LLVM OpenMP* Runtime Library
z_Windows_NT_util.cpp
1 /*
2  * z_Windows_NT_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
19 
20 /* This code is related to NtQuerySystemInformation() function. This function
21  is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22  number of running threads in the system. */
23 
24 #include <ntsecapi.h> // UNICODE_STRING
25 #undef WIN32_NO_STATUS
26 #include <ntstatus.h>
27 #include <psapi.h>
28 #ifdef _MSC_VER
29 #pragma comment(lib, "psapi.lib")
30 #endif
31 
32 enum SYSTEM_INFORMATION_CLASS {
33  SystemProcessInformation = 5
34 }; // SYSTEM_INFORMATION_CLASS
35 
36 struct CLIENT_ID {
37  HANDLE UniqueProcess;
38  HANDLE UniqueThread;
39 }; // struct CLIENT_ID
40 
41 enum THREAD_STATE {
42  StateInitialized,
43  StateReady,
44  StateRunning,
45  StateStandby,
46  StateTerminated,
47  StateWait,
48  StateTransition,
49  StateUnknown
50 }; // enum THREAD_STATE
51 
52 struct VM_COUNTERS {
53  SIZE_T PeakVirtualSize;
54  SIZE_T VirtualSize;
55  ULONG PageFaultCount;
56  SIZE_T PeakWorkingSetSize;
57  SIZE_T WorkingSetSize;
58  SIZE_T QuotaPeakPagedPoolUsage;
59  SIZE_T QuotaPagedPoolUsage;
60  SIZE_T QuotaPeakNonPagedPoolUsage;
61  SIZE_T QuotaNonPagedPoolUsage;
62  SIZE_T PagefileUsage;
63  SIZE_T PeakPagefileUsage;
64  SIZE_T PrivatePageCount;
65 }; // struct VM_COUNTERS
66 
67 struct SYSTEM_THREAD {
68  LARGE_INTEGER KernelTime;
69  LARGE_INTEGER UserTime;
70  LARGE_INTEGER CreateTime;
71  ULONG WaitTime;
72  LPVOID StartAddress;
73  CLIENT_ID ClientId;
74  DWORD Priority;
75  LONG BasePriority;
76  ULONG ContextSwitchCount;
77  THREAD_STATE State;
78  ULONG WaitReason;
79 }; // SYSTEM_THREAD
80 
81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
82 #if KMP_ARCH_X86 || KMP_ARCH_ARM
83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
84 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
85 #else
86 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
87 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
88 #endif
89 
90 struct SYSTEM_PROCESS_INFORMATION {
91  ULONG NextEntryOffset;
92  ULONG NumberOfThreads;
93  LARGE_INTEGER Reserved[3];
94  LARGE_INTEGER CreateTime;
95  LARGE_INTEGER UserTime;
96  LARGE_INTEGER KernelTime;
97  UNICODE_STRING ImageName;
98  DWORD BasePriority;
99  HANDLE ProcessId;
100  HANDLE ParentProcessId;
101  ULONG HandleCount;
102  ULONG Reserved2[2];
103  VM_COUNTERS VMCounters;
104  IO_COUNTERS IOCounters;
105  SYSTEM_THREAD Threads[1];
106 }; // SYSTEM_PROCESS_INFORMATION
107 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
108 
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
112 #if KMP_ARCH_X86 || KMP_ARCH_ARM
113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
118 #else
119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
122 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
123 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
124 #endif
125 
126 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
127  PVOID, ULONG, PULONG);
128 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
129 
130 HMODULE ntdll = NULL;
131 
132 /* End of NtQuerySystemInformation()-related code */
133 
134 static HMODULE kernel32 = NULL;
135 
136 #if KMP_HANDLE_SIGNALS
137 typedef void (*sig_func_t)(int);
138 static sig_func_t __kmp_sighldrs[NSIG];
139 static int __kmp_siginstalled[NSIG];
140 #endif
141 
142 #if KMP_USE_MONITOR
143 static HANDLE __kmp_monitor_ev;
144 #endif
145 static kmp_int64 __kmp_win32_time;
146 double __kmp_win32_tick;
147 
148 int __kmp_init_runtime = FALSE;
149 CRITICAL_SECTION __kmp_win32_section;
150 
151 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
152  InitializeCriticalSection(&mx->cs);
153 #if USE_ITT_BUILD
154  __kmp_itt_system_object_created(&mx->cs, "Critical Section");
155 #endif /* USE_ITT_BUILD */
156 }
157 
158 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
159  DeleteCriticalSection(&mx->cs);
160 }
161 
162 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
163  EnterCriticalSection(&mx->cs);
164 }
165 
166 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
167  return TryEnterCriticalSection(&mx->cs);
168 }
169 
170 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
171  LeaveCriticalSection(&mx->cs);
172 }
173 
174 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
175  cv->waiters_count_ = 0;
176  cv->wait_generation_count_ = 0;
177  cv->release_count_ = 0;
178 
179  /* Initialize the critical section */
180  __kmp_win32_mutex_init(&cv->waiters_count_lock_);
181 
182  /* Create a manual-reset event. */
183  cv->event_ = CreateEvent(NULL, // no security
184  TRUE, // manual-reset
185  FALSE, // non-signaled initially
186  NULL); // unnamed
187 #if USE_ITT_BUILD
188  __kmp_itt_system_object_created(cv->event_, "Event");
189 #endif /* USE_ITT_BUILD */
190 }
191 
192 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
193  __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
194  __kmp_free_handle(cv->event_);
195  memset(cv, '\0', sizeof(*cv));
196 }
197 
198 /* TODO associate cv with a team instead of a thread so as to optimize
199  the case where we wake up a whole team */
200 
201 template <class C>
202 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
203  kmp_info_t *th, C *flag) {
204  int my_generation;
205  int last_waiter;
206 
207  /* Avoid race conditions */
208  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
209 
210  /* Increment count of waiters */
211  cv->waiters_count_++;
212 
213  /* Store current generation in our activation record. */
214  my_generation = cv->wait_generation_count_;
215 
216  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
217  __kmp_win32_mutex_unlock(mx);
218 
219  for (;;) {
220  int wait_done = 0;
221  DWORD res, timeout = 5000; // just tried to quess an appropriate number
222  /* Wait until the event is signaled */
223  res = WaitForSingleObject(cv->event_, timeout);
224 
225  if (res == WAIT_OBJECT_0) {
226  // event signaled
227  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
228  /* Exit the loop when the <cv->event_> is signaled and there are still
229  waiting threads from this <wait_generation> that haven't been released
230  from this wait yet. */
231  wait_done = (cv->release_count_ > 0) &&
232  (cv->wait_generation_count_ != my_generation);
233  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
234  } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
235  // check if the flag and cv counters are in consistent state
236  // as MS sent us debug dump whith inconsistent state of data
237  __kmp_win32_mutex_lock(mx);
238  typename C::flag_t old_f = flag->set_sleeping();
239  if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
240  __kmp_win32_mutex_unlock(mx);
241  continue;
242  }
243  // condition fulfilled, exiting
244  flag->unset_sleeping();
245  TCW_PTR(th->th.th_sleep_loc, NULL);
246  th->th.th_sleep_loc_type = flag_unset;
247  KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
248  "fulfilled: flag's loc(%p): %u\n",
249  flag->get(), (unsigned int)flag->load()));
250 
251  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
252  KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
253  cv->release_count_ = cv->waiters_count_;
254  cv->wait_generation_count_++;
255  wait_done = 1;
256  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
257 
258  __kmp_win32_mutex_unlock(mx);
259  }
260  /* there used to be a semicolon after the if statement, it looked like a
261  bug, so i removed it */
262  if (wait_done)
263  break;
264  }
265 
266  __kmp_win32_mutex_lock(mx);
267  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
268 
269  cv->waiters_count_--;
270  cv->release_count_--;
271 
272  last_waiter = (cv->release_count_ == 0);
273 
274  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
275 
276  if (last_waiter) {
277  /* We're the last waiter to be notified, so reset the manual event. */
278  ResetEvent(cv->event_);
279  }
280 }
281 
282 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
283  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
284 
285  if (cv->waiters_count_ > 0) {
286  SetEvent(cv->event_);
287  /* Release all the threads in this generation. */
288 
289  cv->release_count_ = cv->waiters_count_;
290 
291  /* Start a new generation. */
292  cv->wait_generation_count_++;
293  }
294 
295  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
296 }
297 
298 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
299  __kmp_win32_cond_broadcast(cv);
300 }
301 
302 void __kmp_enable(int new_state) {
303  if (__kmp_init_runtime)
304  LeaveCriticalSection(&__kmp_win32_section);
305 }
306 
307 void __kmp_disable(int *old_state) {
308  *old_state = 0;
309 
310  if (__kmp_init_runtime)
311  EnterCriticalSection(&__kmp_win32_section);
312 }
313 
314 void __kmp_suspend_initialize(void) { /* do nothing */
315 }
316 
317 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
318  int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
319  int new_value = TRUE;
320  // Return if already initialized
321  if (old_value == new_value)
322  return;
323  // Wait, then return if being initialized
324  if (old_value == -1 ||
325  !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
326  while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
327  KMP_CPU_PAUSE();
328  }
329  } else {
330  // Claim to be the initializer and do initializations
331  __kmp_win32_cond_init(&th->th.th_suspend_cv);
332  __kmp_win32_mutex_init(&th->th.th_suspend_mx);
333  KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
334  }
335 }
336 
337 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
338  if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
339  /* this means we have initialize the suspension pthread objects for this
340  thread in this instance of the process */
341  __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
342  __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
343  KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
344  }
345 }
346 
347 int __kmp_try_suspend_mx(kmp_info_t *th) {
348  return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
349 }
350 
351 void __kmp_lock_suspend_mx(kmp_info_t *th) {
352  __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
353 }
354 
355 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
356  __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
357 }
358 
359 /* This routine puts the calling thread to sleep after setting the
360  sleep bit for the indicated flag variable to true. */
361 template <class C>
362 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
363  kmp_info_t *th = __kmp_threads[th_gtid];
364  typename C::flag_t old_spin;
365 
366  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
367  th_gtid, flag->get()));
368 
369  __kmp_suspend_initialize_thread(th);
370  __kmp_lock_suspend_mx(th);
371 
372  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
373  " loc(%p)\n",
374  th_gtid, flag->get()));
375 
376  /* TODO: shouldn't this use release semantics to ensure that
377  __kmp_suspend_initialize_thread gets called first? */
378  old_spin = flag->set_sleeping();
379  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
380  th->th.th_sleep_loc_type = flag->get_type();
381  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
382  __kmp_pause_status != kmp_soft_paused) {
383  flag->unset_sleeping();
384  TCW_PTR(th->th.th_sleep_loc, NULL);
385  th->th.th_sleep_loc_type = flag_unset;
386  __kmp_unlock_suspend_mx(th);
387  return;
388  }
389 
390  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
391  " loc(%p)==%u\n",
392  th_gtid, flag->get(), (unsigned int)flag->load()));
393 
394  if (flag->done_check_val(old_spin) || flag->done_check()) {
395  flag->unset_sleeping();
396  TCW_PTR(th->th.th_sleep_loc, NULL);
397  th->th.th_sleep_loc_type = flag_unset;
398  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
399  "for flag's loc(%p)\n",
400  th_gtid, flag->get()));
401  } else {
402 #ifdef DEBUG_SUSPEND
403  __kmp_suspend_count++;
404 #endif
405  /* Encapsulate in a loop as the documentation states that this may "with
406  low probability" return when the condition variable has not been signaled
407  or broadcast */
408  int deactivated = FALSE;
409 
410  while (flag->is_sleeping()) {
411  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
412  "kmp_win32_cond_wait()\n",
413  th_gtid));
414  // Mark the thread as no longer active (only in the first iteration of the
415  // loop).
416  if (!deactivated) {
417  th->th.th_active = FALSE;
418  if (th->th.th_active_in_pool) {
419  th->th.th_active_in_pool = FALSE;
420  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
421  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
422  }
423  deactivated = TRUE;
424  }
425 
426  KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
427  KMP_DEBUG_ASSERT(th->th.th_sleep_loc_type == flag->get_type());
428 
429  __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
430  flag);
431 
432 #ifdef KMP_DEBUG
433  if (flag->is_sleeping()) {
434  KF_TRACE(100,
435  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
436  }
437 #endif /* KMP_DEBUG */
438 
439  } // while
440 
441  // We may have had the loop variable set before entering the loop body;
442  // so we need to reset sleep_loc.
443  TCW_PTR(th->th.th_sleep_loc, NULL);
444  th->th.th_sleep_loc_type = flag_unset;
445 
446  KMP_DEBUG_ASSERT(!flag->is_sleeping());
447  KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
448 
449  // Mark the thread as active again (if it was previous marked as inactive)
450  if (deactivated) {
451  th->th.th_active = TRUE;
452  if (TCR_4(th->th.th_in_pool)) {
453  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
454  th->th.th_active_in_pool = TRUE;
455  }
456  }
457  }
458 
459  __kmp_unlock_suspend_mx(th);
460  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
461 }
462 
463 template <bool C, bool S>
464 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
465  __kmp_suspend_template(th_gtid, flag);
466 }
467 template <bool C, bool S>
468 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
469  __kmp_suspend_template(th_gtid, flag);
470 }
471 template <bool C, bool S>
472 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
473  __kmp_suspend_template(th_gtid, flag);
474 }
475 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
476  __kmp_suspend_template(th_gtid, flag);
477 }
478 
479 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
480 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
481 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
482 template void
483 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
484 template void
485 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
486 
487 /* This routine signals the thread specified by target_gtid to wake up
488  after setting the sleep bit indicated by the flag argument to FALSE */
489 template <class C>
490 static inline void __kmp_resume_template(int target_gtid, C *flag) {
491  kmp_info_t *th = __kmp_threads[target_gtid];
492 
493 #ifdef KMP_DEBUG
494  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
495 #endif
496 
497  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
498  gtid, target_gtid));
499 
500  __kmp_suspend_initialize_thread(th);
501  __kmp_lock_suspend_mx(th);
502 
503  if (!flag || flag != th->th.th_sleep_loc) {
504  // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
505  // different location; wake up at new location
506  flag = (C *)th->th.th_sleep_loc;
507  }
508 
509  // First, check if the flag is null or its type has changed. If so, someone
510  // else woke it up.
511  if (!flag || flag->get_type() != th->th.th_sleep_loc_type) {
512  // simply shows what flag was cast to
513  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
514  "awake: flag's loc(%p)\n",
515  gtid, target_gtid, NULL));
516  __kmp_unlock_suspend_mx(th);
517  return;
518  } else {
519  if (!flag->is_sleeping()) {
520  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
521  "awake: flag's loc(%p): %u\n",
522  gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
523  __kmp_unlock_suspend_mx(th);
524  return;
525  }
526  }
527  KMP_DEBUG_ASSERT(flag);
528  flag->unset_sleeping();
529  TCW_PTR(th->th.th_sleep_loc, NULL);
530  th->th.th_sleep_loc_type = flag_unset;
531 
532  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
533  "bit for flag's loc(%p)\n",
534  gtid, target_gtid, flag->get()));
535 
536  __kmp_win32_cond_signal(&th->th.th_suspend_cv);
537  __kmp_unlock_suspend_mx(th);
538 
539  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
540  " for T#%d\n",
541  gtid, target_gtid));
542 }
543 
544 template <bool C, bool S>
545 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
546  __kmp_resume_template(target_gtid, flag);
547 }
548 template <bool C, bool S>
549 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
550  __kmp_resume_template(target_gtid, flag);
551 }
552 template <bool C, bool S>
553 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
554  __kmp_resume_template(target_gtid, flag);
555 }
556 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
557  __kmp_resume_template(target_gtid, flag);
558 }
559 
560 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
561 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
562 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
563 template void
564 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
565 
566 void __kmp_yield() { Sleep(0); }
567 
568 void __kmp_gtid_set_specific(int gtid) {
569  if (__kmp_init_gtid) {
570  KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
571  __kmp_gtid_threadprivate_key));
572  kmp_intptr_t g = (kmp_intptr_t)gtid;
573  if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(g + 1)))
574  KMP_FATAL(TLSSetValueFailed);
575  } else {
576  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
577  }
578 }
579 
580 int __kmp_gtid_get_specific() {
581  int gtid;
582  if (!__kmp_init_gtid) {
583  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
584  "KMP_GTID_SHUTDOWN\n"));
585  return KMP_GTID_SHUTDOWN;
586  }
587  gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
588  if (gtid == 0) {
589  gtid = KMP_GTID_DNE;
590  } else {
591  gtid--;
592  }
593  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
594  __kmp_gtid_threadprivate_key, gtid));
595  return gtid;
596 }
597 
598 void __kmp_affinity_bind_thread(int proc) {
599  if (__kmp_num_proc_groups > 1) {
600  // Form the GROUP_AFFINITY struct directly, rather than filling
601  // out a bit vector and calling __kmp_set_system_affinity().
602  GROUP_AFFINITY ga;
603  KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
604  sizeof(DWORD_PTR))));
605  ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
606  ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
607  ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
608 
609  KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
610  if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
611  DWORD error = GetLastError();
612  // AC: continue silently if not verbose
613  if (__kmp_affinity.flags.verbose) {
614  kmp_msg_t err_code = KMP_ERR(error);
615  __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
616  __kmp_msg_null);
617  if (__kmp_generate_warnings == kmp_warnings_off) {
618  __kmp_str_free(&err_code.str);
619  }
620  }
621  }
622  } else {
623  kmp_affin_mask_t *mask;
624  KMP_CPU_ALLOC_ON_STACK(mask);
625  KMP_CPU_ZERO(mask);
626  KMP_CPU_SET(proc, mask);
627  __kmp_set_system_affinity(mask, TRUE);
628  KMP_CPU_FREE_FROM_STACK(mask);
629  }
630 }
631 
632 void __kmp_affinity_determine_capable(const char *env_var) {
633  // All versions of Windows* OS (since Win '95) support
634  // SetThreadAffinityMask().
635 
636 #if KMP_GROUP_AFFINITY
637  KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
638 #else
639  KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
640 #endif
641 
642  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
643  "Windows* OS affinity interface functional (mask size = "
644  "%" KMP_SIZE_T_SPEC ").\n",
645  __kmp_affin_mask_size));
646 }
647 
648 double __kmp_read_cpu_time(void) {
649  FILETIME CreationTime, ExitTime, KernelTime, UserTime;
650  int status;
651  double cpu_time;
652 
653  cpu_time = 0;
654 
655  status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
656  &KernelTime, &UserTime);
657 
658  if (status) {
659  double sec = 0;
660 
661  sec += KernelTime.dwHighDateTime;
662  sec += UserTime.dwHighDateTime;
663 
664  /* Shift left by 32 bits */
665  sec *= (double)(1 << 16) * (double)(1 << 16);
666 
667  sec += KernelTime.dwLowDateTime;
668  sec += UserTime.dwLowDateTime;
669 
670  cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
671  }
672 
673  return cpu_time;
674 }
675 
676 int __kmp_read_system_info(struct kmp_sys_info *info) {
677  info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
678  info->minflt = 0; /* the number of page faults serviced without any I/O */
679  info->majflt = 0; /* the number of page faults serviced that required I/O */
680  info->nswap = 0; // the number of times a process was "swapped" out of memory
681  info->inblock = 0; // the number of times the file system had to perform input
682  info->oublock = 0; // number of times the file system had to perform output
683  info->nvcsw = 0; /* the number of times a context switch was voluntarily */
684  info->nivcsw = 0; /* the number of times a context switch was forced */
685 
686  return 1;
687 }
688 
689 void __kmp_runtime_initialize(void) {
690  SYSTEM_INFO info;
691  kmp_str_buf_t path;
692  UINT path_size;
693 
694  if (__kmp_init_runtime) {
695  return;
696  }
697 
698 #if KMP_DYNAMIC_LIB
699  /* Pin dynamic library for the lifetime of application */
700  {
701  // First, turn off error message boxes
702  UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
703  HMODULE h;
704  BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
705  GET_MODULE_HANDLE_EX_FLAG_PIN,
706  (LPCTSTR)&__kmp_serial_initialize, &h);
707  (void)ret;
708  KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
709  SetErrorMode(err_mode); // Restore error mode
710  KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
711  }
712 #endif
713 
714  InitializeCriticalSection(&__kmp_win32_section);
715 #if USE_ITT_BUILD
716  __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
717 #endif /* USE_ITT_BUILD */
718  __kmp_initialize_system_tick();
719 
720 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
721  if (!__kmp_cpuinfo.initialized) {
722  __kmp_query_cpuid(&__kmp_cpuinfo);
723  }
724 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
725 
726 /* Set up minimum number of threads to switch to TLS gtid */
727 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
728  // Windows* OS, static library.
729  /* New thread may use stack space previously used by another thread,
730  currently terminated. On Windows* OS, in case of static linking, we do not
731  know the moment of thread termination, and our structures (__kmp_threads
732  and __kmp_root arrays) are still keep info about dead threads. This leads
733  to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
734  (by searching through stack addresses of all known threads) for
735  unregistered foreign tread.
736 
737  Setting __kmp_tls_gtid_min to 0 workarounds this problem:
738  __kmp_get_global_thread_id() does not search through stacks, but get gtid
739  from TLS immediately.
740  --ln
741  */
742  __kmp_tls_gtid_min = 0;
743 #else
744  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
745 #endif
746 
747  /* for the static library */
748  if (!__kmp_gtid_threadprivate_key) {
749  __kmp_gtid_threadprivate_key = TlsAlloc();
750  if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
751  KMP_FATAL(TLSOutOfIndexes);
752  }
753  }
754 
755  // Load ntdll.dll.
756  /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
757  (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
758  have to specify full path to the library. */
759  __kmp_str_buf_init(&path);
760  path_size = GetSystemDirectory(path.str, path.size);
761  KMP_DEBUG_ASSERT(path_size > 0);
762  if (path_size >= path.size) {
763  // Buffer is too short. Expand the buffer and try again.
764  __kmp_str_buf_reserve(&path, path_size);
765  path_size = GetSystemDirectory(path.str, path.size);
766  KMP_DEBUG_ASSERT(path_size > 0);
767  }
768  if (path_size > 0 && path_size < path.size) {
769  // Now we have system directory name in the buffer.
770  // Append backslash and name of dll to form full path,
771  path.used = path_size;
772  __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
773 
774  // Now load ntdll using full path.
775  ntdll = GetModuleHandle(path.str);
776  }
777 
778  KMP_DEBUG_ASSERT(ntdll != NULL);
779  if (ntdll != NULL) {
780  NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
781  ntdll, "NtQuerySystemInformation");
782  }
783  KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
784 
785 #if KMP_GROUP_AFFINITY
786  // Load kernel32.dll.
787  // Same caveat - must use full system path name.
788  if (path_size > 0 && path_size < path.size) {
789  // Truncate the buffer back to just the system path length,
790  // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
791  path.used = path_size;
792  __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
793 
794  // Load kernel32.dll using full path.
795  kernel32 = GetModuleHandle(path.str);
796  KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
797 
798  // Load the function pointers to kernel32.dll routines
799  // that may or may not exist on this system.
800  if (kernel32 != NULL) {
801  __kmp_GetActiveProcessorCount =
802  (kmp_GetActiveProcessorCount_t)GetProcAddress(
803  kernel32, "GetActiveProcessorCount");
804  __kmp_GetActiveProcessorGroupCount =
805  (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
806  kernel32, "GetActiveProcessorGroupCount");
807  __kmp_GetThreadGroupAffinity =
808  (kmp_GetThreadGroupAffinity_t)GetProcAddress(
809  kernel32, "GetThreadGroupAffinity");
810  __kmp_SetThreadGroupAffinity =
811  (kmp_SetThreadGroupAffinity_t)GetProcAddress(
812  kernel32, "SetThreadGroupAffinity");
813 
814  KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
815  " = %p\n",
816  __kmp_GetActiveProcessorCount));
817  KA_TRACE(10, ("__kmp_runtime_initialize: "
818  "__kmp_GetActiveProcessorGroupCount = %p\n",
819  __kmp_GetActiveProcessorGroupCount));
820  KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
821  " = %p\n",
822  __kmp_GetThreadGroupAffinity));
823  KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
824  " = %p\n",
825  __kmp_SetThreadGroupAffinity));
826  KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
827  sizeof(kmp_affin_mask_t)));
828 
829  // See if group affinity is supported on this system.
830  // If so, calculate the #groups and #procs.
831  //
832  // Group affinity was introduced with Windows* 7 OS and
833  // Windows* Server 2008 R2 OS.
834  if ((__kmp_GetActiveProcessorCount != NULL) &&
835  (__kmp_GetActiveProcessorGroupCount != NULL) &&
836  (__kmp_GetThreadGroupAffinity != NULL) &&
837  (__kmp_SetThreadGroupAffinity != NULL) &&
838  ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
839  1)) {
840  // Calculate the total number of active OS procs.
841  int i;
842 
843  KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
844  " detected\n",
845  __kmp_num_proc_groups));
846 
847  __kmp_xproc = 0;
848 
849  for (i = 0; i < __kmp_num_proc_groups; i++) {
850  DWORD size = __kmp_GetActiveProcessorCount(i);
851  __kmp_xproc += size;
852  KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
853  i, size));
854  }
855  } else {
856  KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
857  " detected\n",
858  __kmp_num_proc_groups));
859  }
860  }
861  }
862  if (__kmp_num_proc_groups <= 1) {
863  GetSystemInfo(&info);
864  __kmp_xproc = info.dwNumberOfProcessors;
865  }
866 #else
867  (void)kernel32;
868  GetSystemInfo(&info);
869  __kmp_xproc = info.dwNumberOfProcessors;
870 #endif /* KMP_GROUP_AFFINITY */
871 
872  // If the OS said there were 0 procs, take a guess and use a value of 2.
873  // This is done for Linux* OS, also. Do we need error / warning?
874  if (__kmp_xproc <= 0) {
875  __kmp_xproc = 2;
876  }
877 
878  KA_TRACE(5,
879  ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
880 
881  __kmp_str_buf_free(&path);
882 
883 #if USE_ITT_BUILD
884  __kmp_itt_initialize();
885 #endif /* USE_ITT_BUILD */
886 
887  __kmp_init_runtime = TRUE;
888 } // __kmp_runtime_initialize
889 
890 void __kmp_runtime_destroy(void) {
891  if (!__kmp_init_runtime) {
892  return;
893  }
894 
895 #if USE_ITT_BUILD
896  __kmp_itt_destroy();
897 #endif /* USE_ITT_BUILD */
898 
899  /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
900  /* due to the KX_TRACE() commands */
901  KA_TRACE(40, ("__kmp_runtime_destroy\n"));
902 
903  if (__kmp_gtid_threadprivate_key) {
904  TlsFree(__kmp_gtid_threadprivate_key);
905  __kmp_gtid_threadprivate_key = 0;
906  }
907 
908  __kmp_affinity_uninitialize();
909  DeleteCriticalSection(&__kmp_win32_section);
910 
911  ntdll = NULL;
912  NtQuerySystemInformation = NULL;
913 
914 #if KMP_ARCH_X86_64
915  kernel32 = NULL;
916  __kmp_GetActiveProcessorCount = NULL;
917  __kmp_GetActiveProcessorGroupCount = NULL;
918  __kmp_GetThreadGroupAffinity = NULL;
919  __kmp_SetThreadGroupAffinity = NULL;
920 #endif // KMP_ARCH_X86_64
921 
922  __kmp_init_runtime = FALSE;
923 }
924 
925 void __kmp_terminate_thread(int gtid) {
926  kmp_info_t *th = __kmp_threads[gtid];
927 
928  if (!th)
929  return;
930 
931  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
932 
933  if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
934  /* It's OK, the thread may have exited already */
935  }
936  __kmp_free_handle(th->th.th_info.ds.ds_thread);
937 }
938 
939 void __kmp_clear_system_time(void) {
940  LARGE_INTEGER time;
941  QueryPerformanceCounter(&time);
942  __kmp_win32_time = (kmp_int64)time.QuadPart;
943 }
944 
945 void __kmp_initialize_system_tick(void) {
946  {
947  BOOL status;
948  LARGE_INTEGER freq;
949 
950  status = QueryPerformanceFrequency(&freq);
951  if (!status) {
952  DWORD error = GetLastError();
953  __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
954  KMP_ERR(error), __kmp_msg_null);
955 
956  } else {
957  __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
958  }
959  }
960 }
961 
962 /* Calculate the elapsed wall clock time for the user */
963 
964 void __kmp_elapsed(double *t) {
965  LARGE_INTEGER now;
966  QueryPerformanceCounter(&now);
967  *t = ((double)now.QuadPart) * __kmp_win32_tick;
968 }
969 
970 /* Calculate the elapsed wall clock tick for the user */
971 
972 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
973 
974 void __kmp_read_system_time(double *delta) {
975  if (delta != NULL) {
976  LARGE_INTEGER now;
977  QueryPerformanceCounter(&now);
978  *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
979  __kmp_win32_tick;
980  }
981 }
982 
983 /* Return the current time stamp in nsec */
984 kmp_uint64 __kmp_now_nsec() {
985  LARGE_INTEGER now;
986  QueryPerformanceCounter(&now);
987  return 1e9 * __kmp_win32_tick * now.QuadPart;
988 }
989 
990 extern "C" void *__stdcall __kmp_launch_worker(void *arg) {
991  volatile void *stack_data;
992  void *exit_val;
993  void *padding = 0;
994  kmp_info_t *this_thr = (kmp_info_t *)arg;
995  int gtid;
996 
997  gtid = this_thr->th.th_info.ds.ds_gtid;
998  __kmp_gtid_set_specific(gtid);
999 #ifdef KMP_TDATA_GTID
1000 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1001  "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1002  "reference: http://support.microsoft.com/kb/118816"
1003 //__kmp_gtid = gtid;
1004 #endif
1005 
1006 #if USE_ITT_BUILD
1007  __kmp_itt_thread_name(gtid);
1008 #endif /* USE_ITT_BUILD */
1009 
1010  __kmp_affinity_bind_init_mask(gtid);
1011 
1012 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1013  // Set FP control regs to be a copy of the parallel initialization thread's.
1014  __kmp_clear_x87_fpu_status_word();
1015  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
1016  __kmp_load_mxcsr(&__kmp_init_mxcsr);
1017 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1018 
1019  if (__kmp_stkoffset > 0 && gtid > 0) {
1020  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
1021  (void)padding;
1022  }
1023 
1024  KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1025  this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1026  TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1027 
1028  if (TCR_4(__kmp_gtid_mode) <
1029  2) { // check stack only if it is used to get gtid
1030  TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
1031  KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
1032  __kmp_check_stack_overlap(this_thr);
1033  }
1034  KMP_MB();
1035  exit_val = __kmp_launch_thread(this_thr);
1036  KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1037  TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1038  KMP_MB();
1039  return exit_val;
1040 }
1041 
1042 #if KMP_USE_MONITOR
1043 /* The monitor thread controls all of the threads in the complex */
1044 
1045 void *__stdcall __kmp_launch_monitor(void *arg) {
1046  DWORD wait_status;
1047  kmp_thread_t monitor;
1048  int status;
1049  int interval;
1050  kmp_info_t *this_thr = (kmp_info_t *)arg;
1051 
1052  KMP_DEBUG_ASSERT(__kmp_init_monitor);
1053  TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
1054  // TODO: hide "2" in enum (like {true,false,started})
1055  this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1056  TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1057 
1058  KMP_MB(); /* Flush all pending memory write invalidates. */
1059  KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1060 
1061  monitor = GetCurrentThread();
1062 
1063  /* set thread priority */
1064  status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1065  if (!status) {
1066  DWORD error = GetLastError();
1067  __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1068  }
1069 
1070  /* register us as monitor */
1071  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1072 #ifdef KMP_TDATA_GTID
1073 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1074  "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1075  "reference: http://support.microsoft.com/kb/118816"
1076 //__kmp_gtid = KMP_GTID_MONITOR;
1077 #endif
1078 
1079 #if USE_ITT_BUILD
1080  __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1081 // monitor thread.
1082 #endif /* USE_ITT_BUILD */
1083 
1084  KMP_MB(); /* Flush all pending memory write invalidates. */
1085 
1086  interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1087 
1088  while (!TCR_4(__kmp_global.g.g_done)) {
1089  /* This thread monitors the state of the system */
1090 
1091  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1092 
1093  wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1094 
1095  if (wait_status == WAIT_TIMEOUT) {
1096  TCW_4(__kmp_global.g.g_time.dt.t_value,
1097  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1098  }
1099 
1100  KMP_MB(); /* Flush all pending memory write invalidates. */
1101  }
1102 
1103  KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1104 
1105  status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1106  if (!status) {
1107  DWORD error = GetLastError();
1108  __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1109  }
1110 
1111  if (__kmp_global.g.g_abort != 0) {
1112  /* now we need to terminate the worker threads */
1113  /* the value of t_abort is the signal we caught */
1114  int gtid;
1115 
1116  KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1117  (__kmp_global.g.g_abort)));
1118 
1119  /* terminate the OpenMP worker threads */
1120  /* TODO this is not valid for sibling threads!!
1121  * the uber master might not be 0 anymore.. */
1122  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1123  __kmp_terminate_thread(gtid);
1124 
1125  __kmp_cleanup();
1126 
1127  Sleep(0);
1128 
1129  KA_TRACE(10,
1130  ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1131 
1132  if (__kmp_global.g.g_abort > 0) {
1133  raise(__kmp_global.g.g_abort);
1134  }
1135  }
1136 
1137  TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1138 
1139  KMP_MB();
1140  return arg;
1141 }
1142 #endif
1143 
1144 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1145  kmp_thread_t handle;
1146  DWORD idThread;
1147 
1148  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1149 
1150  th->th.th_info.ds.ds_gtid = gtid;
1151 
1152  if (KMP_UBER_GTID(gtid)) {
1153  int stack_data;
1154 
1155  /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1156  other threads to use. Is it appropriate to just use GetCurrentThread?
1157  When should we close this handle? When unregistering the root? */
1158  {
1159  BOOL rc;
1160  rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1161  GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1162  FALSE, DUPLICATE_SAME_ACCESS);
1163  KMP_ASSERT(rc);
1164  KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1165  "handle = %" KMP_UINTPTR_SPEC "\n",
1166  (LPVOID)th, th->th.th_info.ds.ds_thread));
1167  th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1168  }
1169  if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1170  /* we will dynamically update the stack range if gtid_mode == 1 */
1171  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1172  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1173  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1174  __kmp_check_stack_overlap(th);
1175  }
1176  } else {
1177  KMP_MB(); /* Flush all pending memory write invalidates. */
1178 
1179  /* Set stack size for this thread now. */
1180  KA_TRACE(10,
1181  ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1182  stack_size));
1183 
1184  stack_size += gtid * __kmp_stkoffset;
1185 
1186  TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1187  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1188 
1189  KA_TRACE(10,
1190  ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1191  " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1192  (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1193  (LPVOID)th, &idThread));
1194 
1195  handle = CreateThread(
1196  NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1197  (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1198 
1199  KA_TRACE(10,
1200  ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1201  " bytes, &__kmp_launch_worker = %p, th = %p, "
1202  "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1203  (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1204  (LPVOID)th, idThread, handle));
1205 
1206  if (handle == 0) {
1207  DWORD error = GetLastError();
1208  __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1209  } else {
1210  th->th.th_info.ds.ds_thread = handle;
1211  }
1212 
1213  KMP_MB(); /* Flush all pending memory write invalidates. */
1214  }
1215 
1216  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1217 }
1218 
1219 int __kmp_still_running(kmp_info_t *th) {
1220  return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1221 }
1222 
1223 #if KMP_USE_MONITOR
1224 void __kmp_create_monitor(kmp_info_t *th) {
1225  kmp_thread_t handle;
1226  DWORD idThread;
1227  int ideal, new_ideal;
1228 
1229  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1230  // We don't need monitor thread in case of MAX_BLOCKTIME
1231  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1232  "MAX blocktime\n"));
1233  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1234  th->th.th_info.ds.ds_gtid = 0;
1235  TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1236  return;
1237  }
1238  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1239 
1240  KMP_MB(); /* Flush all pending memory write invalidates. */
1241 
1242  __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1243  if (__kmp_monitor_ev == NULL) {
1244  DWORD error = GetLastError();
1245  __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1246  }
1247 #if USE_ITT_BUILD
1248  __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1249 #endif /* USE_ITT_BUILD */
1250 
1251  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1252  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1253 
1254  // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1255  // to automatically expand stacksize based on CreateThread error code.
1256  if (__kmp_monitor_stksize == 0) {
1257  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1258  }
1259  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1260  __kmp_monitor_stksize = __kmp_sys_min_stksize;
1261  }
1262 
1263  KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1264  (int)__kmp_monitor_stksize));
1265 
1266  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1267 
1268  handle =
1269  CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1270  (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1271  STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1272  if (handle == 0) {
1273  DWORD error = GetLastError();
1274  __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1275  } else
1276  th->th.th_info.ds.ds_thread = handle;
1277 
1278  KMP_MB(); /* Flush all pending memory write invalidates. */
1279 
1280  KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1281  (void *)th->th.th_info.ds.ds_thread));
1282 }
1283 #endif
1284 
1285 /* Check to see if thread is still alive.
1286  NOTE: The ExitProcess(code) system call causes all threads to Terminate
1287  with a exit_val = code. Because of this we can not rely on exit_val having
1288  any particular value. So this routine may return STILL_ALIVE in exit_val
1289  even after the thread is dead. */
1290 
1291 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1292  DWORD rc;
1293  rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1294  if (rc == 0) {
1295  DWORD error = GetLastError();
1296  __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1297  __kmp_msg_null);
1298  }
1299  return (*exit_val == STILL_ACTIVE);
1300 }
1301 
1302 void __kmp_exit_thread(int exit_status) {
1303  ExitThread(exit_status);
1304 } // __kmp_exit_thread
1305 
1306 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1307 static void __kmp_reap_common(kmp_info_t *th) {
1308  DWORD exit_val;
1309 
1310  KMP_MB(); /* Flush all pending memory write invalidates. */
1311 
1312  KA_TRACE(
1313  10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1314 
1315  /* 2006-10-19:
1316  There are two opposite situations:
1317  1. Windows* OS keep thread alive after it resets ds_alive flag and
1318  exits from thread function. (For example, see C70770/Q394281 "unloading of
1319  dll based on OMP is very slow".)
1320  2. Windows* OS may kill thread before it resets ds_alive flag.
1321 
1322  Right solution seems to be waiting for *either* thread termination *or*
1323  ds_alive resetting. */
1324  {
1325  // TODO: This code is very similar to KMP_WAIT. Need to generalize
1326  // KMP_WAIT to cover this usage also.
1327  void *obj = NULL;
1328  kmp_uint32 spins;
1329  kmp_uint64 time;
1330 #if USE_ITT_BUILD
1331  KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1332 #endif /* USE_ITT_BUILD */
1333  KMP_INIT_YIELD(spins);
1334  KMP_INIT_BACKOFF(time);
1335  do {
1336 #if USE_ITT_BUILD
1337  KMP_FSYNC_SPIN_PREPARE(obj);
1338 #endif /* USE_ITT_BUILD */
1339  __kmp_is_thread_alive(th, &exit_val);
1340  KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
1341  } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1342 #if USE_ITT_BUILD
1343  if (exit_val == STILL_ACTIVE) {
1344  KMP_FSYNC_CANCEL(obj);
1345  } else {
1346  KMP_FSYNC_SPIN_ACQUIRED(obj);
1347  }
1348 #endif /* USE_ITT_BUILD */
1349  }
1350 
1351  __kmp_free_handle(th->th.th_info.ds.ds_thread);
1352 
1353  /* NOTE: The ExitProcess(code) system call causes all threads to Terminate
1354  with a exit_val = code. Because of this we can not rely on exit_val having
1355  any particular value. */
1356  kmp_intptr_t e = (kmp_intptr_t)exit_val;
1357  if (exit_val == STILL_ACTIVE) {
1358  KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1359  } else if ((void *)e != (void *)th) {
1360  KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1361  }
1362 
1363  KA_TRACE(10,
1364  ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1365  "\n",
1366  th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1367 
1368  th->th.th_info.ds.ds_thread = 0;
1369  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1370  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1371  th->th.th_info.ds.ds_thread_id = 0;
1372 
1373  KMP_MB(); /* Flush all pending memory write invalidates. */
1374 }
1375 
1376 #if KMP_USE_MONITOR
1377 void __kmp_reap_monitor(kmp_info_t *th) {
1378  int status;
1379 
1380  KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1381  (void *)th->th.th_info.ds.ds_thread));
1382 
1383  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1384  // If both tid and gtid are 0, it means the monitor did not ever start.
1385  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1386  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1387  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1388  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1389  return;
1390  }
1391 
1392  KMP_MB(); /* Flush all pending memory write invalidates. */
1393 
1394  status = SetEvent(__kmp_monitor_ev);
1395  if (status == FALSE) {
1396  DWORD error = GetLastError();
1397  __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1398  }
1399  KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1400  th->th.th_info.ds.ds_gtid));
1401  __kmp_reap_common(th);
1402 
1403  __kmp_free_handle(__kmp_monitor_ev);
1404 
1405  KMP_MB(); /* Flush all pending memory write invalidates. */
1406 }
1407 #endif
1408 
1409 void __kmp_reap_worker(kmp_info_t *th) {
1410  KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1411  th->th.th_info.ds.ds_gtid));
1412  __kmp_reap_common(th);
1413 }
1414 
1415 #if KMP_HANDLE_SIGNALS
1416 
1417 static void __kmp_team_handler(int signo) {
1418  if (__kmp_global.g.g_abort == 0) {
1419  // Stage 1 signal handler, let's shut down all of the threads.
1420  if (__kmp_debug_buf) {
1421  __kmp_dump_debug_buffer();
1422  }
1423  KMP_MB(); // Flush all pending memory write invalidates.
1424  TCW_4(__kmp_global.g.g_abort, signo);
1425  KMP_MB(); // Flush all pending memory write invalidates.
1426  TCW_4(__kmp_global.g.g_done, TRUE);
1427  KMP_MB(); // Flush all pending memory write invalidates.
1428  }
1429 } // __kmp_team_handler
1430 
1431 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1432  sig_func_t old = signal(signum, handler);
1433  if (old == SIG_ERR) {
1434  int error = errno;
1435  __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1436  __kmp_msg_null);
1437  }
1438  return old;
1439 }
1440 
1441 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1442  int parallel_init) {
1443  sig_func_t old;
1444  KMP_MB(); /* Flush all pending memory write invalidates. */
1445  KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1446  if (parallel_init) {
1447  old = __kmp_signal(sig, handler);
1448  // SIG_DFL on Windows* OS in NULL or 0.
1449  if (old == __kmp_sighldrs[sig]) {
1450  __kmp_siginstalled[sig] = 1;
1451  } else { // Restore/keep user's handler if one previously installed.
1452  old = __kmp_signal(sig, old);
1453  }
1454  } else {
1455  // Save initial/system signal handlers to see if user handlers installed.
1456  // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1457  // called once with parallel_init == TRUE.
1458  old = __kmp_signal(sig, SIG_DFL);
1459  __kmp_sighldrs[sig] = old;
1460  __kmp_signal(sig, old);
1461  }
1462  KMP_MB(); /* Flush all pending memory write invalidates. */
1463 } // __kmp_install_one_handler
1464 
1465 static void __kmp_remove_one_handler(int sig) {
1466  if (__kmp_siginstalled[sig]) {
1467  sig_func_t old;
1468  KMP_MB(); // Flush all pending memory write invalidates.
1469  KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1470  old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1471  if (old != __kmp_team_handler) {
1472  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1473  "restoring: sig=%d\n",
1474  sig));
1475  old = __kmp_signal(sig, old);
1476  }
1477  __kmp_sighldrs[sig] = NULL;
1478  __kmp_siginstalled[sig] = 0;
1479  KMP_MB(); // Flush all pending memory write invalidates.
1480  }
1481 } // __kmp_remove_one_handler
1482 
1483 void __kmp_install_signals(int parallel_init) {
1484  KB_TRACE(10, ("__kmp_install_signals: called\n"));
1485  if (!__kmp_handle_signals) {
1486  KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1487  "handlers not installed\n"));
1488  return;
1489  }
1490  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1491  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1492  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1493  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1494  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1495  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1496 } // __kmp_install_signals
1497 
1498 void __kmp_remove_signals(void) {
1499  int sig;
1500  KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1501  for (sig = 1; sig < NSIG; ++sig) {
1502  __kmp_remove_one_handler(sig);
1503  }
1504 } // __kmp_remove_signals
1505 
1506 #endif // KMP_HANDLE_SIGNALS
1507 
1508 /* Put the thread to sleep for a time period */
1509 void __kmp_thread_sleep(int millis) {
1510  DWORD status;
1511 
1512  status = SleepEx((DWORD)millis, FALSE);
1513  if (status) {
1514  DWORD error = GetLastError();
1515  __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1516  __kmp_msg_null);
1517  }
1518 }
1519 
1520 // Determine whether the given address is mapped into the current address space.
1521 int __kmp_is_address_mapped(void *addr) {
1522  MEMORY_BASIC_INFORMATION lpBuffer;
1523  SIZE_T dwLength;
1524 
1525  dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1526 
1527  VirtualQuery(addr, &lpBuffer, dwLength);
1528 
1529  return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1530  ((lpBuffer.Protect == PAGE_NOACCESS) ||
1531  (lpBuffer.Protect == PAGE_EXECUTE)));
1532 }
1533 
1534 kmp_uint64 __kmp_hardware_timestamp(void) {
1535  kmp_uint64 r = 0;
1536 
1537  QueryPerformanceCounter((LARGE_INTEGER *)&r);
1538  return r;
1539 }
1540 
1541 /* Free handle and check the error code */
1542 void __kmp_free_handle(kmp_thread_t tHandle) {
1543  /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1544  * as HANDLE */
1545  BOOL rc;
1546  rc = CloseHandle(tHandle);
1547  if (!rc) {
1548  DWORD error = GetLastError();
1549  __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1550  }
1551 }
1552 
1553 int __kmp_get_load_balance(int max) {
1554  static ULONG glb_buff_size = 100 * 1024;
1555 
1556  // Saved count of the running threads for the thread balance algorithm
1557  static int glb_running_threads = 0;
1558  static double glb_call_time = 0; /* Thread balance algorithm call time */
1559 
1560  int running_threads = 0; // Number of running threads in the system.
1561  NTSTATUS status = 0;
1562  ULONG buff_size = 0;
1563  ULONG info_size = 0;
1564  void *buffer = NULL;
1565  PSYSTEM_PROCESS_INFORMATION spi = NULL;
1566  int first_time = 1;
1567 
1568  double call_time = 0.0; // start, finish;
1569 
1570  __kmp_elapsed(&call_time);
1571 
1572  if (glb_call_time &&
1573  (call_time - glb_call_time < __kmp_load_balance_interval)) {
1574  running_threads = glb_running_threads;
1575  goto finish;
1576  }
1577  glb_call_time = call_time;
1578 
1579  // Do not spend time on running algorithm if we have a permanent error.
1580  if (NtQuerySystemInformation == NULL) {
1581  running_threads = -1;
1582  goto finish;
1583  }
1584 
1585  if (max <= 0) {
1586  max = INT_MAX;
1587  }
1588 
1589  do {
1590 
1591  if (first_time) {
1592  buff_size = glb_buff_size;
1593  } else {
1594  buff_size = 2 * buff_size;
1595  }
1596 
1597  buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1598  if (buffer == NULL) {
1599  running_threads = -1;
1600  goto finish;
1601  }
1602  status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1603  buff_size, &info_size);
1604  first_time = 0;
1605 
1606  } while (status == STATUS_INFO_LENGTH_MISMATCH);
1607  glb_buff_size = buff_size;
1608 
1609 #define CHECK(cond) \
1610  { \
1611  KMP_DEBUG_ASSERT(cond); \
1612  if (!(cond)) { \
1613  running_threads = -1; \
1614  goto finish; \
1615  } \
1616  }
1617 
1618  CHECK(buff_size >= info_size);
1619  spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1620  for (;;) {
1621  ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1622  CHECK(0 <= offset &&
1623  offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1624  HANDLE pid = spi->ProcessId;
1625  ULONG num = spi->NumberOfThreads;
1626  CHECK(num >= 1);
1627  size_t spi_size =
1628  sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1629  CHECK(offset + spi_size <
1630  info_size); // Make sure process info record fits the buffer.
1631  if (spi->NextEntryOffset != 0) {
1632  CHECK(spi_size <=
1633  spi->NextEntryOffset); // And do not overlap with the next record.
1634  }
1635  // pid == 0 corresponds to the System Idle Process. It always has running
1636  // threads on all cores. So, we don't consider the running threads of this
1637  // process.
1638  if (pid != 0) {
1639  for (ULONG i = 0; i < num; ++i) {
1640  THREAD_STATE state = spi->Threads[i].State;
1641  // Count threads that have Ready or Running state.
1642  // !!! TODO: Why comment does not match the code???
1643  if (state == StateRunning) {
1644  ++running_threads;
1645  // Stop counting running threads if the number is already greater than
1646  // the number of available cores
1647  if (running_threads >= max) {
1648  goto finish;
1649  }
1650  }
1651  }
1652  }
1653  if (spi->NextEntryOffset == 0) {
1654  break;
1655  }
1656  spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1657  }
1658 
1659 #undef CHECK
1660 
1661 finish: // Clean up and exit.
1662 
1663  if (buffer != NULL) {
1664  KMP_INTERNAL_FREE(buffer);
1665  }
1666 
1667  glb_running_threads = running_threads;
1668 
1669  return running_threads;
1670 } //__kmp_get_load_balance()
1671 
1672 // Find symbol from the loaded modules
1673 void *__kmp_lookup_symbol(const char *name, bool next) {
1674  HANDLE process = GetCurrentProcess();
1675  DWORD needed;
1676  HMODULE *modules = nullptr;
1677  if (!EnumProcessModules(process, modules, 0, &needed))
1678  return nullptr;
1679  DWORD num_modules = needed / sizeof(HMODULE);
1680  modules = (HMODULE *)malloc(num_modules * sizeof(HMODULE));
1681  if (!EnumProcessModules(process, modules, needed, &needed)) {
1682  free(modules);
1683  return nullptr;
1684  }
1685  HMODULE curr_module = nullptr;
1686  if (next) {
1687  // Current module needs to be skipped if next flag is true
1688  if (!GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
1689  (LPCTSTR)&__kmp_lookup_symbol, &curr_module)) {
1690  free(modules);
1691  return nullptr;
1692  }
1693  }
1694  void *proc = nullptr;
1695  for (uint32_t i = 0; i < num_modules; i++) {
1696  if (next && modules[i] == curr_module)
1697  continue;
1698  proc = (void *)GetProcAddress(modules[i], name);
1699  if (proc)
1700  break;
1701  }
1702  free(modules);
1703  return proc;
1704 }
1705 
1706 // Functions for hidden helper task
1707 void __kmp_hidden_helper_worker_thread_wait() {
1708  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1709 }
1710 
1711 void __kmp_do_initialize_hidden_helper_threads() {
1712  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1713 }
1714 
1715 void __kmp_hidden_helper_threads_initz_wait() {
1716  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1717 }
1718 
1719 void __kmp_hidden_helper_initz_release() {
1720  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1721 }
1722 
1723 void __kmp_hidden_helper_main_thread_wait() {
1724  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1725 }
1726 
1727 void __kmp_hidden_helper_main_thread_release() {
1728  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1729 }
1730 
1731 void __kmp_hidden_helper_worker_thread_signal() {
1732  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1733 }
1734 
1735 void __kmp_hidden_helper_threads_deinitz_wait() {
1736  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1737 }
1738 
1739 void __kmp_hidden_helper_threads_deinitz_release() {
1740  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1741 }