set : 1;
2524  unsigned unused : 3;
2525  unsigned all : 1;
2526 #endif
2527  } flags;
2528  };
2529 } kmp_depend_info_t;
2530 
2531 // Internal structures to work with task dependencies:
2532 struct kmp_depnode_list {
2533  kmp_depnode_t *node;
2534  kmp_depnode_list_t *next;
2535 };
2536 
2537 // Max number of mutexinoutset dependencies per node
2538 #define MAX_MTX_DEPS 4
2539 
2540 typedef struct kmp_base_depnode {
2541  kmp_depnode_list_t *successors; /* used under lock */
2542  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2543  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2544  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2545  kmp_lock_t lock; /* guards shared fields: task, successors */
2546 #if KMP_SUPPORT_GRAPH_OUTPUT
2547  kmp_uint32 id;
2548 #endif
2549  std::atomic<kmp_int32> npredecessors;
2550  std::atomic<kmp_int32> nrefs;
2551 } kmp_base_depnode_t;
2552 
2553 union KMP_ALIGN_CACHE kmp_depnode {
2554  double dn_align; /* use worst case alignment */
2555  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2556  kmp_base_depnode_t dn;
2557 };
2558 
2559 struct kmp_dephash_entry {
2560  kmp_intptr_t addr;
2561  kmp_depnode_t *last_out;
2562  kmp_depnode_list_t *last_set;
2563  kmp_depnode_list_t *prev_set;
2564  kmp_uint8 last_flag;
2565  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2566  kmp_dephash_entry_t *next_in_bucket;
2567 };
2568 
2569 typedef struct kmp_dephash {
2570  kmp_dephash_entry_t **buckets;
2571  size_t size;
2572  kmp_depnode_t *last_all;
2573  size_t generation;
2574  kmp_uint32 nelements;
2575  kmp_uint32 nconflicts;
2576 } kmp_dephash_t;
2577 
2578 typedef struct kmp_task_affinity_info {
2579  kmp_intptr_t base_addr;
2580  size_t len;
2581  struct {
2582  bool flag1 : 1;
2583  bool flag2 : 1;
2584  kmp_int32 reserved : 30;
2585  } flags;
2586 } kmp_task_affinity_info_t;
2587 
2588 typedef enum kmp_event_type_t {
2589  KMP_EVENT_UNINITIALIZED = 0,
2590  KMP_EVENT_ALLOW_COMPLETION = 1
2591 } kmp_event_type_t;
2592 
2593 typedef struct {
2594  kmp_event_type_t type;
2595  kmp_tas_lock_t lock;
2596  union {
2597  kmp_task_t *task;
2598  } ed;
2599 } kmp_event_t;
2600 
2601 #if OMPX_TASKGRAPH
2602 // Initial number of allocated nodes while recording
2603 #define INIT_MAPSIZE 50
2604 
2605 typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2606  unsigned nowait : 1;
2607  unsigned re_record : 1;
2608  unsigned reserved : 30;
2609 } kmp_taskgraph_flags_t;
2610 
2612 typedef struct kmp_node_info {
2613  kmp_task_t *task; // Pointer to the actual task
2614  kmp_int32 *successors; // Array of the succesors ids
2615  kmp_int32 nsuccessors; // Number of succesors of the node
2616  std::atomic<kmp_int32>
2617  npredecessors_counter; // Number of predessors on the fly
2618  kmp_int32 npredecessors; // Total number of predecessors
2619  kmp_int32 successors_size; // Number of allocated succesors ids
2620  kmp_taskdata_t *parent_task; // Parent implicit task
2621 } kmp_node_info_t;
2622 
2624 typedef enum kmp_tdg_status {
2625  KMP_TDG_NONE = 0,
2626  KMP_TDG_RECORDING = 1,
2627  KMP_TDG_READY = 2
2628 } kmp_tdg_status_t;
2629 
2631 typedef struct kmp_tdg_info {
2632  kmp_int32 tdg_id; // Unique idenfifier of the TDG
2633  kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2634  kmp_int32 map_size; // Number of allocated TDG nodes
2635  kmp_int32 num_roots; // Number of roots tasks int the TDG
2636  kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2637  kmp_node_info_t *record_map; // Array of TDG nodes
2638  kmp_tdg_status_t tdg_status =
2639  KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2640  std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2641  kmp_bootstrap_lock_t
2642  graph_lock; // Protect graph attributes when updated via taskloop_recur
2643  // Taskloop reduction related
2644  void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2645  // __kmpc_taskred_init
2646  kmp_int32 rec_num_taskred;
2647 } kmp_tdg_info_t;
2648 
2649 extern int __kmp_tdg_dot;
2650 extern kmp_int32 __kmp_max_tdgs;
2651 extern kmp_tdg_info_t **__kmp_global_tdgs;
2652 extern kmp_int32 __kmp_curr_tdg_idx;
2653 extern kmp_int32 __kmp_successors_size;
2654 extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2655 extern kmp_int32 __kmp_num_tdg;
2656 #endif
2657 
2658 #ifdef BUILD_TIED_TASK_STACK
2659 
2660 /* Tied Task stack definitions */
2661 typedef struct kmp_stack_block {
2662  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2663  struct kmp_stack_block *sb_next;
2664  struct kmp_stack_block *sb_prev;
2665 } kmp_stack_block_t;
2666 
2667 typedef struct kmp_task_stack {
2668  kmp_stack_block_t ts_first_block; // first block of stack entries
2669  kmp_taskdata_t **ts_top; // pointer to the top of stack
2670  kmp_int32 ts_entries; // number of entries on the stack
2671 } kmp_task_stack_t;
2672 
2673 #endif // BUILD_TIED_TASK_STACK
2674 
2675 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2676 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2677  /* Same fields as in the #else branch, but in reverse order */
2678 #if OMPX_TASKGRAPH
2679  unsigned reserved31 : 6;
2680  unsigned onced : 1;
2681 #else
2682  unsigned reserved31 : 7;
2683 #endif
2684  unsigned native : 1;
2685  unsigned freed : 1;
2686  unsigned complete : 1;
2687  unsigned executing : 1;
2688  unsigned started : 1;
2689  unsigned team_serial : 1;
2690  unsigned tasking_ser : 1;
2691  unsigned task_serial : 1;
2692  unsigned tasktype : 1;
2693  unsigned reserved : 8;
2694  unsigned hidden_helper : 1;
2695  unsigned detachable : 1;
2696  unsigned priority_specified : 1;
2697  unsigned proxy : 1;
2698  unsigned destructors_thunk : 1;
2699  unsigned merged_if0 : 1;
2700  unsigned final : 1;
2701  unsigned tiedness : 1;
2702 #else
2703  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2704  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2705  unsigned final : 1; /* task is final(1) so execute immediately */
2706  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2707  code path */
2708  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2709  invoke destructors from the runtime */
2710  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2711  context of the RTL) */
2712  unsigned priority_specified : 1; /* set if the compiler provides priority
2713  setting for the task */
2714  unsigned detachable : 1; /* 1 == can detach */
2715  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2716  unsigned reserved : 8; /* reserved for compiler use */
2717 
2718  /* Library flags */ /* Total library flags must be 16 bits */
2719  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2720  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2721  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2722  // (1) or may be deferred (0)
2723  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2724  // (0) [>= 2 threads]
2725  /* If either team_serial or tasking_ser is set, task team may be NULL */
2726  /* Task State Flags: */
2727  unsigned started : 1; /* 1==started, 0==not started */
2728  unsigned executing : 1; /* 1==executing, 0==not executing */
2729  unsigned complete : 1; /* 1==complete, 0==not complete */
2730  unsigned freed : 1; /* 1==freed, 0==allocated */
2731  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2732 #if OMPX_TASKGRAPH
2733  unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2734  unsigned reserved31 : 6; /* reserved for library use */
2735 #else
2736  unsigned reserved31 : 7; /* reserved for library use */
2737 #endif
2738 #endif
2739 } kmp_tasking_flags_t;
2740 
2741 typedef struct kmp_target_data {
2742  void *async_handle; // libomptarget async handle for task completion query
2743 } kmp_target_data_t;
2744 
2745 struct kmp_taskdata { /* aligned during dynamic allocation */
2746  kmp_int32 td_task_id; /* id, assigned by debugger */
2747  kmp_tasking_flags_t td_flags; /* task flags */
2748  kmp_team_t *td_team; /* team for this task */
2749  kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2750  /* Currently not used except for perhaps IDB */
2751  kmp_taskdata_t *td_parent; /* parent task */
2752  kmp_int32 td_level; /* task nesting level */
2753  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2754  ident_t *td_ident; /* task identifier */
2755  // Taskwait data.
2756  ident_t *td_taskwait_ident;
2757  kmp_uint32 td_taskwait_counter;
2758  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2759  KMP_ALIGN_CACHE kmp_internal_control_t
2760  td_icvs; /* Internal control variables for the task */
2761  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2762  td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2763  deallocated */
2764  std::atomic<kmp_int32>
2765  td_incomplete_child_tasks; /* Child tasks not yet complete */
2766  kmp_taskgroup_t
2767  *td_taskgroup; // Each task keeps pointer to its current taskgroup
2768  kmp_dephash_t
2769  *td_dephash; // Dependencies for children tasks are tracked from here
2770  kmp_depnode_t
2771  *td_depnode; // Pointer to graph node if this task has dependencies
2772  kmp_task_team_t *td_task_team;
2773  size_t td_size_alloc; // Size of task structure, including shareds etc.
2774 #if defined(KMP_GOMP_COMPAT)
2775  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2776  kmp_int32 td_size_loop_bounds;
2777 #endif
2778  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2779 #if defined(KMP_GOMP_COMPAT)
2780  // GOMP sends in a copy function for copy constructors
2781  void (*td_copy_func)(void *, void *);
2782 #endif
2783  kmp_event_t td_allow_completion_event;
2784 #if OMPT_SUPPORT
2785  ompt_task_info_t ompt_task_info;
2786 #endif
2787 #if OMPX_TASKGRAPH
2788  bool is_taskgraph = 0; // whether the task is within a TDG
2789  kmp_tdg_info_t *tdg; // used to associate task with a TDG
2790 #endif
2791  kmp_target_data_t td_target_data;
2792 }; // struct kmp_taskdata
2793 
2794 // Make sure padding above worked
2795 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2796 
2797 // Data for task team but per thread
2798 typedef struct kmp_base_thread_data {
2799  kmp_info_p *td_thr; // Pointer back to thread info
2800  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2801  // queued?
2802  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2803  kmp_taskdata_t *
2804  *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2805  kmp_int32 td_deque_size; // Size of deck
2806  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2807  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2808  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2809  // GEH: shouldn't this be volatile since used in while-spin?
2810  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2811 #ifdef BUILD_TIED_TASK_STACK
2812  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2813 // scheduling constraint
2814 #endif // BUILD_TIED_TASK_STACK
2815 } kmp_base_thread_data_t;
2816 
2817 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2818 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2819 
2820 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2821 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2822 
2823 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2824  kmp_base_thread_data_t td;
2825  double td_align; /* use worst case alignment */
2826  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2827 } kmp_thread_data_t;
2828 
2829 typedef struct kmp_task_pri {
2830  kmp_thread_data_t td;
2831  kmp_int32 priority;
2832  kmp_task_pri *next;
2833 } kmp_task_pri_t;
2834 
2835 // Data for task teams which are used when tasking is enabled for the team
2836 typedef struct kmp_base_task_team {
2837  kmp_bootstrap_lock_t
2838  tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2839  /* must be bootstrap lock since used at library shutdown*/
2840 
2841  // TODO: check performance vs kmp_tas_lock_t
2842  kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2843  kmp_task_pri_t *tt_task_pri_list;
2844 
2845  kmp_task_team_t *tt_next; /* For linking the task team free list */
2846  kmp_thread_data_t
2847  *tt_threads_data; /* Array of per-thread structures for task team */
2848  /* Data survives task team deallocation */
2849  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2850  executing this team? */
2851  /* TRUE means tt_threads_data is set up and initialized */
2852  kmp_int32 tt_nproc; /* #threads in team */
2853  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2854  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2855  kmp_int32 tt_untied_task_encountered;
2856  std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2857  // There is hidden helper thread encountered in this task team so that we must
2858  // wait when waiting on task team
2859  kmp_int32 tt_hidden_helper_task_encountered;
2860 
2861  KMP_ALIGN_CACHE
2862  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2863 
2864  KMP_ALIGN_CACHE
2865  volatile kmp_uint32
2866  tt_active; /* is the team still actively executing tasks */
2867 } kmp_base_task_team_t;
2868 
2869 union KMP_ALIGN_CACHE kmp_task_team {
2870  kmp_base_task_team_t tt;
2871  double tt_align; /* use worst case alignment */
2872  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2873 };
2874 
2875 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2876 // Free lists keep same-size free memory slots for fast memory allocation
2877 // routines
2878 typedef struct kmp_free_list {
2879  void *th_free_list_self; // Self-allocated tasks free list
2880  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2881  // threads
2882  void *th_free_list_other; // Non-self free list (to be returned to owner's
2883  // sync list)
2884 } kmp_free_list_t;
2885 #endif
2886 #if KMP_NESTED_HOT_TEAMS
2887 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2888 // are not put in teams pool, and they don't put threads in threads pool.
2889 typedef struct kmp_hot_team_ptr {
2890  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2891  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2892 } kmp_hot_team_ptr_t;
2893 #endif
2894 typedef struct kmp_teams_size {
2895  kmp_int32 nteams; // number of teams in a league
2896  kmp_int32 nth; // number of threads in each team of the league
2897 } kmp_teams_size_t;
2898 
2899 // This struct stores a thread that acts as a "root" for a contention
2900 // group. Contention groups are rooted at kmp_root threads, but also at
2901 // each primary thread of each team created in the teams construct.
2902 // This struct therefore also stores a thread_limit associated with
2903 // that contention group, and a counter to track the number of threads
2904 // active in that contention group. Each thread has a list of these: CG
2905 // root threads have an entry in their list in which cg_root refers to
2906 // the thread itself, whereas other workers in the CG will have a
2907 // single entry where cg_root is same as the entry containing their CG
2908 // root. When a thread encounters a teams construct, it will add a new
2909 // entry to the front of its list, because it now roots a new CG.
2910 typedef struct kmp_cg_root {
2911  kmp_info_p *cg_root; // "root" thread for a contention group
2912  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2913  // thread_limit clause for teams primary threads
2914  kmp_int32 cg_thread_limit;
2915  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2916  struct kmp_cg_root *up; // pointer to higher level CG root in list
2917 } kmp_cg_root_t;
2918 
2919 // OpenMP thread data structures
2920 
2921 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2922  /* Start with the readonly data which is cache aligned and padded. This is
2923  written before the thread starts working by the primary thread. Uber
2924  masters may update themselves later. Usage does not consider serialized
2925  regions. */
2926  kmp_desc_t th_info;
2927  kmp_team_p *th_team; /* team we belong to */
2928  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2929  kmp_info_p *th_next_pool; /* next available thread in the pool */
2930  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2931  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2932 
2933  /* The following are cached from the team info structure */
2934  /* TODO use these in more places as determined to be needed via profiling */
2935  int th_team_nproc; /* number of threads in a team */
2936  kmp_info_p *th_team_master; /* the team's primary thread */
2937  int th_team_serialized; /* team is serialized */
2938  microtask_t th_teams_microtask; /* save entry address for teams construct */
2939  int th_teams_level; /* save initial level of teams construct */
2940 /* it is 0 on device but may be any on host */
2941 
2942 /* The blocktime info is copied from the team struct to the thread struct */
2943 /* at the start of a barrier, and the values stored in the team are used */
2944 /* at points in the code where the team struct is no longer guaranteed */
2945 /* to exist (from the POV of worker threads). */
2946 #if KMP_USE_MONITOR
2947  int th_team_bt_intervals;
2948  int th_team_bt_set;
2949 #else
2950  kmp_uint64 th_team_bt_intervals;
2951 #endif
2952 
2953 #if KMP_AFFINITY_SUPPORTED
2954  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2955  kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2956  kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2957 #endif
2958  omp_allocator_handle_t th_def_allocator; /* default allocator */
2959  /* The data set by the primary thread at reinit, then R/W by the worker */
2960  KMP_ALIGN_CACHE int
2961  th_set_nproc; /* if > 0, then only use this request for the next fork */
2962 #if KMP_NESTED_HOT_TEAMS
2963  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2964 #endif
2965  kmp_proc_bind_t
2966  th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2967  kmp_teams_size_t
2968  th_teams_size; /* number of teams/threads in teams construct */
2969 #if KMP_AFFINITY_SUPPORTED
2970  int th_current_place; /* place currently bound to */
2971  int th_new_place; /* place to bind to in par reg */
2972  int th_first_place; /* first place in partition */
2973  int th_last_place; /* last place in partition */
2974 #endif
2975  int th_prev_level; /* previous level for affinity format */
2976  int th_prev_num_threads; /* previous num_threads for affinity format */
2977 #if USE_ITT_BUILD
2978  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2979  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2980  kmp_uint64 th_frame_time; /* frame timestamp */
2981 #endif /* USE_ITT_BUILD */
2982  kmp_local_t th_local;
2983  struct private_common *th_pri_head;
2984 
2985  /* Now the data only used by the worker (after initial allocation) */
2986  /* TODO the first serial team should actually be stored in the info_t
2987  structure. this will help reduce initial allocation overhead */
2988  KMP_ALIGN_CACHE kmp_team_p
2989  *th_serial_team; /*serialized team held in reserve*/
2990 
2991 #if OMPT_SUPPORT
2992  ompt_thread_info_t ompt_thread_info;
2993 #endif
2994 
2995  /* The following are also read by the primary thread during reinit */
2996  struct common_table *th_pri_common;
2997 
2998  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2999  /* while awaiting queuing lock acquire */
3000 
3001  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
3002  flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
3003 
3004  ident_t *th_ident;
3005  unsigned th_x; // Random number generator data
3006  unsigned th_a; // Random number generator data
3007 
3008  /* Tasking-related data for the thread */
3009  kmp_task_team_t *th_task_team; // Task team struct
3010  kmp_taskdata_t *th_current_task; // Innermost Task being executed
3011  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
3012  kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
3013  // at nested levels
3014  kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
3015  kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
3016  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
3017  // tasking, thus safe to reap
3018 
3019  /* More stuff for keeping track of active/sleeping threads (this part is
3020  written by the worker thread) */
3021  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
3022  int th_active; // ! sleeping; 32 bits for TCR/TCW
3023  std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
3024  // 0 = not used in team; 1 = used in team;
3025  // 2 = transitioning to not used in team; 3 = transitioning to used in team
3026  struct cons_header *th_cons; // used for consistency check
3027 #if KMP_USE_HIER_SCHED
3028  // used for hierarchical scheduling
3029  kmp_hier_private_bdata_t *th_hier_bar_data;
3030 #endif
3031 
3032  /* Add the syncronizing data which is cache aligned and padded. */
3033  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
3034 
3035  KMP_ALIGN_CACHE volatile kmp_int32
3036  th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
3037 
3038 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
3039 #define NUM_LISTS 4
3040  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
3041 // allocation routines
3042 #endif
3043 
3044 #if KMP_OS_WINDOWS
3045  kmp_win32_cond_t th_suspend_cv;
3046  kmp_win32_mutex_t th_suspend_mx;
3047  std::atomic<int> th_suspend_init;
3048 #endif
3049 #if KMP_OS_UNIX
3050  kmp_cond_align_t th_suspend_cv;
3051  kmp_mutex_align_t th_suspend_mx;
3052  std::atomic<int> th_suspend_init_count;
3053 #endif
3054 
3055 #if USE_ITT_BUILD
3056  kmp_itt_mark_t th_itt_mark_single;
3057 // alignment ???
3058 #endif /* USE_ITT_BUILD */
3059 #if KMP_STATS_ENABLED
3060  kmp_stats_list *th_stats;
3061 #endif
3062 #if KMP_OS_UNIX
3063  std::atomic<bool> th_blocking;
3064 #endif
3065  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
3066 } kmp_base_info_t;
3067 
3068 typedef union KMP_ALIGN_CACHE kmp_info {
3069  double th_align; /* use worst case alignment */
3070  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
3071  kmp_base_info_t th;
3072 } kmp_info_t;
3073 
3074 // OpenMP thread team data structures
3075 
3076 typedef struct kmp_base_data {
3077  volatile kmp_uint32 t_value;
3078 } kmp_base_data_t;
3079 
3080 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
3081  double dt_align; /* use worst case alignment */
3082  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3083  kmp_base_data_t dt;
3084 } kmp_sleep_team_t;
3085 
3086 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
3087  double dt_align; /* use worst case alignment */
3088  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3089  kmp_base_data_t dt;
3090 } kmp_ordered_team_t;
3091 
3092 typedef int (*launch_t)(int gtid);
3093 
3094 /* Minimum number of ARGV entries to malloc if necessary */
3095 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
3096 
3097 // Set up how many argv pointers will fit in cache lines containing
3098 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
3099 // larger value for more space between the primary write/worker read section and
3100 // read/write by all section seems to buy more performance on EPCC PARALLEL.
3101 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3102 #define KMP_INLINE_ARGV_BYTES \
3103  (4 * CACHE_LINE - \
3104  ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
3105  sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
3106  CACHE_LINE))
3107 #else
3108 #define KMP_INLINE_ARGV_BYTES \
3109  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
3110 #endif
3111 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
3112 
3113 typedef struct KMP_ALIGN_CACHE kmp_base_team {
3114  // Synchronization Data
3115  // ---------------------------------------------------------------------------
3116  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3117  kmp_balign_team_t t_bar[bs_last_barrier];
3118  std::atomic<int> t_construct; // count of single directive encountered by team
3119  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3120 
3121  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3122  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3123  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3124 
3125  // Primary thread only
3126  // ---------------------------------------------------------------------------
3127  KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3128  int t_master_this_cons; // "this_construct" single counter of primary thread
3129  // in parent team
3130  ident_t *t_ident; // if volatile, have to change too much other crud to
3131  // volatile too
3132  kmp_team_p *t_parent; // parent team
3133  kmp_team_p *t_next_pool; // next free team in the team pool
3134  kmp_disp_t *t_dispatch; // thread's dispatch data
3135  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3136  kmp_proc_bind_t t_proc_bind; // bind type for par region
3137 #if USE_ITT_BUILD
3138  kmp_uint64 t_region_time; // region begin timestamp
3139 #endif /* USE_ITT_BUILD */
3140 
3141  // Primary thread write, workers read
3142  // --------------------------------------------------------------------------
3143  KMP_ALIGN_CACHE void **t_argv;
3144  int t_argc;
3145  int t_nproc; // number of threads in team
3146  microtask_t t_pkfn;
3147  launch_t t_invoke; // procedure to launch the microtask
3148 
3149 #if OMPT_SUPPORT
3150  ompt_team_info_t ompt_team_info;
3151  ompt_lw_taskteam_t *ompt_serialized_team_info;
3152 #endif
3153 
3154 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3155  kmp_int8 t_fp_control_saved;
3156  kmp_int8 t_pad2b;
3157  kmp_int16 t_x87_fpu_control_word; // FP control regs
3158  kmp_uint32 t_mxcsr;
3159 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3160 
3161  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3162 
3163  KMP_ALIGN_CACHE kmp_info_t **t_threads;
3164  kmp_taskdata_t
3165  *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3166  int t_level; // nested parallel level
3167 
3168  KMP_ALIGN_CACHE int t_max_argc;
3169  int t_max_nproc; // max threads this team can handle (dynamically expandable)
3170  int t_serialized; // levels deep of serialized teams
3171  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3172  int t_id; // team's id, assigned by debugger.
3173  int t_active_level; // nested active parallel level
3174  kmp_r_sched_t t_sched; // run-time schedule for the team
3175 #if KMP_AFFINITY_SUPPORTED
3176  int t_first_place; // first & last place in parent thread's partition.
3177  int t_last_place; // Restore these values to primary thread after par region.
3178 #endif // KMP_AFFINITY_SUPPORTED
3179  int t_display_affinity;
3180  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3181  // omp_set_num_threads() call
3182  omp_allocator_handle_t t_def_allocator; /* default allocator */
3183 
3184 // Read/write by workers as well
3185 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3186  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3187  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3188  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3189  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3190  char dummy_padding[1024];
3191 #endif
3192  // Internal control stack for additional nested teams.
3193  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3194  // for SERIALIZED teams nested 2 or more levels deep
3195  // typed flag to store request state of cancellation
3196  std::atomic<kmp_int32> t_cancel_request;
3197  int t_master_active; // save on fork, restore on join
3198  void *t_copypriv_data; // team specific pointer to copyprivate data array
3199 #if KMP_OS_WINDOWS
3200  std::atomic<kmp_uint32> t_copyin_counter;
3201 #endif
3202 #if USE_ITT_BUILD
3203  void *t_stack_id; // team specific stack stitching id (for ittnotify)
3204 #endif /* USE_ITT_BUILD */
3205  distributedBarrier *b; // Distributed barrier data associated with team
3206 } kmp_base_team_t;
3207 
3208 union KMP_ALIGN_CACHE kmp_team {
3209  kmp_base_team_t t;
3210  double t_align; /* use worst case alignment */
3211  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3212 };
3213 
3214 typedef union KMP_ALIGN_CACHE kmp_time_global {
3215  double dt_align; /* use worst case alignment */
3216  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3217  kmp_base_data_t dt;
3218 } kmp_time_global_t;
3219 
3220 typedef struct kmp_base_global {
3221  /* cache-aligned */
3222  kmp_time_global_t g_time;
3223 
3224  /* non cache-aligned */
3225  volatile int g_abort;
3226  volatile int g_done;
3227 
3228  int g_dynamic;
3229  enum dynamic_mode g_dynamic_mode;
3230 } kmp_base_global_t;
3231 
3232 typedef union KMP_ALIGN_CACHE kmp_global {
3233  kmp_base_global_t g;
3234  double g_align; /* use worst case alignment */
3235  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3236 } kmp_global_t;
3237 
3238 typedef struct kmp_base_root {
3239  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3240  // (r_in_parallel>= 0)
3241  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3242  // the synch overhead or keeping r_active
3243  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3244  // keeps a count of active parallel regions per root
3245  std::atomic<int> r_in_parallel;
3246  // GEH: This is misnamed, should be r_active_levels
3247  kmp_team_t *r_root_team;
3248  kmp_team_t *r_hot_team;
3249  kmp_info_t *r_uber_thread;
3250  kmp_lock_t r_begin_lock;
3251  volatile int r_begin;
3252  int r_blocktime; /* blocktime for this root and descendants */
3253 #if KMP_AFFINITY_SUPPORTED
3254  int r_affinity_assigned;
3255 #endif // KMP_AFFINITY_SUPPORTED
3256 } kmp_base_root_t;
3257 
3258 typedef union KMP_ALIGN_CACHE kmp_root {
3259  kmp_base_root_t r;
3260  double r_align; /* use worst case alignment */
3261  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3262 } kmp_root_t;
3263 
3264 struct fortran_inx_info {
3265  kmp_int32 data;
3266 };
3267 
3268 // This list type exists to hold old __kmp_threads arrays so that
3269 // old references to them may complete while reallocation takes place when
3270 // expanding the array. The items in this list are kept alive until library
3271 // shutdown.
3272 typedef struct kmp_old_threads_list_t {
3273  kmp_info_t **threads;
3274  struct kmp_old_threads_list_t *next;
3275 } kmp_old_threads_list_t;
3276 
3277 /* ------------------------------------------------------------------------ */
3278 
3279 extern int __kmp_settings;
3280 extern int __kmp_duplicate_library_ok;
3281 #if USE_ITT_BUILD
3282 extern int __kmp_forkjoin_frames;
3283 extern int __kmp_forkjoin_frames_mode;
3284 #endif
3285 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3286 extern int __kmp_determ_red;
3287 
3288 #ifdef KMP_DEBUG
3289 extern int kmp_a_debug;
3290 extern int kmp_b_debug;
3291 extern int kmp_c_debug;
3292 extern int kmp_d_debug;
3293 extern int kmp_e_debug;
3294 extern int kmp_f_debug;
3295 #endif /* KMP_DEBUG */
3296 
3297 /* For debug information logging using rotating buffer */
3298 #define KMP_DEBUG_BUF_LINES_INIT 512
3299 #define KMP_DEBUG_BUF_LINES_MIN 1
3300 
3301 #define KMP_DEBUG_BUF_CHARS_INIT 128
3302 #define KMP_DEBUG_BUF_CHARS_MIN 2
3303 
3304 extern int
3305  __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3306 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3307 extern int
3308  __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3309 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3310  entry pointer */
3311 
3312 extern char *__kmp_debug_buffer; /* Debug buffer itself */
3313 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3314  printed in buffer so far */
3315 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3316  recommended in warnings */
3317 /* end rotating debug buffer */
3318 
3319 #ifdef KMP_DEBUG
3320 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3321 
3322 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
3323 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3324 #define KMP_PAR_RANGE_FILENAME_LEN 1024
3325 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3326 extern int __kmp_par_range_lb;
3327 extern int __kmp_par_range_ub;
3328 #endif
3329 
3330 /* For printing out dynamic storage map for threads and teams */
3331 extern int
3332  __kmp_storage_map; /* True means print storage map for threads and teams */
3333 extern int __kmp_storage_map_verbose; /* True means storage map includes
3334  placement info */
3335 extern int __kmp_storage_map_verbose_specified;
3336 
3337 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3338 extern kmp_cpuinfo_t __kmp_cpuinfo;
3339 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3340 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3341 static inline bool __kmp_is_hybrid_cpu() { return true; }
3342 #else
3343 static inline bool __kmp_is_hybrid_cpu() { return false; }
3344 #endif
3345 
3346 extern volatile int __kmp_init_serial;
3347 extern volatile int __kmp_init_gtid;
3348 extern volatile int __kmp_init_common;
3349 extern volatile int __kmp_need_register_serial;
3350 extern volatile int __kmp_init_middle;
3351 extern volatile int __kmp_init_parallel;
3352 #if KMP_USE_MONITOR
3353 extern volatile int __kmp_init_monitor;
3354 #endif
3355 extern volatile int __kmp_init_user_locks;
3356 extern volatile int __kmp_init_hidden_helper_threads;
3357 extern int __kmp_init_counter;
3358 extern int __kmp_root_counter;
3359 extern int __kmp_version;
3360 
3361 /* list of address of allocated caches for commons */
3362 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3363 
3364 /* Barrier algorithm types and options */
3365 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3366 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3367 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3368 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3369 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3370 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3371 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3372 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3373 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3374 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3375 extern char const *__kmp_barrier_type_name[bs_last_barrier];
3376 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3377 
3378 /* Global Locks */
3379 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3380 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3381 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3382 extern kmp_bootstrap_lock_t
3383  __kmp_exit_lock; /* exit() is not always thread-safe */
3384 #if KMP_USE_MONITOR
3385 extern kmp_bootstrap_lock_t
3386  __kmp_monitor_lock; /* control monitor thread creation */
3387 #endif
3388 extern kmp_bootstrap_lock_t
3389  __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3390  __kmp_threads expansion to co-exist */
3391 
3392 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3393 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3394 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3395 
3396 extern enum library_type __kmp_library;
3397 
3398 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3399 extern enum sched_type __kmp_static; /* default static scheduling method */
3400 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3401 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3402 extern int __kmp_chunk; /* default runtime chunk size */
3403 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3404 
3405 extern size_t __kmp_stksize; /* stack size per thread */
3406 #if KMP_USE_MONITOR
3407 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3408 #endif
3409 extern size_t __kmp_stkoffset; /* stack offset per thread */
3410 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3411 
3412 extern size_t
3413  __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3414 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3415 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3416 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3417 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3418 extern int __kmp_generate_warnings; /* should we issue warnings? */
3419 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3420 
3421 #ifdef DEBUG_SUSPEND
3422 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3423 #endif
3424 
3425 extern kmp_int32 __kmp_use_yield;
3426 extern kmp_int32 __kmp_use_yield_exp_set;
3427 extern kmp_uint32 __kmp_yield_init;
3428 extern kmp_uint32 __kmp_yield_next;
3429 extern kmp_uint64 __kmp_pause_init;
3430 
3431 /* ------------------------------------------------------------------------- */
3432 extern int __kmp_allThreadsSpecified;
3433 
3434 extern size_t __kmp_align_alloc;
3435 /* following data protected by initialization routines */
3436 extern int __kmp_xproc; /* number of processors in the system */
3437 extern int __kmp_avail_proc; /* number of processors available to the process */
3438 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3439 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3440 // maximum total number of concurrently-existing threads on device
3441 extern int __kmp_max_nth;
3442 // maximum total number of concurrently-existing threads in a contention group
3443 extern int __kmp_cg_max_nth;
3444 extern int __kmp_task_max_nth; // max threads used in a task
3445 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3446 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3447  __kmp_root */
3448 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3449  region a la OMP_NUM_THREADS */
3450 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3451  initialization */
3452 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3453  used (fixed) */
3454 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3455  (__kmpc_threadprivate_cached()) */
3456 extern int __kmp_dflt_blocktime; /* number of microseconds to wait before
3457  blocking (env setting) */
3458 extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */
3459 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3460 
3461 // Convert raw blocktime from ms to us if needed.
3462 static inline void __kmp_aux_convert_blocktime(int *bt) {
3463  if (__kmp_blocktime_units == 'm') {
3464  if (*bt > INT_MAX / 1000) {
3465  *bt = INT_MAX / 1000;
3466  KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt);
3467  }
3468  *bt = *bt * 1000;
3469  }
3470 }
3471 
3472 #if KMP_USE_MONITOR
3473 extern int
3474  __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3475 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3476  blocking */
3477 #endif
3478 #ifdef KMP_ADJUST_BLOCKTIME
3479 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3480 #endif /* KMP_ADJUST_BLOCKTIME */
3481 #ifdef KMP_DFLT_NTH_CORES
3482 extern int __kmp_ncores; /* Total number of cores for threads placement */
3483 #endif
3484 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3485 extern int __kmp_abort_delay;
3486 
3487 extern int __kmp_need_register_atfork_specified;
3488 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3489  to install fork handler */
3490 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3491  0 - not set, will be set at runtime
3492  1 - using stack search
3493  2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3494  X*) or TlsGetValue(Windows* OS))
3495  3 - static TLS (__declspec(thread) __kmp_gtid),
3496  Linux* OS .so only. */
3497 extern int
3498  __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3499 #ifdef KMP_TDATA_GTID
3500 extern KMP_THREAD_LOCAL int __kmp_gtid;
3501 #endif
3502 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3503 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3504 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3505 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3506 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3507 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3508 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3509 
3510 // max_active_levels for nested parallelism enabled by default via
3511 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3512 extern int __kmp_dflt_max_active_levels;
3513 // Indicates whether value of __kmp_dflt_max_active_levels was already
3514 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3515 extern bool __kmp_dflt_max_active_levels_set;
3516 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3517  concurrent execution per team */
3518 #if KMP_NESTED_HOT_TEAMS
3519 extern int __kmp_hot_teams_mode;
3520 extern int __kmp_hot_teams_max_level;
3521 #endif
3522 
3523 #if KMP_OS_LINUX
3524 extern enum clock_function_type __kmp_clock_function;
3525 extern int __kmp_clock_function_param;
3526 #endif /* KMP_OS_LINUX */
3527 
3528 #if KMP_MIC_SUPPORTED
3529 extern enum mic_type __kmp_mic_type;
3530 #endif
3531 
3532 #ifdef USE_LOAD_BALANCE
3533 extern double __kmp_load_balance_interval; // load balance algorithm interval
3534 #endif /* USE_LOAD_BALANCE */
3535 
3536 // OpenMP 3.1 - Nested num threads array
3537 typedef struct kmp_nested_nthreads_t {
3538  int *nth;
3539  int size;
3540  int used;
3541 } kmp_nested_nthreads_t;
3542 
3543 extern kmp_nested_nthreads_t __kmp_nested_nth;
3544 
3545 #if KMP_USE_ADAPTIVE_LOCKS
3546 
3547 // Parameters for the speculative lock backoff system.
3548 struct kmp_adaptive_backoff_params_t {
3549  // Number of soft retries before it counts as a hard retry.
3550  kmp_uint32 max_soft_retries;
3551  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3552  // the right
3553  kmp_uint32 max_badness;
3554 };
3555 
3556 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3557 
3558 #if KMP_DEBUG_ADAPTIVE_LOCKS
3559 extern const char *__kmp_speculative_statsfile;
3560 #endif
3561 
3562 #endif // KMP_USE_ADAPTIVE_LOCKS
3563 
3564 extern int __kmp_display_env; /* TRUE or FALSE */
3565 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3566 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3567 extern int __kmp_nteams;
3568 extern int __kmp_teams_thread_limit;
3569 
3570 /* ------------------------------------------------------------------------- */
3571 
3572 /* the following are protected by the fork/join lock */
3573 /* write: lock read: anytime */
3574 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3575 /* Holds old arrays of __kmp_threads until library shutdown */
3576 extern kmp_old_threads_list_t *__kmp_old_threads_list;
3577 /* read/write: lock */
3578 extern volatile kmp_team_t *__kmp_team_pool;
3579 extern volatile kmp_info_t *__kmp_thread_pool;
3580 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3581 
3582 // total num threads reachable from some root thread including all root threads
3583 extern volatile int __kmp_nth;
3584 /* total number of threads reachable from some root thread including all root
3585  threads, and those in the thread pool */
3586 extern volatile int __kmp_all_nth;
3587 extern std::atomic<int> __kmp_thread_pool_active_nth;
3588 
3589 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3590 /* end data protected by fork/join lock */
3591 /* ------------------------------------------------------------------------- */
3592 
3593 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3594 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3595 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3596 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3597 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3598 
3599 // AT: Which way is correct?
3600 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3601 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3602 #define __kmp_get_team_num_threads(gtid) \
3603  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3604 
3605 static inline bool KMP_UBER_GTID(int gtid) {
3606  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3607  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3608  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3609  __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3610 }
3611 
3612 static inline int __kmp_tid_from_gtid(int gtid) {
3613  KMP_DEBUG_ASSERT(gtid >= 0);
3614  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3615 }
3616 
3617 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3618  KMP_DEBUG_ASSERT(tid >= 0 && team);
3619  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3620 }
3621 
3622 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3623  KMP_DEBUG_ASSERT(thr);
3624  return thr->th.th_info.ds.ds_gtid;
3625 }
3626 
3627 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3628  KMP_DEBUG_ASSERT(gtid >= 0);
3629  return __kmp_threads[gtid];
3630 }
3631 
3632 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3633  KMP_DEBUG_ASSERT(gtid >= 0);
3634  return __kmp_threads[gtid]->th.th_team;
3635 }
3636 
3637 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3638  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3639  KMP_FATAL(ThreadIdentInvalid);
3640 }
3641 
3642 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3643 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3644 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3645 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3646 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3647 #endif
3648 
3649 #if KMP_HAVE_UMWAIT
3650 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3651 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3652 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3653 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3654 #endif
3655 
3656 /* ------------------------------------------------------------------------- */
3657 
3658 extern kmp_global_t __kmp_global; /* global status */
3659 
3660 extern kmp_info_t __kmp_monitor;
3661 // For Debugging Support Library
3662 extern std::atomic<kmp_int32> __kmp_team_counter;
3663 // For Debugging Support Library
3664 extern std::atomic<kmp_int32> __kmp_task_counter;
3665 
3666 #if USE_DEBUGGER
3667 #define _KMP_GEN_ID(counter) \
3668  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3669 #else
3670 #define _KMP_GEN_ID(counter) (~0)
3671 #endif /* USE_DEBUGGER */
3672 
3673 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3674 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3675 
3676 /* ------------------------------------------------------------------------ */
3677 
3678 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3679  size_t size, char const *format, ...);
3680 
3681 extern void __kmp_serial_initialize(void);
3682 extern void __kmp_middle_initialize(void);
3683 extern void __kmp_parallel_initialize(void);
3684 
3685 extern void __kmp_internal_begin(void);
3686 extern void __kmp_internal_end_library(int gtid);
3687 extern void __kmp_internal_end_thread(int gtid);
3688 extern void __kmp_internal_end_atexit(void);
3689 extern void __kmp_internal_end_dtor(void);
3690 extern void __kmp_internal_end_dest(void *);
3691 
3692 extern int __kmp_register_root(int initial_thread);
3693 extern void __kmp_unregister_root(int gtid);
3694 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3695 
3696 extern int __kmp_ignore_mppbeg(void);
3697 extern int __kmp_ignore_mppend(void);
3698 
3699 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3700 extern void __kmp_exit_single(int gtid);
3701 
3702 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3703 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3704 
3705 #ifdef USE_LOAD_BALANCE
3706 extern int __kmp_get_load_balance(int);
3707 #endif
3708 
3709 extern int __kmp_get_global_thread_id(void);
3710 extern int __kmp_get_global_thread_id_reg(void);
3711 extern void __kmp_exit_thread(int exit_status);
3712 extern void __kmp_abort(char const *format, ...);
3713 extern void __kmp_abort_thread(void);
3714 KMP_NORETURN extern void __kmp_abort_process(void);
3715 extern void __kmp_warn(char const *format, ...);
3716 
3717 extern void __kmp_set_num_threads(int new_nth, int gtid);
3718 
3719 extern bool __kmp_detect_shm();
3720 extern bool __kmp_detect_tmp();
3721 
3722 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3723 // registered.
3724 static inline kmp_info_t *__kmp_entry_thread() {
3725  int gtid = __kmp_entry_gtid();
3726 
3727  return __kmp_threads[gtid];
3728 }
3729 
3730 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3731 extern int __kmp_get_max_active_levels(int gtid);
3732 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3733 extern int __kmp_get_team_size(int gtid, int level);
3734 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3735 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3736 
3737 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3738 extern void __kmp_init_random(kmp_info_t *thread);
3739 
3740 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3741 extern void __kmp_adjust_num_threads(int new_nproc);
3742 extern void __kmp_check_stksize(size_t *val);
3743 
3744 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3745 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3746 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3747 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3748 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3749 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3750 
3751 #if USE_FAST_MEMORY
3752 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3753  size_t size KMP_SRC_LOC_DECL);
3754 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3755 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3756 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3757 #define __kmp_fast_allocate(this_thr, size) \
3758  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3759 #define __kmp_fast_free(this_thr, ptr) \
3760  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3761 #endif
3762 
3763 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3764 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3765  size_t elsize KMP_SRC_LOC_DECL);
3766 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3767  size_t size KMP_SRC_LOC_DECL);
3768 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3769 #define __kmp_thread_malloc(th, size) \
3770  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3771 #define __kmp_thread_calloc(th, nelem, elsize) \
3772  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3773 #define __kmp_thread_realloc(th, ptr, size) \
3774  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3775 #define __kmp_thread_free(th, ptr) \
3776  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3777 
3778 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3779 
3780 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3781  kmp_proc_bind_t proc_bind);
3782 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3783  int num_threads);
3784 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3785  int num_teams_ub, int num_threads);
3786 
3787 extern void __kmp_yield();
3788 
3789 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3790  enum sched_type schedule, kmp_int32 lb,
3791  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3792 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3793  enum sched_type schedule, kmp_uint32 lb,
3794  kmp_uint32 ub, kmp_int32 st,
3795  kmp_int32 chunk);
3796 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3797  enum sched_type schedule, kmp_int64 lb,
3798  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3799 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3800  enum sched_type schedule, kmp_uint64 lb,
3801  kmp_uint64 ub, kmp_int64 st,
3802  kmp_int64 chunk);
3803 
3804 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3805  kmp_int32 *p_last, kmp_int32 *p_lb,
3806  kmp_int32 *p_ub, kmp_int32 *p_st);
3807 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3808  kmp_int32 *p_last, kmp_uint32 *p_lb,
3809  kmp_uint32 *p_ub, kmp_int32 *p_st);
3810 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3811  kmp_int32 *p_last, kmp_int64 *p_lb,
3812  kmp_int64 *p_ub, kmp_int64 *p_st);
3813 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3814  kmp_int32 *p_last, kmp_uint64 *p_lb,
3815  kmp_uint64 *p_ub, kmp_int64 *p_st);
3816 
3817 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3818 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3819 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3820 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3821 
3822 #ifdef KMP_GOMP_COMPAT
3823 
3824 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3825  enum sched_type schedule, kmp_int32 lb,
3826  kmp_int32 ub, kmp_int32 st,
3827  kmp_int32 chunk, int push_ws);
3828 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3829  enum sched_type schedule, kmp_uint32 lb,
3830  kmp_uint32 ub, kmp_int32 st,
3831  kmp_int32 chunk, int push_ws);
3832 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3833  enum sched_type schedule, kmp_int64 lb,
3834  kmp_int64 ub, kmp_int64 st,
3835  kmp_int64 chunk, int push_ws);
3836 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3837  enum sched_type schedule, kmp_uint64 lb,
3838  kmp_uint64 ub, kmp_int64 st,
3839  kmp_int64 chunk, int push_ws);
3840 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3841 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3842 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3843 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3844 
3845 #endif /* KMP_GOMP_COMPAT */
3846 
3847 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3848 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3849 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3850 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3851 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3852 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3853  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3854  void *obj);
3855 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3856  kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3857 
3858 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3859  int final_spin
3860 #if USE_ITT_BUILD
3861  ,
3862  void *itt_sync_obj
3863 #endif
3864 );
3865 extern void __kmp_release_64(kmp_flag_64<> *flag);
3866 
3867 extern void __kmp_infinite_loop(void);
3868 
3869 extern void __kmp_cleanup(void);
3870 
3871 #if KMP_HANDLE_SIGNALS
3872 extern int __kmp_handle_signals;
3873 extern void __kmp_install_signals(int parallel_init);
3874 extern void __kmp_remove_signals(void);
3875 #endif
3876 
3877 extern void __kmp_clear_system_time(void);
3878 extern void __kmp_read_system_time(double *delta);
3879 
3880 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3881 
3882 extern void __kmp_expand_host_name(char *buffer, size_t size);
3883 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3884 
3885 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3886 extern void
3887 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3888 #endif
3889 
3890 extern void
3891 __kmp_runtime_initialize(void); /* machine specific initialization */
3892 extern void __kmp_runtime_destroy(void);
3893 
3894 #if KMP_AFFINITY_SUPPORTED
3895 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3896  kmp_affin_mask_t *mask);
3897 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3898  kmp_affin_mask_t *mask);
3899 extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3900 extern void __kmp_affinity_uninitialize(void);
3901 extern void __kmp_affinity_set_init_mask(
3902  int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3903 void __kmp_affinity_bind_init_mask(int gtid);
3904 extern void __kmp_affinity_bind_place(int gtid);
3905 extern void __kmp_affinity_determine_capable(const char *env_var);
3906 extern int __kmp_aux_set_affinity(void **mask);
3907 extern int __kmp_aux_get_affinity(void **mask);
3908 extern int __kmp_aux_get_affinity_max_proc();
3909 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3910 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3911 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3912 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3913 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
3914 extern int __kmp_get_first_osid_with_ecore(void);
3915 #endif
3916 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_AIX
3917 extern int kmp_set_thread_affinity_mask_initial(void);
3918 #endif
3919 static inline void __kmp_assign_root_init_mask() {
3920  int gtid = __kmp_entry_gtid();
3921  kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3922  if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3923  __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE);
3924  __kmp_affinity_bind_init_mask(gtid);
3925  r->r.r_affinity_assigned = TRUE;
3926  }
3927 }
3928 static inline void __kmp_reset_root_init_mask(int gtid) {
3929  if (!KMP_AFFINITY_CAPABLE())
3930  return;
3931  kmp_info_t *th = __kmp_threads[gtid];
3932  kmp_root_t *r = th->th.th_root;
3933  if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3934  __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3935  KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3936  r->r.r_affinity_assigned = FALSE;
3937  }
3938 }
3939 #else /* KMP_AFFINITY_SUPPORTED */
3940 #define __kmp_assign_root_init_mask() /* Nothing */
3941 static inline void __kmp_reset_root_init_mask(int gtid) {}
3942 #endif /* KMP_AFFINITY_SUPPORTED */
3943 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3944 // format string is for affinity, so platforms that do not support
3945 // affinity can still use the other fields, e.g., %n for num_threads
3946 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3947  kmp_str_buf_t *buffer);
3948 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3949 
3950 extern void __kmp_cleanup_hierarchy();
3951 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3952 
3953 #if KMP_USE_FUTEX
3954 
3955 extern int __kmp_futex_determine_capable(void);
3956 
3957 #endif // KMP_USE_FUTEX
3958 
3959 extern void __kmp_gtid_set_specific(int gtid);
3960 extern int __kmp_gtid_get_specific(void);
3961 
3962 extern double __kmp_read_cpu_time(void);
3963 
3964 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3965 
3966 #if KMP_USE_MONITOR
3967 extern void __kmp_create_monitor(kmp_info_t *th);
3968 #endif
3969 
3970 extern void *__kmp_launch_thread(kmp_info_t *thr);
3971 
3972 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3973 
3974 #if KMP_OS_WINDOWS
3975 extern int __kmp_still_running(kmp_info_t *th);
3976 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3977 extern void __kmp_free_handle(kmp_thread_t tHandle);
3978 #endif
3979 
3980 #if KMP_USE_MONITOR
3981 extern void __kmp_reap_monitor(kmp_info_t *th);
3982 #endif
3983 extern void __kmp_reap_worker(kmp_info_t *th);
3984 extern void __kmp_terminate_thread(int gtid);
3985 
3986 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3987 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3988 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3989 
3990 extern void __kmp_elapsed(double *);
3991 extern void __kmp_elapsed_tick(double *);
3992 
3993 extern void __kmp_enable(int old_state);
3994 extern void __kmp_disable(int *old_state);
3995 
3996 extern void __kmp_thread_sleep(int millis);
3997 
3998 extern void __kmp_common_initialize(void);
3999 extern void __kmp_common_destroy(void);
4000 extern void __kmp_common_destroy_gtid(int gtid);
4001 
4002 #if KMP_OS_UNIX
4003 extern void __kmp_register_atfork(void);
4004 #endif
4005 extern void __kmp_suspend_initialize(void);
4006 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
4007 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
4008 
4009 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4010  int tid);
4011 extern kmp_team_t *
4012 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
4013 #if OMPT_SUPPORT
4014  ompt_data_t ompt_parallel_data,
4015 #endif
4016  kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
4017  int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
4018 extern void __kmp_free_thread(kmp_info_t *);
4019 extern void __kmp_free_team(kmp_root_t *,
4020  kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
4021 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
4022 
4023 /* ------------------------------------------------------------------------ */
4024 
4025 extern void __kmp_initialize_bget(kmp_info_t *th);
4026 extern void __kmp_finalize_bget(kmp_info_t *th);
4027 
4028 KMP_EXPORT void *kmpc_malloc(size_t size);
4029 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
4030 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
4031 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
4032 KMP_EXPORT void kmpc_free(void *ptr);
4033 
4034 /* declarations for internal use */
4035 
4036 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
4037  size_t reduce_size, void *reduce_data,
4038  void (*reduce)(void *, void *));
4039 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
4040 extern int __kmp_barrier_gomp_cancel(int gtid);
4041 
4046 enum fork_context_e {
4047  fork_context_gnu,
4049  fork_context_intel,
4050  fork_context_last
4051 };
4052 extern int __kmp_fork_call(ident_t *loc, int gtid,
4053  enum fork_context_e fork_context, kmp_int32 argc,
4054  microtask_t microtask, launch_t invoker,
4055  kmp_va_list ap);
4056 
4057 extern void __kmp_join_call(ident_t *loc, int gtid
4058 #if OMPT_SUPPORT
4059  ,
4060  enum fork_context_e fork_context
4061 #endif
4062  ,
4063  int exit_teams = 0);
4064 
4065 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
4066 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
4067 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
4068 extern int __kmp_invoke_task_func(int gtid);
4069 extern void __kmp_run_before_invoked_task(int gtid, int tid,
4070  kmp_info_t *this_thr,
4071  kmp_team_t *team);
4072 extern void __kmp_run_after_invoked_task(int gtid, int tid,
4073  kmp_info_t *this_thr,
4074  kmp_team_t *team);
4075 
4076 // should never have been exported
4077 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
4078 extern int __kmp_invoke_teams_master(int gtid);
4079 extern void __kmp_teams_master(int gtid);
4080 extern int __kmp_aux_get_team_num();
4081 extern int __kmp_aux_get_num_teams();
4082 extern void __kmp_save_internal_controls(kmp_info_t *thread);
4083 extern void __kmp_user_set_library(enum library_type arg);
4084 extern void __kmp_aux_set_library(enum library_type arg);
4085 extern void __kmp_aux_set_stacksize(size_t arg);
4086 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
4087 extern void __kmp_aux_set_defaults(char const *str, size_t len);
4088 
4089 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
4090 void kmpc_set_blocktime(int arg);
4091 void ompc_set_nested(int flag);
4092 void ompc_set_dynamic(int flag);
4093 void ompc_set_num_threads(int arg);
4094 
4095 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
4096  kmp_team_t *team, int tid);
4097 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
4098 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4099  kmp_tasking_flags_t *flags,
4100  size_t sizeof_kmp_task_t,
4101  size_t sizeof_shareds,
4102  kmp_routine_entry_t task_entry);
4103 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
4104  kmp_team_t *team, int tid,
4105  int set_curr_task);
4106 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
4107 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
4108 
4109 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4110  int gtid,
4111  kmp_task_t *task);
4112 extern void __kmp_fulfill_event(kmp_event_t *event);
4113 
4114 extern void __kmp_free_task_team(kmp_info_t *thread,
4115  kmp_task_team_t *task_team);
4116 extern void __kmp_reap_task_teams(void);
4117 extern void __kmp_wait_to_unref_task_teams(void);
4118 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
4119  int always);
4120 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
4121 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
4122 #if USE_ITT_BUILD
4123  ,
4124  void *itt_sync_obj
4125 #endif /* USE_ITT_BUILD */
4126  ,
4127  int wait = 1);
4128 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
4129  int gtid);
4130 
4131 extern int __kmp_is_address_mapped(void *addr);
4132 extern kmp_uint64 __kmp_hardware_timestamp(void);
4133 
4134 #if KMP_OS_UNIX
4135 extern int __kmp_read_from_file(char const *path, char const *format, ...);
4136 #endif
4137 
4138 /* ------------------------------------------------------------------------ */
4139 //
4140 // Assembly routines that have no compiler intrinsic replacement
4141 //
4142 
4143 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4144  void *argv[]
4145 #if OMPT_SUPPORT
4146  ,
4147  void **exit_frame_ptr
4148 #endif
4149 );
4150 
4151 /* ------------------------------------------------------------------------ */
4152 
4153 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4154 KMP_EXPORT void __kmpc_end(ident_t *);
4155 
4156 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4157  kmpc_ctor_vec ctor,
4158  kmpc_cctor_vec cctor,
4159  kmpc_dtor_vec dtor,
4160  size_t vector_length);
4161 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4162  kmpc_ctor ctor, kmpc_cctor cctor,
4163  kmpc_dtor dtor);
4164 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4165  void *data, size_t size);
4166 
4167 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4168 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4169 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4170 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4171 
4172 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4173 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4174  kmpc_micro microtask, ...);
4175 KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4176  kmpc_micro microtask, kmp_int32 cond,
4177  void *args);
4178 
4179 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4180 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4181 
4182 KMP_EXPORT void __kmpc_flush(ident_t *);
4183 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4184 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4185 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4186 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4187  kmp_int32 filter);
4188 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4189 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4190 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4191 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4192  kmp_critical_name *);
4193 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4194  kmp_critical_name *);
4195 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4196  kmp_critical_name *, uint32_t hint);
4197 
4198 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4199 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4200 
4201 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4202  kmp_int32 global_tid);
4203 
4204 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4205 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4206 
4207 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4208 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4209  kmp_int32 numberOfSections);
4210 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4211 
4212 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4213  kmp_int32 schedtype, kmp_int32 *plastiter,
4214  kmp_int *plower, kmp_int *pupper,
4215  kmp_int *pstride, kmp_int incr,
4216  kmp_int chunk);
4217 
4218 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4219 
4220 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4221  size_t cpy_size, void *cpy_data,
4222  void (*cpy_func)(void *, void *),
4223  kmp_int32 didit);
4224 
4225 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4226  void *cpy_data);
4227 
4228 extern void KMPC_SET_NUM_THREADS(int arg);
4229 extern void KMPC_SET_DYNAMIC(int flag);
4230 extern void KMPC_SET_NESTED(int flag);
4231 
4232 /* OMP 3.0 tasking interface routines */
4233 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4234  kmp_task_t *new_task);
4235 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4236  kmp_int32 flags,
4237  size_t sizeof_kmp_task_t,
4238  size_t sizeof_shareds,
4239  kmp_routine_entry_t task_entry);
4240 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4241  ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4242  size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4243 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4244  kmp_task_t *task);
4245 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4246  kmp_task_t *task);
4247 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4248  kmp_task_t *new_task);
4249 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4250 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4251  int end_part);
4252 
4253 #if TASK_UNUSED
4254 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4255 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4256  kmp_task_t *task);
4257 #endif // TASK_UNUSED
4258 
4259 /* ------------------------------------------------------------------------ */
4260 
4261 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4262 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4263 
4264 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4265  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4266  kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4267  kmp_depend_info_t *noalias_dep_list);
4268 
4269 KMP_EXPORT kmp_base_depnode_t *__kmpc_task_get_depnode(kmp_task_t *task);
4270 
4271 KMP_EXPORT kmp_depnode_list_t *__kmpc_task_get_successors(kmp_task_t *task);
4272 
4273 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4274  kmp_int32 ndeps,
4275  kmp_depend_info_t *dep_list,
4276  kmp_int32 ndeps_noalias,
4277  kmp_depend_info_t *noalias_dep_list);
4278 /* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4279  * Placeholder for taskwait with nowait clause.*/
4280 KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4281  kmp_int32 ndeps,
4282  kmp_depend_info_t *dep_list,
4283  kmp_int32 ndeps_noalias,
4284  kmp_depend_info_t *noalias_dep_list,
4285  kmp_int32 has_no_wait);
4286 
4287 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4288  bool serialize_immediate);
4289 
4290 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4291  kmp_int32 cncl_kind);
4292 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4293  kmp_int32 cncl_kind);
4294 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4295 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4296 
4297 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4298 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4299 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4300  kmp_int32 if_val, kmp_uint64 *lb,
4301  kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4302  kmp_int32 sched, kmp_uint64 grainsize,
4303  void *task_dup);
4304 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4305  kmp_task_t *task, kmp_int32 if_val,
4306  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4307  kmp_int32 nogroup, kmp_int32 sched,
4308  kmp_uint64 grainsize, kmp_int32 modifier,
4309  void *task_dup);
4310 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4311 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4312 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4313 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4314  int is_ws, int num,
4315  void *data);
4316 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4317  int num, void *data);
4318 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4319  int is_ws);
4320 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4321  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4322  kmp_task_affinity_info_t *affin_list);
4323 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4324 KMP_EXPORT int __kmp_get_max_teams(void);
4325 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4326 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4327 
4328 /* Interface target task integration */
4329 KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4330 KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4331 
4332 /* Lock interface routines (fast versions with gtid passed in) */
4333 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4334  void **user_lock);
4335 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4336  void **user_lock);
4337 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4338  void **user_lock);
4339 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4340  void **user_lock);
4341 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4342 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4343  void **user_lock);
4344 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4345  void **user_lock);
4346 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4347  void **user_lock);
4348 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4349 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4350  void **user_lock);
4351 
4352 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4353  void **user_lock, uintptr_t hint);
4354 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4355  void **user_lock,
4356  uintptr_t hint);
4357 
4358 #if OMPX_TASKGRAPH
4359 // Taskgraph's Record & Replay mechanism
4360 // __kmp_tdg_is_recording: check whether a given TDG is recording
4361 // status: the tdg's current status
4362 static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4363  return status == KMP_TDG_RECORDING;
4364 }
4365 
4366 KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4367  kmp_int32 input_flags,
4368  kmp_int32 tdg_id);
4369 KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4370  kmp_int32 input_flags, kmp_int32 tdg_id);
4371 #endif
4372 /* Interface to fast scalable reduce methods routines */
4373 
4374 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4375  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4376  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4377  kmp_critical_name *lck);
4378 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4379  kmp_critical_name *lck);
4380 KMP_EXPORT kmp_int32 __kmpc_reduce(
4381  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4382  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4383  kmp_critical_name *lck);
4384 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4385  kmp_critical_name *lck);
4386 
4387 /* Internal fast reduction routines */
4388 
4389 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4390  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4391  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4392  kmp_critical_name *lck);
4393 
4394 // this function is for testing set/get/determine reduce method
4395 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4396 
4397 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4398 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4399 
4400 // C++ port
4401 // missing 'extern "C"' declarations
4402 
4403 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4404 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4405 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4406  kmp_int32 num_threads);
4407 
4408 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4409  int proc_bind);
4410 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4411  kmp_int32 num_teams,
4412  kmp_int32 num_threads);
4413 KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid,
4414  kmp_int32 thread_limit);
4415 /* Function for OpenMP 5.1 num_teams clause */
4416 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4417  kmp_int32 num_teams_lb,
4418  kmp_int32 num_teams_ub,
4419  kmp_int32 num_threads);
4420 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4421  kmpc_micro microtask, ...);
4422 struct kmp_dim { // loop bounds info casted to kmp_int64
4423  kmp_int64 lo; // lower
4424  kmp_int64 up; // upper
4425  kmp_int64 st; // stride
4426 };
4427 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4428  kmp_int32 num_dims,
4429  const struct kmp_dim *dims);
4430 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4431  const kmp_int64 *vec);
4432 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4433  const kmp_int64 *vec);
4434 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4435 
4436 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4437  void *data, size_t size,
4438  void ***cache);
4439 
4440 // The routines below are not exported.
4441 // Consider making them 'static' in corresponding source files.
4442 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4443  void *data_addr, size_t pc_size);
4444 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4445  void *data_addr,
4446  size_t pc_size);
4447 void __kmp_threadprivate_resize_cache(int newCapacity);
4448 void __kmp_cleanup_threadprivate_caches();
4449 
4450 // ompc_, kmpc_ entries moved from omp.h.
4451 #if KMP_OS_WINDOWS
4452 #define KMPC_CONVENTION __cdecl
4453 #else
4454 #define KMPC_CONVENTION
4455 #endif
4456 
4457 #ifndef __OMP_H
4458 typedef enum omp_sched_t {
4459  omp_sched_static = 1,
4460  omp_sched_dynamic = 2,
4461  omp_sched_guided = 3,
4462  omp_sched_auto = 4
4463 } omp_sched_t;
4464 typedef void *kmp_affinity_mask_t;
4465 #endif
4466 
4467 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4468 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4469 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4470 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4471 KMP_EXPORT int KMPC_CONVENTION
4472 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4473 KMP_EXPORT int KMPC_CONVENTION
4474 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4475 KMP_EXPORT int KMPC_CONVENTION
4476 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4477 
4478 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4479 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4480 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4481 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4482 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4483 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4484 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4485 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4486 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4487  char const *format);
4488 
4489 enum kmp_target_offload_kind {
4490  tgt_disabled = 0,
4491  tgt_default = 1,
4492  tgt_mandatory = 2
4493 };
4494 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4495 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4496 extern kmp_target_offload_kind_t __kmp_target_offload;
4497 extern int __kmpc_get_target_offload();
4498 
4499 // Constants used in libomptarget
4500 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4501 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4502 
4503 // OMP Pause Resource
4504 
4505 // The following enum is used both to set the status in __kmp_pause_status, and
4506 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4507 typedef enum kmp_pause_status_t {
4508  kmp_not_paused = 0, // status is not paused, or, requesting resume
4509  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4510  kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4511 } kmp_pause_status_t;
4512 
4513 // This stores the pause state of the runtime
4514 extern kmp_pause_status_t __kmp_pause_status;
4515 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4516 extern int __kmp_pause_resource(kmp_pause_status_t level);
4517 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4518 extern void __kmp_resume_if_soft_paused();
4519 // Hard resume simply resets the status to not paused. Library will appear to
4520 // be uninitialized after hard pause. Let OMP constructs trigger required
4521 // initializations.
4522 static inline void __kmp_resume_if_hard_paused() {
4523  if (__kmp_pause_status == kmp_hard_paused) {
4524  __kmp_pause_status = kmp_not_paused;
4525  }
4526 }
4527 
4528 extern void __kmp_omp_display_env(int verbose);
4529 
4530 // 1: it is initializing hidden helper team
4531 extern volatile int __kmp_init_hidden_helper;
4532 // 1: the hidden helper team is done
4533 extern volatile int __kmp_hidden_helper_team_done;
4534 // 1: enable hidden helper task
4535 extern kmp_int32 __kmp_enable_hidden_helper;
4536 // Main thread of hidden helper team
4537 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4538 // Descriptors for the hidden helper threads
4539 extern kmp_info_t **__kmp_hidden_helper_threads;
4540 // Number of hidden helper threads
4541 extern kmp_int32 __kmp_hidden_helper_threads_num;
4542 // Number of hidden helper tasks that have not been executed yet
4543 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4544 
4545 extern void __kmp_hidden_helper_initialize();
4546 extern void __kmp_hidden_helper_threads_initz_routine();
4547 extern void __kmp_do_initialize_hidden_helper_threads();
4548 extern void __kmp_hidden_helper_threads_initz_wait();
4549 extern void __kmp_hidden_helper_initz_release();
4550 extern void __kmp_hidden_helper_threads_deinitz_wait();
4551 extern void __kmp_hidden_helper_threads_deinitz_release();
4552 extern void __kmp_hidden_helper_main_thread_wait();
4553 extern void __kmp_hidden_helper_worker_thread_wait();
4554 extern void __kmp_hidden_helper_worker_thread_signal();
4555 extern void __kmp_hidden_helper_main_thread_release();
4556 
4557 // Check whether a given thread is a hidden helper thread
4558 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4559  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4560 
4561 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4562  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4563 
4564 #define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4565  ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4566 
4567 #define KMP_HIDDEN_HELPER_TEAM(team) \
4568  (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4569 
4570 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4571 // main thread, is skipped.
4572 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4573  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4574 
4575 // Return the adjusted gtid value by subtracting from gtid the number
4576 // of hidden helper threads. This adjusted value is the gtid the thread would
4577 // have received if there were no hidden helper threads.
4578 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4579  int adjusted_gtid = gtid;
4580  if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4581  gtid - __kmp_hidden_helper_threads_num >= 0) {
4582  adjusted_gtid -= __kmp_hidden_helper_threads_num;
4583  }
4584  return adjusted_gtid;
4585 }
4586 
4587 // Support for error directive
4588 typedef enum kmp_severity_t {
4589  severity_warning = 1,
4590  severity_fatal = 2
4591 } kmp_severity_t;
4592 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4593 
4594 // Support for scope directive
4595 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4596 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4597 
4598 #ifdef __cplusplus
4599 }
4600 #endif
4601 
4602 template <bool C, bool S>
4603 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4604 template <bool C, bool S>
4605 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4606 template <bool C, bool S>
4607 extern void __kmp_atomic_suspend_64(int th_gtid,
4608  kmp_atomic_flag_64<C, S> *flag);
4609 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4610 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4611 template <bool C, bool S>
4612 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4613 template <bool C, bool S>
4614 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4615 template <bool C, bool S>
4616 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4617 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4618 #endif
4619 template <bool C, bool S>
4620 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4621 template <bool C, bool S>
4622 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4623 template <bool C, bool S>
4624 extern void __kmp_atomic_resume_64(int target_gtid,
4625  kmp_atomic_flag_64<C, S> *flag);
4626 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4627 
4628 template <bool C, bool S>
4629 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4630  kmp_flag_32<C, S> *flag, int final_spin,
4631  int *thread_finished,
4632 #if USE_ITT_BUILD
4633  void *itt_sync_obj,
4634 #endif /* USE_ITT_BUILD */
4635  kmp_int32 is_constrained);
4636 template <bool C, bool S>
4637 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4638  kmp_flag_64<C, S> *flag, int final_spin,
4639  int *thread_finished,
4640 #if USE_ITT_BUILD
4641  void *itt_sync_obj,
4642 #endif /* USE_ITT_BUILD */
4643  kmp_int32 is_constrained);
4644 template <bool C, bool S>
4645 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4646  kmp_atomic_flag_64<C, S> *flag,
4647  int final_spin, int *thread_finished,
4648 #if USE_ITT_BUILD
4649  void *itt_sync_obj,
4650 #endif /* USE_ITT_BUILD */
4651  kmp_int32 is_constrained);
4652 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4653  kmp_flag_oncore *flag, int final_spin,
4654  int *thread_finished,
4655 #if USE_ITT_BUILD
4656  void *itt_sync_obj,
4657 #endif /* USE_ITT_BUILD */
4658  kmp_int32 is_constrained);
4659 
4660 extern int __kmp_nesting_mode;
4661 extern int __kmp_nesting_mode_nlevels;
4662 extern int *__kmp_nesting_nth_level;
4663 extern void __kmp_init_nesting_mode();
4664 extern void __kmp_set_nesting_mode_threads();
4665 
4673  FILE *f;
4674 
4675  void close() {
4676  if (f && f != stdout && f != stderr) {
4677  fclose(f);
4678  f = nullptr;
4679  }
4680  }
4681 
4682 public:
4683  kmp_safe_raii_file_t() : f(nullptr) {}
4684  kmp_safe_raii_file_t(const char *filename, const char *mode,
4685  const char *env_var = nullptr)
4686  : f(nullptr) {
4687  open(filename, mode, env_var);
4688  }
4689  ~kmp_safe_raii_file_t() { close(); }
4690 
4694  void open(const char *filename, const char *mode,
4695  const char *env_var = nullptr) {
4696  KMP_ASSERT(!f);
4697  f = fopen(filename, mode);
4698  if (!f) {
4699  int code = errno;
4700  if (env_var) {
4701  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4702  KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4703  } else {
4704  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4705  __kmp_msg_null);
4706  }
4707  }
4708  }
4711  int try_open(const char *filename, const char *mode) {
4712  KMP_ASSERT(!f);
4713  f = fopen(filename, mode);
4714  if (!f)
4715  return errno;
4716  return 0;
4717  }
4720  void set_stdout() {
4721  KMP_ASSERT(!f);
4722  f = stdout;
4723  }
4726  void set_stderr() {
4727  KMP_ASSERT(!f);
4728  f = stderr;
4729  }
4730  operator bool() { return bool(f); }
4731  operator FILE *() { return f; }
4732 };
4733 
4734 template <typename SourceType, typename TargetType,
4735  bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4736  bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4737  bool isSourceSigned = std::is_signed<SourceType>::value,
4738  bool isTargetSigned = std::is_signed<TargetType>::value>
4739 struct kmp_convert {};
4740 
4741 // Both types are signed; Source smaller
4742 template <typename SourceType, typename TargetType>
4743 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4744  static TargetType to(SourceType src) { return (TargetType)src; }
4745 };
4746 // Source equal
4747 template <typename SourceType, typename TargetType>
4748 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4749  static TargetType to(SourceType src) { return src; }
4750 };
4751 // Source bigger
4752 template <typename SourceType, typename TargetType>
4753 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4754  static TargetType to(SourceType src) {
4755  KMP_ASSERT(src <= static_cast<SourceType>(
4756  (std::numeric_limits<TargetType>::max)()));
4757  KMP_ASSERT(src >= static_cast<SourceType>(
4758  (std::numeric_limits<TargetType>::min)()));
4759  return (TargetType)src;
4760  }
4761 };
4762 
4763 // Source signed, Target unsigned
4764 // Source smaller
4765 template <typename SourceType, typename TargetType>
4766 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4767  static TargetType to(SourceType src) {
4768  KMP_ASSERT(src >= 0);
4769  return (TargetType)src;
4770  }
4771 };
4772 // Source equal
4773 template <typename SourceType, typename TargetType>
4774 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4775  static TargetType to(SourceType src) {
4776  KMP_ASSERT(src >= 0);
4777  return (TargetType)src;
4778  }
4779 };
4780 // Source bigger
4781 template <typename SourceType, typename TargetType>
4782 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4783  static TargetType to(SourceType src) {
4784  KMP_ASSERT(src >= 0);
4785  KMP_ASSERT(src <= static_cast<SourceType>(
4786  (std::numeric_limits<TargetType>::max)()));
4787  return (TargetType)src;
4788  }
4789 };
4790 
4791 // Source unsigned, Target signed
4792 // Source smaller
4793 template <typename SourceType, typename TargetType>
4794 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4795  static TargetType to(SourceType src) { return (TargetType)src; }
4796 };
4797 // Source equal
4798 template <typename SourceType, typename TargetType>
4799 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4800  static TargetType to(SourceType src) {
4801  KMP_ASSERT(src <= static_cast<SourceType>(
4802  (std::numeric_limits<TargetType>::max)()));
4803  return (TargetType)src;
4804  }
4805 };
4806 // Source bigger
4807 template <typename SourceType, typename TargetType>
4808 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4809  static TargetType to(SourceType src) {
4810  KMP_ASSERT(src <= static_cast<SourceType>(
4811  (std::numeric_limits<TargetType>::max)()));
4812  return (TargetType)src;
4813  }
4814 };
4815 
4816 // Source unsigned, Target unsigned
4817 // Source smaller
4818 template <typename SourceType, typename TargetType>
4819 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4820  static TargetType to(SourceType src) { return (TargetType)src; }
4821 };
4822 // Source equal
4823 template <typename SourceType, typename TargetType>
4824 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4825  static TargetType to(SourceType src) { return src; }
4826 };
4827 // Source bigger
4828 template <typename SourceType, typename TargetType>
4829 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4830  static TargetType to(SourceType src) {
4831  KMP_ASSERT(src <= static_cast<SourceType>(
4832  (std::numeric_limits<TargetType>::max)()));
4833  return (TargetType)src;
4834  }
4835 };
4836 
4837 template <typename T1, typename T2>
4838 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4839  *dest = kmp_convert<T1, T2>::to(src);
4840 }
4841 
4842 #endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4720
void set_stderr()
Definition: kmp.h:4726
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4711
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4694
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:208
@ KMP_IDENT_IMB
Definition: kmp.h:206
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:226
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:217
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:228
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:211
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:235
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:230
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:215
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:213
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid, kmp_int32 thread_limit)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1744
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1768
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1762
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1785
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1775
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1797
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1791
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:369
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:420
@ kmp_sch_runtime_simd
Definition: kmp.h:391
@ kmp_nm_ord_auto
Definition: kmp.h:439
@ kmp_sch_auto
Definition: kmp.h:376
@ kmp_nm_auto
Definition: kmp.h:422
@ kmp_distribute_static_chunked
Definition: kmp.h:407
@ kmp_sch_static
Definition: kmp.h:372
@ kmp_sch_guided_simd
Definition: kmp.h:390
@ kmp_sch_modifier_monotonic
Definition: kmp.h:457
@ kmp_sch_default
Definition: kmp.h:477
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:459
@ kmp_nm_ord_static
Definition: kmp.h:435
@ kmp_distribute_static
Definition: kmp.h:408
@ kmp_sch_guided_chunked
Definition: kmp.h:374
@ kmp_nm_static
Definition: kmp.h:418
@ kmp_sch_lower
Definition: kmp.h:370
@ kmp_nm_upper
Definition: kmp.h:441
@ kmp_ord_lower
Definition: kmp.h:396
@ kmp_ord_static
Definition: kmp.h:398
@ kmp_sch_upper
Definition: kmp.h:394
@ kmp_ord_upper
Definition: kmp.h:404
@ kmp_nm_lower
Definition: kmp.h:414
@ kmp_ord_auto
Definition: kmp.h:402
Definition: kmp.h:246
kmp_int32 reserved_1
Definition: kmp.h:247
char const * psource
Definition: kmp.h:256
kmp_int32 reserved_2
Definition: kmp.h:250
kmp_int32 reserved_3
Definition: kmp.h:255
kmp_int32 flags
Definition: kmp.h:248