LLVM OpenMP* Runtime Library
kmp.h
1 
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22  the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72  Microsoft library. Some macros provided below to replace these functions */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #if HWLOC_API_VERSION >= 0x00020000
104 // hwloc 2.0 changed type of depth of object from unsigned to int
105 typedef int kmp_hwloc_depth_t;
106 #else
107 typedef unsigned int kmp_hwloc_depth_t;
108 #endif
109 #endif
110 
111 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
112 #include <xmmintrin.h>
113 #endif
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #if USE_DEBUGGER
119 #include "kmp_debugger.h"
120 #endif
121 #include "kmp_i18n.h"
122 
123 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
124 
125 #include "kmp_wrapper_malloc.h"
126 #if KMP_OS_UNIX
127 #include <unistd.h>
128 #if !defined NSIG && defined _NSIG
129 #define NSIG _NSIG
130 #endif
131 #endif
132 
133 #if KMP_OS_LINUX
134 #pragma weak clock_gettime
135 #endif
136 
137 #if OMPT_SUPPORT
138 #include "ompt-internal.h"
139 #endif
140 
141 #ifndef UNLIKELY
142 #define UNLIKELY(x) (x)
143 #endif
144 
145 // Affinity format function
146 #include "kmp_str.h"
147 
148 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
149 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
150 // free lists of limited size.
151 #ifndef USE_FAST_MEMORY
152 #define USE_FAST_MEMORY 3
153 #endif
154 
155 #ifndef KMP_NESTED_HOT_TEAMS
156 #define KMP_NESTED_HOT_TEAMS 0
157 #define USE_NESTED_HOT_ARG(x)
158 #else
159 #if KMP_NESTED_HOT_TEAMS
160 #define USE_NESTED_HOT_ARG(x) , x
161 #else
162 #define USE_NESTED_HOT_ARG(x)
163 #endif
164 #endif
165 
166 // Assume using BGET compare_exchange instruction instead of lock by default.
167 #ifndef USE_CMP_XCHG_FOR_BGET
168 #define USE_CMP_XCHG_FOR_BGET 1
169 #endif
170 
171 // Test to see if queuing lock is better than bootstrap lock for bget
172 // #ifndef USE_QUEUING_LOCK_FOR_BGET
173 // #define USE_QUEUING_LOCK_FOR_BGET
174 // #endif
175 
176 #define KMP_NSEC_PER_SEC 1000000000L
177 #define KMP_USEC_PER_SEC 1000000L
178 
187 enum {
192  /* 0x04 is no longer used */
201  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
202  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
203  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
204 
205  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
206  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
207 
219  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
220  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
221  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
222  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
223  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
224 };
225 
229 typedef struct ident {
230  kmp_int32 reserved_1;
231  kmp_int32 flags;
233  kmp_int32 reserved_2;
234 #if USE_ITT_BUILD
235 /* but currently used for storing region-specific ITT */
236 /* contextual information. */
237 #endif /* USE_ITT_BUILD */
238  kmp_int32 reserved_3;
239  char const *psource;
243  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
244  kmp_int32 get_openmp_version() {
245  return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
246  }
247 } ident_t;
252 // Some forward declarations.
253 typedef union kmp_team kmp_team_t;
254 typedef struct kmp_taskdata kmp_taskdata_t;
255 typedef union kmp_task_team kmp_task_team_t;
256 typedef union kmp_team kmp_team_p;
257 typedef union kmp_info kmp_info_p;
258 typedef union kmp_root kmp_root_p;
259 
260 template <bool C = false, bool S = true> class kmp_flag_32;
261 template <bool C = false, bool S = true> class kmp_flag_64;
262 class kmp_flag_oncore;
263 
264 #ifdef __cplusplus
265 extern "C" {
266 #endif
267 
268 /* ------------------------------------------------------------------------ */
269 
270 /* Pack two 32-bit signed integers into a 64-bit signed integer */
271 /* ToDo: Fix word ordering for big-endian machines. */
272 #define KMP_PACK_64(HIGH_32, LOW_32) \
273  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
274 
275 // Generic string manipulation macros. Assume that _x is of type char *
276 #define SKIP_WS(_x) \
277  { \
278  while (*(_x) == ' ' || *(_x) == '\t') \
279  (_x)++; \
280  }
281 #define SKIP_DIGITS(_x) \
282  { \
283  while (*(_x) >= '0' && *(_x) <= '9') \
284  (_x)++; \
285  }
286 #define SKIP_TOKEN(_x) \
287  { \
288  while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
289  (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
290  (_x)++; \
291  }
292 #define SKIP_TO(_x, _c) \
293  { \
294  while (*(_x) != '\0' && *(_x) != (_c)) \
295  (_x)++; \
296  }
297 
298 /* ------------------------------------------------------------------------ */
299 
300 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
301 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
302 
303 /* ------------------------------------------------------------------------ */
304 /* Enumeration types */
305 
306 enum kmp_state_timer {
307  ts_stop,
308  ts_start,
309  ts_pause,
310 
311  ts_last_state
312 };
313 
314 enum dynamic_mode {
315  dynamic_default,
316 #ifdef USE_LOAD_BALANCE
317  dynamic_load_balance,
318 #endif /* USE_LOAD_BALANCE */
319  dynamic_random,
320  dynamic_thread_limit,
321  dynamic_max
322 };
323 
324 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
325  * not include it here */
326 #ifndef KMP_SCHED_TYPE_DEFINED
327 #define KMP_SCHED_TYPE_DEFINED
328 typedef enum kmp_sched {
329  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
330  // Note: need to adjust __kmp_sch_map global array in case enum is changed
331  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
332  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
333  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
334  kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
335  kmp_sched_upper_std = 5, // upper bound for standard schedules
336  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
337  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
338 #if KMP_STATIC_STEAL_ENABLED
339  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
340 #endif
341  kmp_sched_upper,
342  kmp_sched_default = kmp_sched_static, // default scheduling
343  kmp_sched_monotonic = 0x80000000
344 } kmp_sched_t;
345 #endif
346 
351 enum sched_type : kmp_int32 {
353  kmp_sch_static_chunked = 33,
355  kmp_sch_dynamic_chunked = 35,
357  kmp_sch_runtime = 37,
359  kmp_sch_trapezoidal = 39,
360 
361  /* accessible only through KMP_SCHEDULE environment variable */
362  kmp_sch_static_greedy = 40,
363  kmp_sch_static_balanced = 41,
364  /* accessible only through KMP_SCHEDULE environment variable */
365  kmp_sch_guided_iterative_chunked = 42,
366  kmp_sch_guided_analytical_chunked = 43,
367  /* accessible only through KMP_SCHEDULE environment variable */
368  kmp_sch_static_steal = 44,
369 
370  /* static with chunk adjustment (e.g., simd) */
371  kmp_sch_static_balanced_chunked = 45,
375  /* accessible only through KMP_SCHEDULE environment variable */
379  kmp_ord_static_chunked = 65,
381  kmp_ord_dynamic_chunked = 67,
382  kmp_ord_guided_chunked = 68,
383  kmp_ord_runtime = 69,
385  kmp_ord_trapezoidal = 71,
388  /* Schedules for Distribute construct */
392  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
393  single iteration/chunk, even if the loop is serialized. For the schedule
394  types listed above, the entire iteration vector is returned if the loop is
395  serialized. This doesn't work for gcc/gcomp sections. */
396  kmp_nm_lower = 160,
398  kmp_nm_static_chunked =
399  (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
401  kmp_nm_dynamic_chunked = 163,
403  kmp_nm_runtime = 165,
404  kmp_nm_auto = 166,
405  kmp_nm_trapezoidal = 167,
406 
407  /* accessible only through KMP_SCHEDULE environment variable */
408  kmp_nm_static_greedy = 168,
409  kmp_nm_static_balanced = 169,
410  /* accessible only through KMP_SCHEDULE environment variable */
411  kmp_nm_guided_iterative_chunked = 170,
412  kmp_nm_guided_analytical_chunked = 171,
413  kmp_nm_static_steal =
414  172, /* accessible only through OMP_SCHEDULE environment variable */
415 
416  kmp_nm_ord_static_chunked = 193,
418  kmp_nm_ord_dynamic_chunked = 195,
419  kmp_nm_ord_guided_chunked = 196,
420  kmp_nm_ord_runtime = 197,
422  kmp_nm_ord_trapezoidal = 199,
425  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
426  we need to distinguish the three possible cases (no modifier, monotonic
427  modifier, nonmonotonic modifier), we need separate bits for each modifier.
428  The absence of monotonic does not imply nonmonotonic, especially since 4.5
429  says that the behaviour of the "no modifier" case is implementation defined
430  in 4.5, but will become "nonmonotonic" in 5.0.
431 
432  Since we're passing a full 32 bit value, we can use a couple of high bits
433  for these flags; out of paranoia we avoid the sign bit.
434 
435  These modifiers can be or-ed into non-static schedules by the compiler to
436  pass the additional information. They will be stripped early in the
437  processing in __kmp_dispatch_init when setting up schedules, so most of the
438  code won't ever see schedules with these bits set. */
440  (1 << 29),
442  (1 << 30),
444 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
445  (enum sched_type)( \
447 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
448 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
449 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
450  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
451 #define SCHEDULE_GET_MODIFIERS(s) \
452  ((enum sched_type)( \
453  (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
454 #define SCHEDULE_SET_MODIFIERS(s, m) \
455  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
456 #define SCHEDULE_NONMONOTONIC 0
457 #define SCHEDULE_MONOTONIC 1
458 
460 };
461 
462 // Apply modifiers on internal kind to standard kind
463 static inline void
464 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
465  enum sched_type internal_kind) {
466  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
467  *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
468  }
469 }
470 
471 // Apply modifiers on standard kind to internal kind
472 static inline void
473 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
474  enum sched_type *internal_kind) {
475  if ((int)kind & (int)kmp_sched_monotonic) {
476  *internal_kind = (enum sched_type)((int)*internal_kind |
478  }
479 }
480 
481 // Get standard schedule without modifiers
482 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
483  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
484 }
485 
486 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
487 typedef union kmp_r_sched {
488  struct {
489  enum sched_type r_sched_type;
490  int chunk;
491  };
492  kmp_int64 sched;
493 } kmp_r_sched_t;
494 
495 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
496 // internal schedule types
497 
498 enum library_type {
499  library_none,
500  library_serial,
501  library_turnaround,
502  library_throughput
503 };
504 
505 #if KMP_OS_LINUX
506 enum clock_function_type {
507  clock_function_gettimeofday,
508  clock_function_clock_gettime
509 };
510 #endif /* KMP_OS_LINUX */
511 
512 #if KMP_MIC_SUPPORTED
513 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
514 #endif
515 
516 /* -- fast reduction stuff ------------------------------------------------ */
517 
518 #undef KMP_FAST_REDUCTION_BARRIER
519 #define KMP_FAST_REDUCTION_BARRIER 1
520 
521 #undef KMP_FAST_REDUCTION_CORE_DUO
522 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
523 #define KMP_FAST_REDUCTION_CORE_DUO 1
524 #endif
525 
526 enum _reduction_method {
527  reduction_method_not_defined = 0,
528  critical_reduce_block = (1 << 8),
529  atomic_reduce_block = (2 << 8),
530  tree_reduce_block = (3 << 8),
531  empty_reduce_block = (4 << 8)
532 };
533 
534 // Description of the packed_reduction_method variable:
535 // The packed_reduction_method variable consists of two enum types variables
536 // that are packed together into 0-th byte and 1-st byte:
537 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
538 // barrier that will be used in fast reduction: bs_plain_barrier or
539 // bs_reduction_barrier
540 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
541 // be used in fast reduction;
542 // Reduction method is of 'enum _reduction_method' type and it's defined the way
543 // so that the bits of 0-th byte are empty, so no need to execute a shift
544 // instruction while packing/unpacking
545 
546 #if KMP_FAST_REDUCTION_BARRIER
547 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
548  ((reduction_method) | (barrier_type))
549 
550 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
551  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
552 
553 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
554  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
555 #else
556 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
557  (reduction_method)
558 
559 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
560  (packed_reduction_method)
561 
562 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
563 #endif
564 
565 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
566  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
567  (which_reduction_block))
568 
569 #if KMP_FAST_REDUCTION_BARRIER
570 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
571  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
572 
573 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
574  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
575 #endif
576 
577 typedef int PACKED_REDUCTION_METHOD_T;
578 
579 /* -- end of fast reduction stuff ----------------------------------------- */
580 
581 #if KMP_OS_WINDOWS
582 #define USE_CBLKDATA
583 #if KMP_MSVC_COMPAT
584 #pragma warning(push)
585 #pragma warning(disable : 271 310)
586 #endif
587 #include <windows.h>
588 #if KMP_MSVC_COMPAT
589 #pragma warning(pop)
590 #endif
591 #endif
592 
593 #if KMP_OS_UNIX
594 #include <dlfcn.h>
595 #include <pthread.h>
596 #endif
597 
598 enum kmp_hw_t : int {
599  KMP_HW_UNKNOWN = -1,
600  KMP_HW_MACHINE = 0,
601  KMP_HW_SOCKET,
602  KMP_HW_PROC_GROUP,
603  KMP_HW_NUMA,
604  KMP_HW_DIE,
605  KMP_HW_L3,
606  KMP_HW_TILE,
607  KMP_HW_MODULE,
608  KMP_HW_L2,
609  KMP_HW_L1,
610  KMP_HW_CORE,
611  KMP_HW_THREAD,
612  KMP_HW_LAST
613 };
614 
615 #define KMP_ASSERT_VALID_HW_TYPE(type) \
616  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
617 
618 #define KMP_FOREACH_HW_TYPE(type) \
619  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
620  type = (kmp_hw_t)((int)type + 1))
621 
622 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
623 
624 /* Only Linux* OS and Windows* OS support thread affinity. */
625 #if KMP_AFFINITY_SUPPORTED
626 
627 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
628 #if KMP_OS_WINDOWS
629 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
630 typedef struct GROUP_AFFINITY {
631  KAFFINITY Mask;
632  WORD Group;
633  WORD Reserved[3];
634 } GROUP_AFFINITY;
635 #endif /* _MSC_VER < 1600 */
636 #if KMP_GROUP_AFFINITY
637 extern int __kmp_num_proc_groups;
638 #else
639 static const int __kmp_num_proc_groups = 1;
640 #endif /* KMP_GROUP_AFFINITY */
641 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
642 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
643 
644 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
645 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
646 
647 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
648 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
649 
650 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
651  GROUP_AFFINITY *);
652 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
653 #endif /* KMP_OS_WINDOWS */
654 
655 #if KMP_USE_HWLOC
656 extern hwloc_topology_t __kmp_hwloc_topology;
657 extern int __kmp_hwloc_error;
658 extern int __kmp_numa_detected;
659 extern int __kmp_tile_depth;
660 #endif
661 
662 extern size_t __kmp_affin_mask_size;
663 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
664 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
665 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
666 #define KMP_CPU_SET_ITERATE(i, mask) \
667  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
668 #define KMP_CPU_SET(i, mask) (mask)->set(i)
669 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
670 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
671 #define KMP_CPU_ZERO(mask) (mask)->zero()
672 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
673 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
674 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
675 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
676 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
677 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
678 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
679 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
680 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
681 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
682 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
683 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
684  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
685 #define KMP_CPU_FREE_ARRAY(arr, n) \
686  __kmp_affinity_dispatch->deallocate_mask_array(arr)
687 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
688 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
689 #define __kmp_get_system_affinity(mask, abort_bool) \
690  (mask)->get_system_affinity(abort_bool)
691 #define __kmp_set_system_affinity(mask, abort_bool) \
692  (mask)->set_system_affinity(abort_bool)
693 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
694 
695 class KMPAffinity {
696 public:
697  class Mask {
698  public:
699  void *operator new(size_t n);
700  void operator delete(void *p);
701  void *operator new[](size_t n);
702  void operator delete[](void *p);
703  virtual ~Mask() {}
704  // Set bit i to 1
705  virtual void set(int i) {}
706  // Return bit i
707  virtual bool is_set(int i) const { return false; }
708  // Set bit i to 0
709  virtual void clear(int i) {}
710  // Zero out entire mask
711  virtual void zero() {}
712  // Copy src into this mask
713  virtual void copy(const Mask *src) {}
714  // this &= rhs
715  virtual void bitwise_and(const Mask *rhs) {}
716  // this |= rhs
717  virtual void bitwise_or(const Mask *rhs) {}
718  // this = ~this
719  virtual void bitwise_not() {}
720  // API for iterating over an affinity mask
721  // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
722  virtual int begin() const { return 0; }
723  virtual int end() const { return 0; }
724  virtual int next(int previous) const { return 0; }
725 #if KMP_OS_WINDOWS
726  virtual int set_process_affinity(bool abort_on_error) const { return -1; }
727 #endif
728  // Set the system's affinity to this affinity mask's value
729  virtual int set_system_affinity(bool abort_on_error) const { return -1; }
730  // Set this affinity mask to the current system affinity
731  virtual int get_system_affinity(bool abort_on_error) { return -1; }
732  // Only 1 DWORD in the mask should have any procs set.
733  // Return the appropriate index, or -1 for an invalid mask.
734  virtual int get_proc_group() const { return -1; }
735  };
736  void *operator new(size_t n);
737  void operator delete(void *p);
738  // Need virtual destructor
739  virtual ~KMPAffinity() = default;
740  // Determine if affinity is capable
741  virtual void determine_capable(const char *env_var) {}
742  // Bind the current thread to os proc
743  virtual void bind_thread(int proc) {}
744  // Factory functions to allocate/deallocate a mask
745  virtual Mask *allocate_mask() { return nullptr; }
746  virtual void deallocate_mask(Mask *m) {}
747  virtual Mask *allocate_mask_array(int num) { return nullptr; }
748  virtual void deallocate_mask_array(Mask *m) {}
749  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
750  static void pick_api();
751  static void destroy_api();
752  enum api_type {
753  NATIVE_OS
754 #if KMP_USE_HWLOC
755  ,
756  HWLOC
757 #endif
758  };
759  virtual api_type get_api_type() const {
760  KMP_ASSERT(0);
761  return NATIVE_OS;
762  }
763 
764 private:
765  static bool picked_api;
766 };
767 
768 typedef KMPAffinity::Mask kmp_affin_mask_t;
769 extern KMPAffinity *__kmp_affinity_dispatch;
770 
771 // Declare local char buffers with this size for printing debug and info
772 // messages, using __kmp_affinity_print_mask().
773 #define KMP_AFFIN_MASK_PRINT_LEN 1024
774 
775 enum affinity_type {
776  affinity_none = 0,
777  affinity_physical,
778  affinity_logical,
779  affinity_compact,
780  affinity_scatter,
781  affinity_explicit,
782  affinity_balanced,
783  affinity_disabled, // not used outsize the env var parser
784  affinity_default
785 };
786 
787 enum affinity_gran {
788  affinity_gran_fine = 0,
789  affinity_gran_thread,
790  affinity_gran_core,
791  affinity_gran_tile,
792  affinity_gran_die,
793  affinity_gran_numa,
794  affinity_gran_package,
795  affinity_gran_node,
796 #if KMP_GROUP_AFFINITY
797  // The "group" granularity isn't necesssarily coarser than all of the
798  // other levels, but we put it last in the enum.
799  affinity_gran_group,
800 #endif /* KMP_GROUP_AFFINITY */
801  affinity_gran_default
802 };
803 
804 enum affinity_top_method {
805  affinity_top_method_all = 0, // try all (supported) methods, in order
806 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
807  affinity_top_method_apicid,
808  affinity_top_method_x2apicid,
809  affinity_top_method_x2apicid_1f,
810 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
811  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
812 #if KMP_GROUP_AFFINITY
813  affinity_top_method_group,
814 #endif /* KMP_GROUP_AFFINITY */
815  affinity_top_method_flat,
816 #if KMP_USE_HWLOC
817  affinity_top_method_hwloc,
818 #endif
819  affinity_top_method_default
820 };
821 
822 #define affinity_respect_mask_default (-1)
823 
824 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
825 extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */
826 extern int __kmp_affinity_gran_levels; /* corresponding int value */
827 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
828 extern enum affinity_top_method __kmp_affinity_top_method;
829 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
830 extern int __kmp_affinity_offset; /* Affinity offset value */
831 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
832 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
833 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
834 extern char *__kmp_affinity_proclist; /* proc ID list */
835 extern kmp_affin_mask_t *__kmp_affinity_masks;
836 extern unsigned __kmp_affinity_num_masks;
837 extern void __kmp_affinity_bind_thread(int which);
838 
839 extern kmp_affin_mask_t *__kmp_affin_fullMask;
840 extern char *__kmp_cpuinfo_file;
841 
842 #endif /* KMP_AFFINITY_SUPPORTED */
843 
844 // This needs to be kept in sync with the values in omp.h !!!
845 typedef enum kmp_proc_bind_t {
846  proc_bind_false = 0,
847  proc_bind_true,
848  proc_bind_primary,
849  proc_bind_close,
850  proc_bind_spread,
851  proc_bind_intel, // use KMP_AFFINITY interface
852  proc_bind_default
853 } kmp_proc_bind_t;
854 
855 typedef struct kmp_nested_proc_bind_t {
856  kmp_proc_bind_t *bind_types;
857  int size;
858  int used;
859 } kmp_nested_proc_bind_t;
860 
861 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
862 
863 extern int __kmp_display_affinity;
864 extern char *__kmp_affinity_format;
865 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
866 
867 #if KMP_AFFINITY_SUPPORTED
868 #define KMP_PLACE_ALL (-1)
869 #define KMP_PLACE_UNDEFINED (-2)
870 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
871 #define KMP_AFFINITY_NON_PROC_BIND \
872  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
873  __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
874  (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
875 #endif /* KMP_AFFINITY_SUPPORTED */
876 
877 extern int __kmp_affinity_num_places;
878 
879 typedef enum kmp_cancel_kind_t {
880  cancel_noreq = 0,
881  cancel_parallel = 1,
882  cancel_loop = 2,
883  cancel_sections = 3,
884  cancel_taskgroup = 4
885 } kmp_cancel_kind_t;
886 
887 // KMP_HW_SUBSET support:
888 typedef struct kmp_hws_item {
889  int num;
890  int offset;
891 } kmp_hws_item_t;
892 
893 extern kmp_hws_item_t __kmp_hws_socket;
894 extern kmp_hws_item_t __kmp_hws_die;
895 extern kmp_hws_item_t __kmp_hws_node;
896 extern kmp_hws_item_t __kmp_hws_tile;
897 extern kmp_hws_item_t __kmp_hws_core;
898 extern kmp_hws_item_t __kmp_hws_proc;
899 extern int __kmp_hws_requested;
900 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
901 
902 /* ------------------------------------------------------------------------ */
903 
904 #define KMP_PAD(type, sz) \
905  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
906 
907 // We need to avoid using -1 as a GTID as +1 is added to the gtid
908 // when storing it in a lock, and the value 0 is reserved.
909 #define KMP_GTID_DNE (-2) /* Does not exist */
910 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
911 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
912 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
913 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
914 
915 /* OpenMP 5.0 Memory Management support */
916 
917 #ifndef __OMP_H
918 // Duplicate type definitions from omp.h
919 typedef uintptr_t omp_uintptr_t;
920 
921 typedef enum {
922  omp_atk_sync_hint = 1,
923  omp_atk_alignment = 2,
924  omp_atk_access = 3,
925  omp_atk_pool_size = 4,
926  omp_atk_fallback = 5,
927  omp_atk_fb_data = 6,
928  omp_atk_pinned = 7,
929  omp_atk_partition = 8
930 } omp_alloctrait_key_t;
931 
932 typedef enum {
933  omp_atv_false = 0,
934  omp_atv_true = 1,
935  omp_atv_contended = 3,
936  omp_atv_uncontended = 4,
937  omp_atv_serialized = 5,
938  omp_atv_sequential = omp_atv_serialized, // (deprecated)
939  omp_atv_private = 6,
940  omp_atv_all = 7,
941  omp_atv_thread = 8,
942  omp_atv_pteam = 9,
943  omp_atv_cgroup = 10,
944  omp_atv_default_mem_fb = 11,
945  omp_atv_null_fb = 12,
946  omp_atv_abort_fb = 13,
947  omp_atv_allocator_fb = 14,
948  omp_atv_environment = 15,
949  omp_atv_nearest = 16,
950  omp_atv_blocked = 17,
951  omp_atv_interleaved = 18
952 } omp_alloctrait_value_t;
953 #define omp_atv_default ((omp_uintptr_t)-1)
954 
955 typedef void *omp_memspace_handle_t;
956 extern omp_memspace_handle_t const omp_default_mem_space;
957 extern omp_memspace_handle_t const omp_large_cap_mem_space;
958 extern omp_memspace_handle_t const omp_const_mem_space;
959 extern omp_memspace_handle_t const omp_high_bw_mem_space;
960 extern omp_memspace_handle_t const omp_low_lat_mem_space;
961 // Preview of target memory support
962 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
963 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
964 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
965 
966 typedef struct {
967  omp_alloctrait_key_t key;
968  omp_uintptr_t value;
969 } omp_alloctrait_t;
970 
971 typedef void *omp_allocator_handle_t;
972 extern omp_allocator_handle_t const omp_null_allocator;
973 extern omp_allocator_handle_t const omp_default_mem_alloc;
974 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
975 extern omp_allocator_handle_t const omp_const_mem_alloc;
976 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
977 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
978 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
979 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
980 extern omp_allocator_handle_t const omp_thread_mem_alloc;
981 // Preview of target memory support
982 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
983 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
984 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
985 extern omp_allocator_handle_t const kmp_max_mem_alloc;
986 extern omp_allocator_handle_t __kmp_def_allocator;
987 
988 // end of duplicate type definitions from omp.h
989 #endif
990 
991 extern int __kmp_memkind_available;
992 
993 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
994 
995 typedef struct kmp_allocator_t {
996  omp_memspace_handle_t memspace;
997  void **memkind; // pointer to memkind
998  int alignment;
999  omp_alloctrait_value_t fb;
1000  kmp_allocator_t *fb_data;
1001  kmp_uint64 pool_size;
1002  kmp_uint64 pool_used;
1003 } kmp_allocator_t;
1004 
1005 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1006  omp_memspace_handle_t,
1007  int ntraits,
1008  omp_alloctrait_t traits[]);
1009 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1010 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1011 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1012 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1013 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1014  omp_allocator_handle_t al);
1015 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1016  omp_allocator_handle_t al,
1017  omp_allocator_handle_t free_al);
1018 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1019 
1020 extern void __kmp_init_memkind();
1021 extern void __kmp_fini_memkind();
1022 extern void __kmp_init_target_mem();
1023 
1024 /* ------------------------------------------------------------------------ */
1025 
1026 #define KMP_UINT64_MAX \
1027  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1028 
1029 #define KMP_MIN_NTH 1
1030 
1031 #ifndef KMP_MAX_NTH
1032 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1033 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1034 #else
1035 #define KMP_MAX_NTH INT_MAX
1036 #endif
1037 #endif /* KMP_MAX_NTH */
1038 
1039 #ifdef PTHREAD_STACK_MIN
1040 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1041 #else
1042 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1043 #endif
1044 
1045 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1046 
1047 #if KMP_ARCH_X86
1048 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1049 #elif KMP_ARCH_X86_64
1050 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1051 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1052 #else
1053 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1054 #endif
1055 
1056 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1057 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1058 #define KMP_MAX_MALLOC_POOL_INCR \
1059  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1060 
1061 #define KMP_MIN_STKOFFSET (0)
1062 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1063 #if KMP_OS_DARWIN
1064 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1065 #else
1066 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1067 #endif
1068 
1069 #define KMP_MIN_STKPADDING (0)
1070 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1071 
1072 #define KMP_BLOCKTIME_MULTIPLIER \
1073  (1000) /* number of blocktime units per second */
1074 #define KMP_MIN_BLOCKTIME (0)
1075 #define KMP_MAX_BLOCKTIME \
1076  (INT_MAX) /* Must be this for "infinite" setting the work */
1077 #define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */
1078 
1079 #if KMP_USE_MONITOR
1080 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1081 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1082 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1083 
1084 /* Calculate new number of monitor wakeups for a specific block time based on
1085  previous monitor_wakeups. Only allow increasing number of wakeups */
1086 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1087  (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1088  : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1089  : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1090  ? (monitor_wakeups) \
1091  : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1092 
1093 /* Calculate number of intervals for a specific block time based on
1094  monitor_wakeups */
1095 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1096  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1097  (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1098 #else
1099 #define KMP_BLOCKTIME(team, tid) \
1100  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1101 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1102 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1103 extern kmp_uint64 __kmp_ticks_per_msec;
1104 #if KMP_COMPILER_ICC
1105 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1106 #else
1107 #define KMP_NOW() __kmp_hardware_timestamp()
1108 #endif
1109 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1110 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1111  (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1112 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1113 #else
1114 // System time is retrieved sporadically while blocking.
1115 extern kmp_uint64 __kmp_now_nsec();
1116 #define KMP_NOW() __kmp_now_nsec()
1117 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1118 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1119  (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1120 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1121 #endif
1122 #endif // KMP_USE_MONITOR
1123 
1124 #define KMP_MIN_STATSCOLS 40
1125 #define KMP_MAX_STATSCOLS 4096
1126 #define KMP_DEFAULT_STATSCOLS 80
1127 
1128 #define KMP_MIN_INTERVAL 0
1129 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1130 #define KMP_DEFAULT_INTERVAL 0
1131 
1132 #define KMP_MIN_CHUNK 1
1133 #define KMP_MAX_CHUNK (INT_MAX - 1)
1134 #define KMP_DEFAULT_CHUNK 1
1135 
1136 #define KMP_MIN_DISP_NUM_BUFF 1
1137 #define KMP_DFLT_DISP_NUM_BUFF 7
1138 #define KMP_MAX_DISP_NUM_BUFF 4096
1139 
1140 #define KMP_MAX_ORDERED 8
1141 
1142 #define KMP_MAX_FIELDS 32
1143 
1144 #define KMP_MAX_BRANCH_BITS 31
1145 
1146 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1147 
1148 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1149 
1150 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1151 
1152 /* Minimum number of threads before switch to TLS gtid (experimentally
1153  determined) */
1154 /* josh TODO: what about OS X* tuning? */
1155 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1156 #define KMP_TLS_GTID_MIN 5
1157 #else
1158 #define KMP_TLS_GTID_MIN INT_MAX
1159 #endif
1160 
1161 #define KMP_MASTER_TID(tid) (0 == (tid))
1162 #define KMP_WORKER_TID(tid) (0 != (tid))
1163 
1164 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1165 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1166 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1167 
1168 #ifndef TRUE
1169 #define FALSE 0
1170 #define TRUE (!FALSE)
1171 #endif
1172 
1173 /* NOTE: all of the following constants must be even */
1174 
1175 #if KMP_OS_WINDOWS
1176 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1177 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1178 #elif KMP_OS_LINUX
1179 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1180 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1181 #elif KMP_OS_DARWIN
1182 /* TODO: tune for KMP_OS_DARWIN */
1183 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1184 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1185 #elif KMP_OS_DRAGONFLY
1186 /* TODO: tune for KMP_OS_DRAGONFLY */
1187 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1188 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1189 #elif KMP_OS_FREEBSD
1190 /* TODO: tune for KMP_OS_FREEBSD */
1191 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1192 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1193 #elif KMP_OS_NETBSD
1194 /* TODO: tune for KMP_OS_NETBSD */
1195 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1196 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1197 #elif KMP_OS_HURD
1198 /* TODO: tune for KMP_OS_HURD */
1199 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1200 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1201 #elif KMP_OS_OPENBSD
1202 /* TODO: tune for KMP_OS_OPENBSD */
1203 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1204 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1205 #endif
1206 
1207 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1208 typedef struct kmp_cpuid {
1209  kmp_uint32 eax;
1210  kmp_uint32 ebx;
1211  kmp_uint32 ecx;
1212  kmp_uint32 edx;
1213 } kmp_cpuid_t;
1214 
1215 typedef struct kmp_cpuinfo {
1216  int initialized; // If 0, other fields are not initialized.
1217  int signature; // CPUID(1).EAX
1218  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1219  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1220  // Model << 4 ) + Model)
1221  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1222  int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
1223  int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
1224  int apic_id;
1225  int physical_id;
1226  int logical_id;
1227  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1228  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1229 } kmp_cpuinfo_t;
1230 
1231 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1232 
1233 #if KMP_OS_UNIX
1234 // subleaf is only needed for cache and topology discovery and can be set to
1235 // zero in most cases
1236 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1237  __asm__ __volatile__("cpuid"
1238  : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1239  : "a"(leaf), "c"(subleaf));
1240 }
1241 // Load p into FPU control word
1242 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1243  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1244 }
1245 // Store FPU control word into p
1246 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1247  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1248 }
1249 static inline void __kmp_clear_x87_fpu_status_word() {
1250 #if KMP_MIC
1251  // 32-bit protected mode x87 FPU state
1252  struct x87_fpu_state {
1253  unsigned cw;
1254  unsigned sw;
1255  unsigned tw;
1256  unsigned fip;
1257  unsigned fips;
1258  unsigned fdp;
1259  unsigned fds;
1260  };
1261  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1262  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1263  "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1264  "fldenv %0\n\t" // load FP env back
1265  : "+m"(fpu_state), "+m"(fpu_state.sw));
1266 #else
1267  __asm__ __volatile__("fnclex");
1268 #endif // KMP_MIC
1269 }
1270 #if __SSE__
1271 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1272 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1273 #else
1274 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1275 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1276 #endif
1277 #else
1278 // Windows still has these as external functions in assembly file
1279 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1280 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1281 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1282 extern void __kmp_clear_x87_fpu_status_word();
1283 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1284 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1285 #endif // KMP_OS_UNIX
1286 
1287 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1288 
1289 #if KMP_ARCH_X86
1290 extern void __kmp_x86_pause(void);
1291 #elif KMP_MIC
1292 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1293 // regression after removal of extra PAUSE from spin loops. Changing
1294 // the delay from 100 to 300 showed even better performance than double PAUSE
1295 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1296 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1297 #else
1298 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1299 #endif
1300 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1301 #elif KMP_ARCH_PPC64
1302 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1303 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1304 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1305 #define KMP_CPU_PAUSE() \
1306  do { \
1307  KMP_PPC64_PRI_LOW(); \
1308  KMP_PPC64_PRI_MED(); \
1309  KMP_PPC64_PRI_LOC_MB(); \
1310  } while (0)
1311 #else
1312 #define KMP_CPU_PAUSE() /* nothing to do */
1313 #endif
1314 
1315 #define KMP_INIT_YIELD(count) \
1316  { (count) = __kmp_yield_init; }
1317 
1318 #define KMP_OVERSUBSCRIBED \
1319  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1320 
1321 #define KMP_TRY_YIELD \
1322  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1323 
1324 #define KMP_TRY_YIELD_OVERSUB \
1325  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1326 
1327 #define KMP_YIELD(cond) \
1328  { \
1329  KMP_CPU_PAUSE(); \
1330  if ((cond) && (KMP_TRY_YIELD)) \
1331  __kmp_yield(); \
1332  }
1333 
1334 #define KMP_YIELD_OVERSUB() \
1335  { \
1336  KMP_CPU_PAUSE(); \
1337  if ((KMP_TRY_YIELD_OVERSUB)) \
1338  __kmp_yield(); \
1339  }
1340 
1341 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1342 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1343 #define KMP_YIELD_SPIN(count) \
1344  { \
1345  KMP_CPU_PAUSE(); \
1346  if (KMP_TRY_YIELD) { \
1347  (count) -= 2; \
1348  if (!(count)) { \
1349  __kmp_yield(); \
1350  (count) = __kmp_yield_next; \
1351  } \
1352  } \
1353  }
1354 
1355 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count) \
1356  { \
1357  KMP_CPU_PAUSE(); \
1358  if ((KMP_TRY_YIELD_OVERSUB)) \
1359  __kmp_yield(); \
1360  else if (__kmp_use_yield == 1) { \
1361  (count) -= 2; \
1362  if (!(count)) { \
1363  __kmp_yield(); \
1364  (count) = __kmp_yield_next; \
1365  } \
1366  } \
1367  }
1368 
1369 // User-level Monitor/Mwait
1370 #if KMP_HAVE_UMWAIT
1371 // We always try for UMWAIT first
1372 #if KMP_HAVE_WAITPKG_INTRINSICS
1373 #if KMP_HAVE_IMMINTRIN_H
1374 #include <immintrin.h>
1375 #elif KMP_HAVE_INTRIN_H
1376 #include <intrin.h>
1377 #endif
1378 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1379 KMP_ATTRIBUTE_TARGET_WAITPKG
1380 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1381 #if !KMP_HAVE_WAITPKG_INTRINSICS
1382  uint32_t timeHi = uint32_t(counter >> 32);
1383  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1384  char flag;
1385  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1386  "setb %0"
1387  : "=r"(flag)
1388  : "a"(timeLo), "d"(timeHi), "c"(hint)
1389  :);
1390  return flag;
1391 #else
1392  return _tpause(hint, counter);
1393 #endif
1394 }
1395 KMP_ATTRIBUTE_TARGET_WAITPKG
1396 static inline void __kmp_umonitor(void *cacheline) {
1397 #if !KMP_HAVE_WAITPKG_INTRINSICS
1398  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1399  :
1400  : "a"(cacheline)
1401  :);
1402 #else
1403  _umonitor(cacheline);
1404 #endif
1405 }
1406 KMP_ATTRIBUTE_TARGET_WAITPKG
1407 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1408 #if !KMP_HAVE_WAITPKG_INTRINSICS
1409  uint32_t timeHi = uint32_t(counter >> 32);
1410  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1411  char flag;
1412  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1413  "setb %0"
1414  : "=r"(flag)
1415  : "a"(timeLo), "d"(timeHi), "c"(hint)
1416  :);
1417  return flag;
1418 #else
1419  return _umwait(hint, counter);
1420 #endif
1421 }
1422 #elif KMP_HAVE_MWAIT
1423 #if KMP_OS_UNIX
1424 #include <pmmintrin.h>
1425 #else
1426 #include <intrin.h>
1427 #endif
1428 #if KMP_OS_UNIX
1429 __attribute__((target("sse3")))
1430 #endif
1431 static inline void
1432 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1433  _mm_monitor(cacheline, extensions, hints);
1434 }
1435 #if KMP_OS_UNIX
1436 __attribute__((target("sse3")))
1437 #endif
1438 static inline void
1439 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1440  _mm_mwait(extensions, hints);
1441 }
1442 #endif // KMP_HAVE_UMWAIT
1443 
1444 /* ------------------------------------------------------------------------ */
1445 /* Support datatypes for the orphaned construct nesting checks. */
1446 /* ------------------------------------------------------------------------ */
1447 
1448 enum cons_type {
1449  ct_none,
1450  ct_parallel,
1451  ct_pdo,
1452  ct_pdo_ordered,
1453  ct_psections,
1454  ct_psingle,
1455  ct_critical,
1456  ct_ordered_in_parallel,
1457  ct_ordered_in_pdo,
1458  ct_master,
1459  ct_reduce,
1460  ct_barrier,
1461  ct_masked
1462 };
1463 
1464 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1465 
1466 struct cons_data {
1467  ident_t const *ident;
1468  enum cons_type type;
1469  int prev;
1470  kmp_user_lock_p
1471  name; /* address exclusively for critical section name comparison */
1472 };
1473 
1474 struct cons_header {
1475  int p_top, w_top, s_top;
1476  int stack_size, stack_top;
1477  struct cons_data *stack_data;
1478 };
1479 
1480 struct kmp_region_info {
1481  char *text;
1482  int offset[KMP_MAX_FIELDS];
1483  int length[KMP_MAX_FIELDS];
1484 };
1485 
1486 /* ---------------------------------------------------------------------- */
1487 /* ---------------------------------------------------------------------- */
1488 
1489 #if KMP_OS_WINDOWS
1490 typedef HANDLE kmp_thread_t;
1491 typedef DWORD kmp_key_t;
1492 #endif /* KMP_OS_WINDOWS */
1493 
1494 #if KMP_OS_UNIX
1495 typedef pthread_t kmp_thread_t;
1496 typedef pthread_key_t kmp_key_t;
1497 #endif
1498 
1499 extern kmp_key_t __kmp_gtid_threadprivate_key;
1500 
1501 typedef struct kmp_sys_info {
1502  long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1503  long minflt; /* the number of page faults serviced without any I/O */
1504  long majflt; /* the number of page faults serviced that required I/O */
1505  long nswap; /* the number of times a process was "swapped" out of memory */
1506  long inblock; /* the number of times the file system had to perform input */
1507  long oublock; /* the number of times the file system had to perform output */
1508  long nvcsw; /* the number of times a context switch was voluntarily */
1509  long nivcsw; /* the number of times a context switch was forced */
1510 } kmp_sys_info_t;
1511 
1512 #if USE_ITT_BUILD
1513 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1514 // required type here. Later we will check the type meets requirements.
1515 typedef int kmp_itt_mark_t;
1516 #define KMP_ITT_DEBUG 0
1517 #endif /* USE_ITT_BUILD */
1518 
1519 typedef kmp_int32 kmp_critical_name[8];
1520 
1530 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1531 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1532  ...);
1533 
1538 /* ---------------------------------------------------------------------------
1539  */
1540 /* Threadprivate initialization/finalization function declarations */
1541 
1542 /* for non-array objects: __kmpc_threadprivate_register() */
1543 
1548 typedef void *(*kmpc_ctor)(void *);
1549 
1554 typedef void (*kmpc_dtor)(
1555  void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1556  compiler */
1561 typedef void *(*kmpc_cctor)(void *, void *);
1562 
1563 /* for array objects: __kmpc_threadprivate_register_vec() */
1564 /* First arg: "this" pointer */
1565 /* Last arg: number of array elements */
1571 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1577 typedef void (*kmpc_dtor_vec)(void *, size_t);
1583 typedef void *(*kmpc_cctor_vec)(void *, void *,
1584  size_t); /* function unused by compiler */
1585 
1590 /* keeps tracked of threadprivate cache allocations for cleanup later */
1591 typedef struct kmp_cached_addr {
1592  void **addr; /* address of allocated cache */
1593  void ***compiler_cache; /* pointer to compiler's cache */
1594  void *data; /* pointer to global data */
1595  struct kmp_cached_addr *next; /* pointer to next cached address */
1596 } kmp_cached_addr_t;
1597 
1598 struct private_data {
1599  struct private_data *next; /* The next descriptor in the list */
1600  void *data; /* The data buffer for this descriptor */
1601  int more; /* The repeat count for this descriptor */
1602  size_t size; /* The data size for this descriptor */
1603 };
1604 
1605 struct private_common {
1606  struct private_common *next;
1607  struct private_common *link;
1608  void *gbl_addr;
1609  void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1610  size_t cmn_size;
1611 };
1612 
1613 struct shared_common {
1614  struct shared_common *next;
1615  struct private_data *pod_init;
1616  void *obj_init;
1617  void *gbl_addr;
1618  union {
1619  kmpc_ctor ctor;
1620  kmpc_ctor_vec ctorv;
1621  } ct;
1622  union {
1623  kmpc_cctor cctor;
1624  kmpc_cctor_vec cctorv;
1625  } cct;
1626  union {
1627  kmpc_dtor dtor;
1628  kmpc_dtor_vec dtorv;
1629  } dt;
1630  size_t vec_len;
1631  int is_vec;
1632  size_t cmn_size;
1633 };
1634 
1635 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1636 #define KMP_HASH_TABLE_SIZE \
1637  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1638 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1639 #define KMP_HASH(x) \
1640  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1641 
1642 struct common_table {
1643  struct private_common *data[KMP_HASH_TABLE_SIZE];
1644 };
1645 
1646 struct shared_table {
1647  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1648 };
1649 
1650 /* ------------------------------------------------------------------------ */
1651 
1652 #if KMP_USE_HIER_SCHED
1653 // Shared barrier data that exists inside a single unit of the scheduling
1654 // hierarchy
1655 typedef struct kmp_hier_private_bdata_t {
1656  kmp_int32 num_active;
1657  kmp_uint64 index;
1658  kmp_uint64 wait_val[2];
1659 } kmp_hier_private_bdata_t;
1660 #endif
1661 
1662 typedef struct kmp_sched_flags {
1663  unsigned ordered : 1;
1664  unsigned nomerge : 1;
1665  unsigned contains_last : 1;
1666 #if KMP_USE_HIER_SCHED
1667  unsigned use_hier : 1;
1668  unsigned unused : 28;
1669 #else
1670  unsigned unused : 29;
1671 #endif
1672 } kmp_sched_flags_t;
1673 
1674 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1675 
1676 #if KMP_STATIC_STEAL_ENABLED
1677 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1678  kmp_int32 count;
1679  kmp_int32 ub;
1680  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1681  kmp_int32 lb;
1682  kmp_int32 st;
1683  kmp_int32 tc;
1684  kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put
1685  after ub */
1686  kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1687  // KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on )
1688  // a) parm3 is properly aligned and
1689  // b) all parm1-4 are in the same cache line.
1690  // Because of parm1-4 are used together, performance seems to be better
1691  // if they are in the same line (not measured though).
1692 
1693  struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1694  kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1695  kmp_int32 parm2; // make no real change at least while padding is off.
1696  kmp_int32 parm3;
1697  kmp_int32 parm4;
1698  };
1699 
1700  kmp_uint32 ordered_lower;
1701  kmp_uint32 ordered_upper;
1702 #if KMP_OS_WINDOWS
1703  // This var can be placed in the hole between 'tc' and 'parm1', instead of
1704  // 'static_steal_counter'. It would be nice to measure execution times.
1705  // Conditional if/endif can be removed at all.
1706  kmp_int32 last_upper;
1707 #endif /* KMP_OS_WINDOWS */
1708 } dispatch_private_info32_t;
1709 
1710 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1711  kmp_int64 count; // current chunk number for static & static-steal scheduling
1712  kmp_int64 ub; /* upper-bound */
1713  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1714  kmp_int64 lb; /* lower-bound */
1715  kmp_int64 st; /* stride */
1716  kmp_int64 tc; /* trip count (number of iterations) */
1717  kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put
1718  after ub */
1719  kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1720  /* parm[1-4] are used in different ways by different scheduling algorithms */
1721 
1722  // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1723  // a) parm3 is properly aligned and
1724  // b) all parm1-4 are in the same cache line.
1725  // Because of parm1-4 are used together, performance seems to be better
1726  // if they are in the same line (not measured though).
1727 
1728  struct KMP_ALIGN(32) {
1729  kmp_int64 parm1;
1730  kmp_int64 parm2;
1731  kmp_int64 parm3;
1732  kmp_int64 parm4;
1733  };
1734 
1735  kmp_uint64 ordered_lower;
1736  kmp_uint64 ordered_upper;
1737 #if KMP_OS_WINDOWS
1738  // This var can be placed in the hole between 'tc' and 'parm1', instead of
1739  // 'static_steal_counter'. It would be nice to measure execution times.
1740  // Conditional if/endif can be removed at all.
1741  kmp_int64 last_upper;
1742 #endif /* KMP_OS_WINDOWS */
1743 } dispatch_private_info64_t;
1744 #else /* KMP_STATIC_STEAL_ENABLED */
1745 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1746  kmp_int32 lb;
1747  kmp_int32 ub;
1748  kmp_int32 st;
1749  kmp_int32 tc;
1750 
1751  kmp_int32 parm1;
1752  kmp_int32 parm2;
1753  kmp_int32 parm3;
1754  kmp_int32 parm4;
1755 
1756  kmp_int32 count;
1757 
1758  kmp_uint32 ordered_lower;
1759  kmp_uint32 ordered_upper;
1760 #if KMP_OS_WINDOWS
1761  kmp_int32 last_upper;
1762 #endif /* KMP_OS_WINDOWS */
1763 } dispatch_private_info32_t;
1764 
1765 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1766  kmp_int64 lb; /* lower-bound */
1767  kmp_int64 ub; /* upper-bound */
1768  kmp_int64 st; /* stride */
1769  kmp_int64 tc; /* trip count (number of iterations) */
1770 
1771  /* parm[1-4] are used in different ways by different scheduling algorithms */
1772  kmp_int64 parm1;
1773  kmp_int64 parm2;
1774  kmp_int64 parm3;
1775  kmp_int64 parm4;
1776 
1777  kmp_int64 count; /* current chunk number for static scheduling */
1778 
1779  kmp_uint64 ordered_lower;
1780  kmp_uint64 ordered_upper;
1781 #if KMP_OS_WINDOWS
1782  kmp_int64 last_upper;
1783 #endif /* KMP_OS_WINDOWS */
1784 } dispatch_private_info64_t;
1785 #endif /* KMP_STATIC_STEAL_ENABLED */
1786 
1787 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1788  union private_info {
1789  dispatch_private_info32_t p32;
1790  dispatch_private_info64_t p64;
1791  } u;
1792  enum sched_type schedule; /* scheduling algorithm */
1793  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1794  kmp_int32 ordered_bumped;
1795  // To retain the structure size after making ordered_iteration scalar
1796  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3];
1797  // Stack of buffers for nest of serial regions
1798  struct dispatch_private_info *next;
1799  kmp_int32 type_size; /* the size of types in private_info */
1800 #if KMP_USE_HIER_SCHED
1801  kmp_int32 hier_id;
1802  void *parent; /* hierarchical scheduling parent pointer */
1803 #endif
1804  enum cons_type pushed_ws;
1805 } dispatch_private_info_t;
1806 
1807 typedef struct dispatch_shared_info32 {
1808  /* chunk index under dynamic, number of idle threads under static-steal;
1809  iteration index otherwise */
1810  volatile kmp_uint32 iteration;
1811  volatile kmp_uint32 num_done;
1812  volatile kmp_uint32 ordered_iteration;
1813  // Dummy to retain the structure size after making ordered_iteration scalar
1814  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1815 } dispatch_shared_info32_t;
1816 
1817 typedef struct dispatch_shared_info64 {
1818  /* chunk index under dynamic, number of idle threads under static-steal;
1819  iteration index otherwise */
1820  volatile kmp_uint64 iteration;
1821  volatile kmp_uint64 num_done;
1822  volatile kmp_uint64 ordered_iteration;
1823  // Dummy to retain the structure size after making ordered_iteration scalar
1824  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1825 } dispatch_shared_info64_t;
1826 
1827 typedef struct dispatch_shared_info {
1828  union shared_info {
1829  dispatch_shared_info32_t s32;
1830  dispatch_shared_info64_t s64;
1831  } u;
1832  volatile kmp_uint32 buffer_index;
1833  volatile kmp_int32 doacross_buf_idx; // teamwise index
1834  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1835  kmp_int32 doacross_num_done; // count finished threads
1836 #if KMP_USE_HIER_SCHED
1837  void *hier;
1838 #endif
1839 #if KMP_USE_HWLOC
1840  // When linking with libhwloc, the ORDERED EPCC test slows down on big
1841  // machines (> 48 cores). Performance analysis showed that a cache thrash
1842  // was occurring and this padding helps alleviate the problem.
1843  char padding[64];
1844 #endif
1845 } dispatch_shared_info_t;
1846 
1847 typedef struct kmp_disp {
1848  /* Vector for ORDERED SECTION */
1849  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1850  /* Vector for END ORDERED SECTION */
1851  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1852 
1853  dispatch_shared_info_t *th_dispatch_sh_current;
1854  dispatch_private_info_t *th_dispatch_pr_current;
1855 
1856  dispatch_private_info_t *th_disp_buffer;
1857  kmp_int32 th_disp_index;
1858  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1859  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1860  kmp_int64 *th_doacross_info; // info on loop bounds
1861 #if KMP_USE_INTERNODE_ALIGNMENT
1862  char more_padding[INTERNODE_CACHE_LINE];
1863 #endif
1864 } kmp_disp_t;
1865 
1866 /* ------------------------------------------------------------------------ */
1867 /* Barrier stuff */
1868 
1869 /* constants for barrier state update */
1870 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1871 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1872 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1873 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1874 
1875 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1876 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1877 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1878 
1879 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1880 #error "Barrier sleep bit must be smaller than barrier bump bit"
1881 #endif
1882 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1883 #error "Barrier unused bit must be smaller than barrier bump bit"
1884 #endif
1885 
1886 // Constants for release barrier wait state: currently, hierarchical only
1887 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1888 #define KMP_BARRIER_OWN_FLAG \
1889  1 // Normal state; worker waiting on own b_go flag in release
1890 #define KMP_BARRIER_PARENT_FLAG \
1891  2 // Special state; worker waiting on parent's b_go flag in release
1892 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
1893  3 // Special state; tells worker to shift from parent to own b_go
1894 #define KMP_BARRIER_SWITCHING \
1895  4 // Special state; worker resets appropriate flag on wake-up
1896 
1897 #define KMP_NOT_SAFE_TO_REAP \
1898  0 // Thread th_reap_state: not safe to reap (tasking)
1899 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1900 
1901 enum barrier_type {
1902  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1903  barriers if enabled) */
1904  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1905 #if KMP_FAST_REDUCTION_BARRIER
1906  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1907 #endif // KMP_FAST_REDUCTION_BARRIER
1908  bs_last_barrier /* Just a placeholder to mark the end */
1909 };
1910 
1911 // to work with reduction barriers just like with plain barriers
1912 #if !KMP_FAST_REDUCTION_BARRIER
1913 #define bs_reduction_barrier bs_plain_barrier
1914 #endif // KMP_FAST_REDUCTION_BARRIER
1915 
1916 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1917  bp_linear_bar =
1918  0, /* Single level (degenerate) tree */
1919  bp_tree_bar =
1920  1, /* Balanced tree with branching factor 2^n */
1921  bp_hyper_bar = 2, /* Hypercube-embedded tree with min
1922  branching factor 2^n */
1923  bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1924  bp_last_bar /* Placeholder to mark the end */
1925 } kmp_bar_pat_e;
1926 
1927 #define KMP_BARRIER_ICV_PUSH 1
1928 
1929 /* Record for holding the values of the internal controls stack records */
1930 typedef struct kmp_internal_control {
1931  int serial_nesting_level; /* corresponds to the value of the
1932  th_team_serialized field */
1933  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1934  thread) */
1935  kmp_int8
1936  bt_set; /* internal control for whether blocktime is explicitly set */
1937  int blocktime; /* internal control for blocktime */
1938 #if KMP_USE_MONITOR
1939  int bt_intervals; /* internal control for blocktime intervals */
1940 #endif
1941  int nproc; /* internal control for #threads for next parallel region (per
1942  thread) */
1943  int thread_limit; /* internal control for thread-limit-var */
1944  int max_active_levels; /* internal control for max_active_levels */
1945  kmp_r_sched_t
1946  sched; /* internal control for runtime schedule {sched,chunk} pair */
1947  kmp_proc_bind_t proc_bind; /* internal control for affinity */
1948  kmp_int32 default_device; /* internal control for default device */
1949  struct kmp_internal_control *next;
1950 } kmp_internal_control_t;
1951 
1952 static inline void copy_icvs(kmp_internal_control_t *dst,
1953  kmp_internal_control_t *src) {
1954  *dst = *src;
1955 }
1956 
1957 /* Thread barrier needs volatile barrier fields */
1958 typedef struct KMP_ALIGN_CACHE kmp_bstate {
1959  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1960  // uses of it). It is not explicitly aligned below, because we *don't* want
1961  // it to be padded -- instead, we fit b_go into the same cache line with
1962  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1963  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1964  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1965  // same NGO store
1966  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1967  KMP_ALIGN_CACHE volatile kmp_uint64
1968  b_arrived; // STATE => task reached synch point.
1969  kmp_uint32 *skip_per_level;
1970  kmp_uint32 my_level;
1971  kmp_int32 parent_tid;
1972  kmp_int32 old_tid;
1973  kmp_uint32 depth;
1974  struct kmp_bstate *parent_bar;
1975  kmp_team_t *team;
1976  kmp_uint64 leaf_state;
1977  kmp_uint32 nproc;
1978  kmp_uint8 base_leaf_kids;
1979  kmp_uint8 leaf_kids;
1980  kmp_uint8 offset;
1981  kmp_uint8 wait_flag;
1982  kmp_uint8 use_oncore_barrier;
1983 #if USE_DEBUGGER
1984  // The following field is intended for the debugger solely. Only the worker
1985  // thread itself accesses this field: the worker increases it by 1 when it
1986  // arrives to a barrier.
1987  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
1988 #endif /* USE_DEBUGGER */
1989 } kmp_bstate_t;
1990 
1991 union KMP_ALIGN_CACHE kmp_barrier_union {
1992  double b_align; /* use worst case alignment */
1993  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
1994  kmp_bstate_t bb;
1995 };
1996 
1997 typedef union kmp_barrier_union kmp_balign_t;
1998 
1999 /* Team barrier needs only non-volatile arrived counter */
2000 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2001  double b_align; /* use worst case alignment */
2002  char b_pad[CACHE_LINE];
2003  struct {
2004  kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2005 #if USE_DEBUGGER
2006  // The following two fields are indended for the debugger solely. Only
2007  // primary thread of the team accesses these fields: the first one is
2008  // increased by 1 when the primary thread arrives to a barrier, the second
2009  // one is increased by one when all the threads arrived.
2010  kmp_uint b_master_arrived;
2011  kmp_uint b_team_arrived;
2012 #endif
2013  };
2014 };
2015 
2016 typedef union kmp_barrier_team_union kmp_balign_team_t;
2017 
2018 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2019  threads when a condition changes. This is to workaround an NPTL bug where
2020  padding was added to pthread_cond_t which caused the initialization routine
2021  to write outside of the structure if compiled on pre-NPTL threads. */
2022 #if KMP_OS_WINDOWS
2023 typedef struct kmp_win32_mutex {
2024  /* The Lock */
2025  CRITICAL_SECTION cs;
2026 } kmp_win32_mutex_t;
2027 
2028 typedef struct kmp_win32_cond {
2029  /* Count of the number of waiters. */
2030  int waiters_count_;
2031 
2032  /* Serialize access to <waiters_count_> */
2033  kmp_win32_mutex_t waiters_count_lock_;
2034 
2035  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2036  int release_count_;
2037 
2038  /* Keeps track of the current "generation" so that we don't allow */
2039  /* one thread to steal all the "releases" from the broadcast. */
2040  int wait_generation_count_;
2041 
2042  /* A manual-reset event that's used to block and release waiting threads. */
2043  HANDLE event_;
2044 } kmp_win32_cond_t;
2045 #endif
2046 
2047 #if KMP_OS_UNIX
2048 
2049 union KMP_ALIGN_CACHE kmp_cond_union {
2050  double c_align;
2051  char c_pad[CACHE_LINE];
2052  pthread_cond_t c_cond;
2053 };
2054 
2055 typedef union kmp_cond_union kmp_cond_align_t;
2056 
2057 union KMP_ALIGN_CACHE kmp_mutex_union {
2058  double m_align;
2059  char m_pad[CACHE_LINE];
2060  pthread_mutex_t m_mutex;
2061 };
2062 
2063 typedef union kmp_mutex_union kmp_mutex_align_t;
2064 
2065 #endif /* KMP_OS_UNIX */
2066 
2067 typedef struct kmp_desc_base {
2068  void *ds_stackbase;
2069  size_t ds_stacksize;
2070  int ds_stackgrow;
2071  kmp_thread_t ds_thread;
2072  volatile int ds_tid;
2073  int ds_gtid;
2074 #if KMP_OS_WINDOWS
2075  volatile int ds_alive;
2076  DWORD ds_thread_id;
2077 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2078  However, debugger support (libomp_db) cannot work with handles, because they
2079  uncomparable. For example, debugger requests info about thread with handle h.
2080  h is valid within debugger process, and meaningless within debugee process.
2081  Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2082  within debugee process, but it is a *new* handle which does *not* equal to
2083  any other handle in debugee... The only way to compare handles is convert
2084  them to system-wide ids. GetThreadId() function is available only in
2085  Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2086  on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2087  thread id by call to GetCurrentThreadId() from within the thread and save it
2088  to let libomp_db identify threads. */
2089 #endif /* KMP_OS_WINDOWS */
2090 } kmp_desc_base_t;
2091 
2092 typedef union KMP_ALIGN_CACHE kmp_desc {
2093  double ds_align; /* use worst case alignment */
2094  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2095  kmp_desc_base_t ds;
2096 } kmp_desc_t;
2097 
2098 typedef struct kmp_local {
2099  volatile int this_construct; /* count of single's encountered by thread */
2100  void *reduce_data;
2101 #if KMP_USE_BGET
2102  void *bget_data;
2103  void *bget_list;
2104 #if !USE_CMP_XCHG_FOR_BGET
2105 #ifdef USE_QUEUING_LOCK_FOR_BGET
2106  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2107 #else
2108  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2109 // bootstrap lock so we can use it at library
2110 // shutdown.
2111 #endif /* USE_LOCK_FOR_BGET */
2112 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2113 #endif /* KMP_USE_BGET */
2114 
2115  PACKED_REDUCTION_METHOD_T
2116  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2117  __kmpc_end_reduce*() */
2118 
2119 } kmp_local_t;
2120 
2121 #define KMP_CHECK_UPDATE(a, b) \
2122  if ((a) != (b)) \
2123  (a) = (b)
2124 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2125  if ((a) != (b)) \
2126  TCW_SYNC_PTR((a), (b))
2127 
2128 #define get__blocktime(xteam, xtid) \
2129  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2130 #define get__bt_set(xteam, xtid) \
2131  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2132 #if KMP_USE_MONITOR
2133 #define get__bt_intervals(xteam, xtid) \
2134  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2135 #endif
2136 
2137 #define get__dynamic_2(xteam, xtid) \
2138  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2139 #define get__nproc_2(xteam, xtid) \
2140  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2141 #define get__sched_2(xteam, xtid) \
2142  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2143 
2144 #define set__blocktime_team(xteam, xtid, xval) \
2145  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2146  (xval))
2147 
2148 #if KMP_USE_MONITOR
2149 #define set__bt_intervals_team(xteam, xtid, xval) \
2150  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2151  (xval))
2152 #endif
2153 
2154 #define set__bt_set_team(xteam, xtid, xval) \
2155  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2156 
2157 #define set__dynamic(xthread, xval) \
2158  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2159 #define get__dynamic(xthread) \
2160  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2161 
2162 #define set__nproc(xthread, xval) \
2163  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2164 
2165 #define set__thread_limit(xthread, xval) \
2166  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2167 
2168 #define set__max_active_levels(xthread, xval) \
2169  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2170 
2171 #define get__max_active_levels(xthread) \
2172  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2173 
2174 #define set__sched(xthread, xval) \
2175  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2176 
2177 #define set__proc_bind(xthread, xval) \
2178  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2179 #define get__proc_bind(xthread) \
2180  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2181 
2182 // OpenMP tasking data structures
2183 
2184 typedef enum kmp_tasking_mode {
2185  tskm_immediate_exec = 0,
2186  tskm_extra_barrier = 1,
2187  tskm_task_teams = 2,
2188  tskm_max = 2
2189 } kmp_tasking_mode_t;
2190 
2191 extern kmp_tasking_mode_t
2192  __kmp_tasking_mode; /* determines how/when to execute tasks */
2193 extern int __kmp_task_stealing_constraint;
2194 extern int __kmp_enable_task_throttling;
2195 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2196 // specified, defaults to 0 otherwise
2197 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2198 extern kmp_int32 __kmp_max_task_priority;
2199 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2200 extern kmp_uint64 __kmp_taskloop_min_tasks;
2201 
2202 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2203  taskdata first */
2204 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2205 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2206 
2207 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2208 // were spawned and queued since the previous barrier release.
2209 #define KMP_TASKING_ENABLED(task_team) \
2210  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2211 
2218 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2219 
2220 typedef union kmp_cmplrdata {
2221  kmp_int32 priority;
2222  kmp_routine_entry_t
2223  destructors; /* pointer to function to invoke deconstructors of
2224  firstprivate C++ objects */
2225  /* future data */
2226 } kmp_cmplrdata_t;
2227 
2228 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2231 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2232  void *shareds;
2233  kmp_routine_entry_t
2234  routine;
2235  kmp_int32 part_id;
2236  kmp_cmplrdata_t
2237  data1; /* Two known optional additions: destructors and priority */
2238  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2239  /* future data */
2240  /* private vars */
2241 } kmp_task_t;
2242 
2247 typedef struct kmp_taskgroup {
2248  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2249  std::atomic<kmp_int32>
2250  cancel_request; // request for cancellation of this taskgroup
2251  struct kmp_taskgroup *parent; // parent taskgroup
2252  // Block of data to perform task reduction
2253  void *reduce_data; // reduction related info
2254  kmp_int32 reduce_num_data; // number of data items to reduce
2255 } kmp_taskgroup_t;
2256 
2257 // forward declarations
2258 typedef union kmp_depnode kmp_depnode_t;
2259 typedef struct kmp_depnode_list kmp_depnode_list_t;
2260 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2261 
2262 // Compiler sends us this info:
2263 typedef struct kmp_depend_info {
2264  kmp_intptr_t base_addr;
2265  size_t len;
2266  struct {
2267  bool in : 1;
2268  bool out : 1;
2269  bool mtx : 1;
2270  } flags;
2271 } kmp_depend_info_t;
2272 
2273 // Internal structures to work with task dependencies:
2274 struct kmp_depnode_list {
2275  kmp_depnode_t *node;
2276  kmp_depnode_list_t *next;
2277 };
2278 
2279 // Max number of mutexinoutset dependencies per node
2280 #define MAX_MTX_DEPS 4
2281 
2282 typedef struct kmp_base_depnode {
2283  kmp_depnode_list_t *successors; /* used under lock */
2284  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2285  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2286  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2287  kmp_lock_t lock; /* guards shared fields: task, successors */
2288 #if KMP_SUPPORT_GRAPH_OUTPUT
2289  kmp_uint32 id;
2290 #endif
2291  std::atomic<kmp_int32> npredecessors;
2292  std::atomic<kmp_int32> nrefs;
2293 } kmp_base_depnode_t;
2294 
2295 union KMP_ALIGN_CACHE kmp_depnode {
2296  double dn_align; /* use worst case alignment */
2297  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2298  kmp_base_depnode_t dn;
2299 };
2300 
2301 struct kmp_dephash_entry {
2302  kmp_intptr_t addr;
2303  kmp_depnode_t *last_out;
2304  kmp_depnode_list_t *last_ins;
2305  kmp_depnode_list_t *last_mtxs;
2306  kmp_int32 last_flag;
2307  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2308  kmp_dephash_entry_t *next_in_bucket;
2309 };
2310 
2311 typedef struct kmp_dephash {
2312  kmp_dephash_entry_t **buckets;
2313  size_t size;
2314  size_t generation;
2315  kmp_uint32 nelements;
2316  kmp_uint32 nconflicts;
2317 } kmp_dephash_t;
2318 
2319 typedef struct kmp_task_affinity_info {
2320  kmp_intptr_t base_addr;
2321  size_t len;
2322  struct {
2323  bool flag1 : 1;
2324  bool flag2 : 1;
2325  kmp_int32 reserved : 30;
2326  } flags;
2327 } kmp_task_affinity_info_t;
2328 
2329 typedef enum kmp_event_type_t {
2330  KMP_EVENT_UNINITIALIZED = 0,
2331  KMP_EVENT_ALLOW_COMPLETION = 1
2332 } kmp_event_type_t;
2333 
2334 typedef struct {
2335  kmp_event_type_t type;
2336  kmp_tas_lock_t lock;
2337  union {
2338  kmp_task_t *task;
2339  } ed;
2340 } kmp_event_t;
2341 
2342 #ifdef BUILD_TIED_TASK_STACK
2343 
2344 /* Tied Task stack definitions */
2345 typedef struct kmp_stack_block {
2346  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2347  struct kmp_stack_block *sb_next;
2348  struct kmp_stack_block *sb_prev;
2349 } kmp_stack_block_t;
2350 
2351 typedef struct kmp_task_stack {
2352  kmp_stack_block_t ts_first_block; // first block of stack entries
2353  kmp_taskdata_t **ts_top; // pointer to the top of stack
2354  kmp_int32 ts_entries; // number of entries on the stack
2355 } kmp_task_stack_t;
2356 
2357 #endif // BUILD_TIED_TASK_STACK
2358 
2359 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2360  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2361  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2362  unsigned final : 1; /* task is final(1) so execute immediately */
2363  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2364  code path */
2365  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2366  invoke destructors from the runtime */
2367  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2368  context of the RTL) */
2369  unsigned priority_specified : 1; /* set if the compiler provides priority
2370  setting for the task */
2371  unsigned detachable : 1; /* 1 == can detach */
2372  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2373  unsigned reserved : 8; /* reserved for compiler use */
2374 
2375  /* Library flags */ /* Total library flags must be 16 bits */
2376  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2377  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2378  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2379  // (1) or may be deferred (0)
2380  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2381  // (0) [>= 2 threads]
2382  /* If either team_serial or tasking_ser is set, task team may be NULL */
2383  /* Task State Flags: */
2384  unsigned started : 1; /* 1==started, 0==not started */
2385  unsigned executing : 1; /* 1==executing, 0==not executing */
2386  unsigned complete : 1; /* 1==complete, 0==not complete */
2387  unsigned freed : 1; /* 1==freed, 0==allocated */
2388  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2389  unsigned reserved31 : 7; /* reserved for library use */
2390 
2391 } kmp_tasking_flags_t;
2392 
2393 struct kmp_taskdata { /* aligned during dynamic allocation */
2394  kmp_int32 td_task_id; /* id, assigned by debugger */
2395  kmp_tasking_flags_t td_flags; /* task flags */
2396  kmp_team_t *td_team; /* team for this task */
2397  kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2398  /* Currently not used except for perhaps IDB */
2399  kmp_taskdata_t *td_parent; /* parent task */
2400  kmp_int32 td_level; /* task nesting level */
2401  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2402  ident_t *td_ident; /* task identifier */
2403  // Taskwait data.
2404  ident_t *td_taskwait_ident;
2405  kmp_uint32 td_taskwait_counter;
2406  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2407  KMP_ALIGN_CACHE kmp_internal_control_t
2408  td_icvs; /* Internal control variables for the task */
2409  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2410  td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2411  deallocated */
2412  std::atomic<kmp_int32>
2413  td_incomplete_child_tasks; /* Child tasks not yet complete */
2414  kmp_taskgroup_t
2415  *td_taskgroup; // Each task keeps pointer to its current taskgroup
2416  kmp_dephash_t
2417  *td_dephash; // Dependencies for children tasks are tracked from here
2418  kmp_depnode_t
2419  *td_depnode; // Pointer to graph node if this task has dependencies
2420  kmp_task_team_t *td_task_team;
2421  // The global thread id of the encountering thread. We need it because when a
2422  // regular task depends on a hidden helper task, and the hidden helper task
2423  // is finished on a hidden helper thread, it will call __kmp_release_deps to
2424  // release all dependences. If now the task is a regular task, we need to pass
2425  // the encountering gtid such that the task will be picked up and executed by
2426  // its encountering team instead of hidden helper team.
2427  kmp_int32 encountering_gtid;
2428  size_t td_size_alloc; // Size of task structure, including shareds etc.
2429 #if defined(KMP_GOMP_COMPAT)
2430  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2431  kmp_int32 td_size_loop_bounds;
2432 #endif
2433  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2434 #if defined(KMP_GOMP_COMPAT)
2435  // GOMP sends in a copy function for copy constructors
2436  void (*td_copy_func)(void *, void *);
2437 #endif
2438  kmp_event_t td_allow_completion_event;
2439 #if OMPT_SUPPORT
2440  ompt_task_info_t ompt_task_info;
2441 #endif
2442 }; // struct kmp_taskdata
2443 
2444 // Make sure padding above worked
2445 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2446 
2447 // Data for task team but per thread
2448 typedef struct kmp_base_thread_data {
2449  kmp_info_p *td_thr; // Pointer back to thread info
2450  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2451  // queued?
2452  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2453  kmp_taskdata_t *
2454  *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2455  kmp_int32 td_deque_size; // Size of deck
2456  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2457  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2458  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2459  // GEH: shouldn't this be volatile since used in while-spin?
2460  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2461 #ifdef BUILD_TIED_TASK_STACK
2462  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2463 // scheduling constraint
2464 #endif // BUILD_TIED_TASK_STACK
2465 } kmp_base_thread_data_t;
2466 
2467 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2468 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2469 
2470 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2471 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2472 
2473 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2474  kmp_base_thread_data_t td;
2475  double td_align; /* use worst case alignment */
2476  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2477 } kmp_thread_data_t;
2478 
2479 // Data for task teams which are used when tasking is enabled for the team
2480 typedef struct kmp_base_task_team {
2481  kmp_bootstrap_lock_t
2482  tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2483  /* must be bootstrap lock since used at library shutdown*/
2484  kmp_task_team_t *tt_next; /* For linking the task team free list */
2485  kmp_thread_data_t
2486  *tt_threads_data; /* Array of per-thread structures for task team */
2487  /* Data survives task team deallocation */
2488  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2489  executing this team? */
2490  /* TRUE means tt_threads_data is set up and initialized */
2491  kmp_int32 tt_nproc; /* #threads in team */
2492  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2493  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2494  kmp_int32 tt_untied_task_encountered;
2495  // There is hidden helper thread encountered in this task team so that we must
2496  // wait when waiting on task team
2497  kmp_int32 tt_hidden_helper_task_encountered;
2498 
2499  KMP_ALIGN_CACHE
2500  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2501 
2502  KMP_ALIGN_CACHE
2503  volatile kmp_uint32
2504  tt_active; /* is the team still actively executing tasks */
2505 } kmp_base_task_team_t;
2506 
2507 union KMP_ALIGN_CACHE kmp_task_team {
2508  kmp_base_task_team_t tt;
2509  double tt_align; /* use worst case alignment */
2510  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2511 };
2512 
2513 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2514 // Free lists keep same-size free memory slots for fast memory allocation
2515 // routines
2516 typedef struct kmp_free_list {
2517  void *th_free_list_self; // Self-allocated tasks free list
2518  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2519  // threads
2520  void *th_free_list_other; // Non-self free list (to be returned to owner's
2521  // sync list)
2522 } kmp_free_list_t;
2523 #endif
2524 #if KMP_NESTED_HOT_TEAMS
2525 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2526 // are not put in teams pool, and they don't put threads in threads pool.
2527 typedef struct kmp_hot_team_ptr {
2528  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2529  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2530 } kmp_hot_team_ptr_t;
2531 #endif
2532 typedef struct kmp_teams_size {
2533  kmp_int32 nteams; // number of teams in a league
2534  kmp_int32 nth; // number of threads in each team of the league
2535 } kmp_teams_size_t;
2536 
2537 // This struct stores a thread that acts as a "root" for a contention
2538 // group. Contention groups are rooted at kmp_root threads, but also at
2539 // each primary thread of each team created in the teams construct.
2540 // This struct therefore also stores a thread_limit associated with
2541 // that contention group, and a counter to track the number of threads
2542 // active in that contention group. Each thread has a list of these: CG
2543 // root threads have an entry in their list in which cg_root refers to
2544 // the thread itself, whereas other workers in the CG will have a
2545 // single entry where cg_root is same as the entry containing their CG
2546 // root. When a thread encounters a teams construct, it will add a new
2547 // entry to the front of its list, because it now roots a new CG.
2548 typedef struct kmp_cg_root {
2549  kmp_info_p *cg_root; // "root" thread for a contention group
2550  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2551  // thread_limit clause for teams primary threads
2552  kmp_int32 cg_thread_limit;
2553  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2554  struct kmp_cg_root *up; // pointer to higher level CG root in list
2555 } kmp_cg_root_t;
2556 
2557 // OpenMP thread data structures
2558 
2559 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2560  /* Start with the readonly data which is cache aligned and padded. This is
2561  written before the thread starts working by the primary thread. Uber
2562  masters may update themselves later. Usage does not consider serialized
2563  regions. */
2564  kmp_desc_t th_info;
2565  kmp_team_p *th_team; /* team we belong to */
2566  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2567  kmp_info_p *th_next_pool; /* next available thread in the pool */
2568  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2569  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2570 
2571  /* The following are cached from the team info structure */
2572  /* TODO use these in more places as determined to be needed via profiling */
2573  int th_team_nproc; /* number of threads in a team */
2574  kmp_info_p *th_team_master; /* the team's primary thread */
2575  int th_team_serialized; /* team is serialized */
2576  microtask_t th_teams_microtask; /* save entry address for teams construct */
2577  int th_teams_level; /* save initial level of teams construct */
2578 /* it is 0 on device but may be any on host */
2579 
2580 /* The blocktime info is copied from the team struct to the thread struct */
2581 /* at the start of a barrier, and the values stored in the team are used */
2582 /* at points in the code where the team struct is no longer guaranteed */
2583 /* to exist (from the POV of worker threads). */
2584 #if KMP_USE_MONITOR
2585  int th_team_bt_intervals;
2586  int th_team_bt_set;
2587 #else
2588  kmp_uint64 th_team_bt_intervals;
2589 #endif
2590 
2591 #if KMP_AFFINITY_SUPPORTED
2592  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2593 #endif
2594  omp_allocator_handle_t th_def_allocator; /* default allocator */
2595  /* The data set by the primary thread at reinit, then R/W by the worker */
2596  KMP_ALIGN_CACHE int
2597  th_set_nproc; /* if > 0, then only use this request for the next fork */
2598 #if KMP_NESTED_HOT_TEAMS
2599  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2600 #endif
2601  kmp_proc_bind_t
2602  th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2603  kmp_teams_size_t
2604  th_teams_size; /* number of teams/threads in teams construct */
2605 #if KMP_AFFINITY_SUPPORTED
2606  int th_current_place; /* place currently bound to */
2607  int th_new_place; /* place to bind to in par reg */
2608  int th_first_place; /* first place in partition */
2609  int th_last_place; /* last place in partition */
2610 #endif
2611  int th_prev_level; /* previous level for affinity format */
2612  int th_prev_num_threads; /* previous num_threads for affinity format */
2613 #if USE_ITT_BUILD
2614  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2615  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2616  kmp_uint64 th_frame_time; /* frame timestamp */
2617 #endif /* USE_ITT_BUILD */
2618  kmp_local_t th_local;
2619  struct private_common *th_pri_head;
2620 
2621  /* Now the data only used by the worker (after initial allocation) */
2622  /* TODO the first serial team should actually be stored in the info_t
2623  structure. this will help reduce initial allocation overhead */
2624  KMP_ALIGN_CACHE kmp_team_p
2625  *th_serial_team; /*serialized team held in reserve*/
2626 
2627 #if OMPT_SUPPORT
2628  ompt_thread_info_t ompt_thread_info;
2629 #endif
2630 
2631  /* The following are also read by the primary thread during reinit */
2632  struct common_table *th_pri_common;
2633 
2634  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2635  /* while awaiting queuing lock acquire */
2636 
2637  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2638 
2639  ident_t *th_ident;
2640  unsigned th_x; // Random number generator data
2641  unsigned th_a; // Random number generator data
2642 
2643  /* Tasking-related data for the thread */
2644  kmp_task_team_t *th_task_team; // Task team struct
2645  kmp_taskdata_t *th_current_task; // Innermost Task being executed
2646  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2647  kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2648  // at nested levels
2649  kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2650  kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2651  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2652  // tasking, thus safe to reap
2653 
2654  /* More stuff for keeping track of active/sleeping threads (this part is
2655  written by the worker thread) */
2656  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2657  int th_active; // ! sleeping; 32 bits for TCR/TCW
2658  struct cons_header *th_cons; // used for consistency check
2659 #if KMP_USE_HIER_SCHED
2660  // used for hierarchical scheduling
2661  kmp_hier_private_bdata_t *th_hier_bar_data;
2662 #endif
2663 
2664  /* Add the syncronizing data which is cache aligned and padded. */
2665  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2666 
2667  KMP_ALIGN_CACHE volatile kmp_int32
2668  th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2669 
2670 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2671 #define NUM_LISTS 4
2672  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2673 // allocation routines
2674 #endif
2675 
2676 #if KMP_OS_WINDOWS
2677  kmp_win32_cond_t th_suspend_cv;
2678  kmp_win32_mutex_t th_suspend_mx;
2679  std::atomic<int> th_suspend_init;
2680 #endif
2681 #if KMP_OS_UNIX
2682  kmp_cond_align_t th_suspend_cv;
2683  kmp_mutex_align_t th_suspend_mx;
2684  std::atomic<int> th_suspend_init_count;
2685 #endif
2686 
2687 #if USE_ITT_BUILD
2688  kmp_itt_mark_t th_itt_mark_single;
2689 // alignment ???
2690 #endif /* USE_ITT_BUILD */
2691 #if KMP_STATS_ENABLED
2692  kmp_stats_list *th_stats;
2693 #endif
2694 #if KMP_OS_UNIX
2695  std::atomic<bool> th_blocking;
2696 #endif
2697  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2698 } kmp_base_info_t;
2699 
2700 typedef union KMP_ALIGN_CACHE kmp_info {
2701  double th_align; /* use worst case alignment */
2702  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2703  kmp_base_info_t th;
2704 } kmp_info_t;
2705 
2706 // OpenMP thread team data structures
2707 
2708 typedef struct kmp_base_data {
2709  volatile kmp_uint32 t_value;
2710 } kmp_base_data_t;
2711 
2712 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2713  double dt_align; /* use worst case alignment */
2714  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2715  kmp_base_data_t dt;
2716 } kmp_sleep_team_t;
2717 
2718 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2719  double dt_align; /* use worst case alignment */
2720  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2721  kmp_base_data_t dt;
2722 } kmp_ordered_team_t;
2723 
2724 typedef int (*launch_t)(int gtid);
2725 
2726 /* Minimum number of ARGV entries to malloc if necessary */
2727 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2728 
2729 // Set up how many argv pointers will fit in cache lines containing
2730 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2731 // larger value for more space between the primary write/worker read section and
2732 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2733 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2734 #define KMP_INLINE_ARGV_BYTES \
2735  (4 * CACHE_LINE - \
2736  ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2737  sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2738  CACHE_LINE))
2739 #else
2740 #define KMP_INLINE_ARGV_BYTES \
2741  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2742 #endif
2743 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2744 
2745 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2746  // Synchronization Data
2747  // ---------------------------------------------------------------------------
2748  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2749  kmp_balign_team_t t_bar[bs_last_barrier];
2750  std::atomic<int> t_construct; // count of single directive encountered by team
2751  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2752 
2753  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2754  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2755  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2756 
2757  // Primary thread only
2758  // ---------------------------------------------------------------------------
2759  KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2760  int t_master_this_cons; // "this_construct" single counter of primary thread
2761  // in parent team
2762  ident_t *t_ident; // if volatile, have to change too much other crud to
2763  // volatile too
2764  kmp_team_p *t_parent; // parent team
2765  kmp_team_p *t_next_pool; // next free team in the team pool
2766  kmp_disp_t *t_dispatch; // thread's dispatch data
2767  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2768  kmp_proc_bind_t t_proc_bind; // bind type for par region
2769 #if USE_ITT_BUILD
2770  kmp_uint64 t_region_time; // region begin timestamp
2771 #endif /* USE_ITT_BUILD */
2772 
2773  // Primary thread write, workers read
2774  // --------------------------------------------------------------------------
2775  KMP_ALIGN_CACHE void **t_argv;
2776  int t_argc;
2777  int t_nproc; // number of threads in team
2778  microtask_t t_pkfn;
2779  launch_t t_invoke; // procedure to launch the microtask
2780 
2781 #if OMPT_SUPPORT
2782  ompt_team_info_t ompt_team_info;
2783  ompt_lw_taskteam_t *ompt_serialized_team_info;
2784 #endif
2785 
2786 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2787  kmp_int8 t_fp_control_saved;
2788  kmp_int8 t_pad2b;
2789  kmp_int16 t_x87_fpu_control_word; // FP control regs
2790  kmp_uint32 t_mxcsr;
2791 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2792 
2793  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2794 
2795  KMP_ALIGN_CACHE kmp_info_t **t_threads;
2796  kmp_taskdata_t
2797  *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2798  int t_level; // nested parallel level
2799 
2800  KMP_ALIGN_CACHE int t_max_argc;
2801  int t_max_nproc; // max threads this team can handle (dynamically expandable)
2802  int t_serialized; // levels deep of serialized teams
2803  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2804  int t_id; // team's id, assigned by debugger.
2805  int t_active_level; // nested active parallel level
2806  kmp_r_sched_t t_sched; // run-time schedule for the team
2807 #if KMP_AFFINITY_SUPPORTED
2808  int t_first_place; // first & last place in parent thread's partition.
2809  int t_last_place; // Restore these values to primary thread after par region.
2810 #endif // KMP_AFFINITY_SUPPORTED
2811  int t_display_affinity;
2812  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2813  // omp_set_num_threads() call
2814  omp_allocator_handle_t t_def_allocator; /* default allocator */
2815 
2816 // Read/write by workers as well
2817 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2818  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2819  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2820  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2821  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2822  char dummy_padding[1024];
2823 #endif
2824  // Internal control stack for additional nested teams.
2825  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2826  // for SERIALIZED teams nested 2 or more levels deep
2827  // typed flag to store request state of cancellation
2828  std::atomic<kmp_int32> t_cancel_request;
2829  int t_master_active; // save on fork, restore on join
2830  void *t_copypriv_data; // team specific pointer to copyprivate data array
2831 #if KMP_OS_WINDOWS
2832  std::atomic<kmp_uint32> t_copyin_counter;
2833 #endif
2834 #if USE_ITT_BUILD
2835  void *t_stack_id; // team specific stack stitching id (for ittnotify)
2836 #endif /* USE_ITT_BUILD */
2837 } kmp_base_team_t;
2838 
2839 union KMP_ALIGN_CACHE kmp_team {
2840  kmp_base_team_t t;
2841  double t_align; /* use worst case alignment */
2842  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2843 };
2844 
2845 typedef union KMP_ALIGN_CACHE kmp_time_global {
2846  double dt_align; /* use worst case alignment */
2847  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2848  kmp_base_data_t dt;
2849 } kmp_time_global_t;
2850 
2851 typedef struct kmp_base_global {
2852  /* cache-aligned */
2853  kmp_time_global_t g_time;
2854 
2855  /* non cache-aligned */
2856  volatile int g_abort;
2857  volatile int g_done;
2858 
2859  int g_dynamic;
2860  enum dynamic_mode g_dynamic_mode;
2861 } kmp_base_global_t;
2862 
2863 typedef union KMP_ALIGN_CACHE kmp_global {
2864  kmp_base_global_t g;
2865  double g_align; /* use worst case alignment */
2866  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2867 } kmp_global_t;
2868 
2869 typedef struct kmp_base_root {
2870  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2871  // (r_in_parallel>= 0)
2872  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2873  // the synch overhead or keeping r_active
2874  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2875  // keeps a count of active parallel regions per root
2876  std::atomic<int> r_in_parallel;
2877  // GEH: This is misnamed, should be r_active_levels
2878  kmp_team_t *r_root_team;
2879  kmp_team_t *r_hot_team;
2880  kmp_info_t *r_uber_thread;
2881  kmp_lock_t r_begin_lock;
2882  volatile int r_begin;
2883  int r_blocktime; /* blocktime for this root and descendants */
2884 } kmp_base_root_t;
2885 
2886 typedef union KMP_ALIGN_CACHE kmp_root {
2887  kmp_base_root_t r;
2888  double r_align; /* use worst case alignment */
2889  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2890 } kmp_root_t;
2891 
2892 struct fortran_inx_info {
2893  kmp_int32 data;
2894 };
2895 
2896 /* ------------------------------------------------------------------------ */
2897 
2898 extern int __kmp_settings;
2899 extern int __kmp_duplicate_library_ok;
2900 #if USE_ITT_BUILD
2901 extern int __kmp_forkjoin_frames;
2902 extern int __kmp_forkjoin_frames_mode;
2903 #endif
2904 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2905 extern int __kmp_determ_red;
2906 
2907 #ifdef KMP_DEBUG
2908 extern int kmp_a_debug;
2909 extern int kmp_b_debug;
2910 extern int kmp_c_debug;
2911 extern int kmp_d_debug;
2912 extern int kmp_e_debug;
2913 extern int kmp_f_debug;
2914 #endif /* KMP_DEBUG */
2915 
2916 /* For debug information logging using rotating buffer */
2917 #define KMP_DEBUG_BUF_LINES_INIT 512
2918 #define KMP_DEBUG_BUF_LINES_MIN 1
2919 
2920 #define KMP_DEBUG_BUF_CHARS_INIT 128
2921 #define KMP_DEBUG_BUF_CHARS_MIN 2
2922 
2923 extern int
2924  __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2925 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2926 extern int
2927  __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2928 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2929  entry pointer */
2930 
2931 extern char *__kmp_debug_buffer; /* Debug buffer itself */
2932 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2933  printed in buffer so far */
2934 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2935  recommended in warnings */
2936 /* end rotating debug buffer */
2937 
2938 #ifdef KMP_DEBUG
2939 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2940 
2941 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
2942 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2943 #define KMP_PAR_RANGE_FILENAME_LEN 1024
2944 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2945 extern int __kmp_par_range_lb;
2946 extern int __kmp_par_range_ub;
2947 #endif
2948 
2949 /* For printing out dynamic storage map for threads and teams */
2950 extern int
2951  __kmp_storage_map; /* True means print storage map for threads and teams */
2952 extern int __kmp_storage_map_verbose; /* True means storage map includes
2953  placement info */
2954 extern int __kmp_storage_map_verbose_specified;
2955 
2956 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2957 extern kmp_cpuinfo_t __kmp_cpuinfo;
2958 #endif
2959 
2960 extern volatile int __kmp_init_serial;
2961 extern volatile int __kmp_init_gtid;
2962 extern volatile int __kmp_init_common;
2963 extern volatile int __kmp_init_middle;
2964 extern volatile int __kmp_init_parallel;
2965 #if KMP_USE_MONITOR
2966 extern volatile int __kmp_init_monitor;
2967 #endif
2968 extern volatile int __kmp_init_user_locks;
2969 extern volatile int __kmp_init_hidden_helper_threads;
2970 extern int __kmp_init_counter;
2971 extern int __kmp_root_counter;
2972 extern int __kmp_version;
2973 
2974 /* list of address of allocated caches for commons */
2975 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
2976 
2977 /* Barrier algorithm types and options */
2978 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
2979 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
2980 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
2981 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
2982 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
2983 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
2984 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
2985 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
2986 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
2987 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
2988 extern char const *__kmp_barrier_type_name[bs_last_barrier];
2989 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
2990 
2991 /* Global Locks */
2992 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
2993 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
2994 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
2995 extern kmp_bootstrap_lock_t
2996  __kmp_exit_lock; /* exit() is not always thread-safe */
2997 #if KMP_USE_MONITOR
2998 extern kmp_bootstrap_lock_t
2999  __kmp_monitor_lock; /* control monitor thread creation */
3000 #endif
3001 extern kmp_bootstrap_lock_t
3002  __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3003  __kmp_threads expansion to co-exist */
3004 
3005 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3006 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3007 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3008 
3009 extern enum library_type __kmp_library;
3010 
3011 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3012 extern enum sched_type __kmp_static; /* default static scheduling method */
3013 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3014 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3015 extern int __kmp_chunk; /* default runtime chunk size */
3016 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3017 
3018 extern size_t __kmp_stksize; /* stack size per thread */
3019 #if KMP_USE_MONITOR
3020 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3021 #endif
3022 extern size_t __kmp_stkoffset; /* stack offset per thread */
3023 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3024 
3025 extern size_t
3026  __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3027 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3028 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3029 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3030 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3031 extern int __kmp_generate_warnings; /* should we issue warnings? */
3032 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3033 
3034 #ifdef DEBUG_SUSPEND
3035 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3036 #endif
3037 
3038 extern kmp_int32 __kmp_use_yield;
3039 extern kmp_int32 __kmp_use_yield_exp_set;
3040 extern kmp_uint32 __kmp_yield_init;
3041 extern kmp_uint32 __kmp_yield_next;
3042 
3043 /* ------------------------------------------------------------------------- */
3044 extern int __kmp_allThreadsSpecified;
3045 
3046 extern size_t __kmp_align_alloc;
3047 /* following data protected by initialization routines */
3048 extern int __kmp_xproc; /* number of processors in the system */
3049 extern int __kmp_avail_proc; /* number of processors available to the process */
3050 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3051 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3052 // maximum total number of concurrently-existing threads on device
3053 extern int __kmp_max_nth;
3054 // maximum total number of concurrently-existing threads in a contention group
3055 extern int __kmp_cg_max_nth;
3056 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3057 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3058  __kmp_root */
3059 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3060  region a la OMP_NUM_THREADS */
3061 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3062  initialization */
3063 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3064  used (fixed) */
3065 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3066  (__kmpc_threadprivate_cached()) */
3067 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3068  blocking (env setting) */
3069 #if KMP_USE_MONITOR
3070 extern int
3071  __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3072 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3073  blocking */
3074 #endif
3075 #ifdef KMP_ADJUST_BLOCKTIME
3076 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3077 #endif /* KMP_ADJUST_BLOCKTIME */
3078 #ifdef KMP_DFLT_NTH_CORES
3079 extern int __kmp_ncores; /* Total number of cores for threads placement */
3080 #endif
3081 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3082 extern int __kmp_abort_delay;
3083 
3084 extern int __kmp_need_register_atfork_specified;
3085 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3086  to install fork handler */
3087 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3088  0 - not set, will be set at runtime
3089  1 - using stack search
3090  2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3091  X*) or TlsGetValue(Windows* OS))
3092  3 - static TLS (__declspec(thread) __kmp_gtid),
3093  Linux* OS .so only. */
3094 extern int
3095  __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3096 #ifdef KMP_TDATA_GTID
3097 extern KMP_THREAD_LOCAL int __kmp_gtid;
3098 #endif
3099 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3100 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3101 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3102 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3103 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3104 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3105 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3106 
3107 // max_active_levels for nested parallelism enabled by default via
3108 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3109 extern int __kmp_dflt_max_active_levels;
3110 // Indicates whether value of __kmp_dflt_max_active_levels was already
3111 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3112 extern bool __kmp_dflt_max_active_levels_set;
3113 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3114  concurrent execution per team */
3115 #if KMP_NESTED_HOT_TEAMS
3116 extern int __kmp_hot_teams_mode;
3117 extern int __kmp_hot_teams_max_level;
3118 #endif
3119 
3120 #if KMP_OS_LINUX
3121 extern enum clock_function_type __kmp_clock_function;
3122 extern int __kmp_clock_function_param;
3123 #endif /* KMP_OS_LINUX */
3124 
3125 #if KMP_MIC_SUPPORTED
3126 extern enum mic_type __kmp_mic_type;
3127 #endif
3128 
3129 #ifdef USE_LOAD_BALANCE
3130 extern double __kmp_load_balance_interval; // load balance algorithm interval
3131 #endif /* USE_LOAD_BALANCE */
3132 
3133 // OpenMP 3.1 - Nested num threads array
3134 typedef struct kmp_nested_nthreads_t {
3135  int *nth;
3136  int size;
3137  int used;
3138 } kmp_nested_nthreads_t;
3139 
3140 extern kmp_nested_nthreads_t __kmp_nested_nth;
3141 
3142 #if KMP_USE_ADAPTIVE_LOCKS
3143 
3144 // Parameters for the speculative lock backoff system.
3145 struct kmp_adaptive_backoff_params_t {
3146  // Number of soft retries before it counts as a hard retry.
3147  kmp_uint32 max_soft_retries;
3148  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3149  // the right
3150  kmp_uint32 max_badness;
3151 };
3152 
3153 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3154 
3155 #if KMP_DEBUG_ADAPTIVE_LOCKS
3156 extern const char *__kmp_speculative_statsfile;
3157 #endif
3158 
3159 #endif // KMP_USE_ADAPTIVE_LOCKS
3160 
3161 extern int __kmp_display_env; /* TRUE or FALSE */
3162 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3163 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3164 extern int __kmp_nteams;
3165 extern int __kmp_teams_thread_limit;
3166 
3167 /* ------------------------------------------------------------------------- */
3168 
3169 /* the following are protected by the fork/join lock */
3170 /* write: lock read: anytime */
3171 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3172 /* read/write: lock */
3173 extern volatile kmp_team_t *__kmp_team_pool;
3174 extern volatile kmp_info_t *__kmp_thread_pool;
3175 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3176 
3177 // total num threads reachable from some root thread including all root threads
3178 extern volatile int __kmp_nth;
3179 /* total number of threads reachable from some root thread including all root
3180  threads, and those in the thread pool */
3181 extern volatile int __kmp_all_nth;
3182 extern std::atomic<int> __kmp_thread_pool_active_nth;
3183 
3184 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3185 /* end data protected by fork/join lock */
3186 /* ------------------------------------------------------------------------- */
3187 
3188 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3189 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3190 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3191 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3192 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3193 
3194 // AT: Which way is correct?
3195 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3196 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3197 #define __kmp_get_team_num_threads(gtid) \
3198  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3199 
3200 static inline bool KMP_UBER_GTID(int gtid) {
3201  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3202  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3203  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3204  __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3205 }
3206 
3207 static inline int __kmp_tid_from_gtid(int gtid) {
3208  KMP_DEBUG_ASSERT(gtid >= 0);
3209  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3210 }
3211 
3212 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3213  KMP_DEBUG_ASSERT(tid >= 0 && team);
3214  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3215 }
3216 
3217 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3218  KMP_DEBUG_ASSERT(thr);
3219  return thr->th.th_info.ds.ds_gtid;
3220 }
3221 
3222 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3223  KMP_DEBUG_ASSERT(gtid >= 0);
3224  return __kmp_threads[gtid];
3225 }
3226 
3227 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3228  KMP_DEBUG_ASSERT(gtid >= 0);
3229  return __kmp_threads[gtid]->th.th_team;
3230 }
3231 
3232 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3233  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3234  KMP_FATAL(ThreadIdentInvalid);
3235 }
3236 
3237 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3238 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3239 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3240 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3241 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3242 #endif
3243 
3244 /* ------------------------------------------------------------------------- */
3245 
3246 extern kmp_global_t __kmp_global; /* global status */
3247 
3248 extern kmp_info_t __kmp_monitor;
3249 // For Debugging Support Library
3250 extern std::atomic<kmp_int32> __kmp_team_counter;
3251 // For Debugging Support Library
3252 extern std::atomic<kmp_int32> __kmp_task_counter;
3253 
3254 #if USE_DEBUGGER
3255 #define _KMP_GEN_ID(counter) \
3256  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3257 #else
3258 #define _KMP_GEN_ID(counter) (~0)
3259 #endif /* USE_DEBUGGER */
3260 
3261 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3262 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3263 
3264 /* ------------------------------------------------------------------------ */
3265 
3266 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3267  size_t size, char const *format, ...);
3268 
3269 extern void __kmp_serial_initialize(void);
3270 extern void __kmp_middle_initialize(void);
3271 extern void __kmp_parallel_initialize(void);
3272 
3273 extern void __kmp_internal_begin(void);
3274 extern void __kmp_internal_end_library(int gtid);
3275 extern void __kmp_internal_end_thread(int gtid);
3276 extern void __kmp_internal_end_atexit(void);
3277 extern void __kmp_internal_end_dtor(void);
3278 extern void __kmp_internal_end_dest(void *);
3279 
3280 extern int __kmp_register_root(int initial_thread);
3281 extern void __kmp_unregister_root(int gtid);
3282 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3283 
3284 extern int __kmp_ignore_mppbeg(void);
3285 extern int __kmp_ignore_mppend(void);
3286 
3287 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3288 extern void __kmp_exit_single(int gtid);
3289 
3290 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3291 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3292 
3293 #ifdef USE_LOAD_BALANCE
3294 extern int __kmp_get_load_balance(int);
3295 #endif
3296 
3297 extern int __kmp_get_global_thread_id(void);
3298 extern int __kmp_get_global_thread_id_reg(void);
3299 extern void __kmp_exit_thread(int exit_status);
3300 extern void __kmp_abort(char const *format, ...);
3301 extern void __kmp_abort_thread(void);
3302 KMP_NORETURN extern void __kmp_abort_process(void);
3303 extern void __kmp_warn(char const *format, ...);
3304 
3305 extern void __kmp_set_num_threads(int new_nth, int gtid);
3306 
3307 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3308 // registered.
3309 static inline kmp_info_t *__kmp_entry_thread() {
3310  int gtid = __kmp_entry_gtid();
3311 
3312  return __kmp_threads[gtid];
3313 }
3314 
3315 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3316 extern int __kmp_get_max_active_levels(int gtid);
3317 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3318 extern int __kmp_get_team_size(int gtid, int level);
3319 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3320 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3321 
3322 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3323 extern void __kmp_init_random(kmp_info_t *thread);
3324 
3325 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3326 extern void __kmp_adjust_num_threads(int new_nproc);
3327 extern void __kmp_check_stksize(size_t *val);
3328 
3329 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3330 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3331 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3332 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3333 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3334 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3335 
3336 #if USE_FAST_MEMORY
3337 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3338  size_t size KMP_SRC_LOC_DECL);
3339 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3340 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3341 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3342 #define __kmp_fast_allocate(this_thr, size) \
3343  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3344 #define __kmp_fast_free(this_thr, ptr) \
3345  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3346 #endif
3347 
3348 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3349 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3350  size_t elsize KMP_SRC_LOC_DECL);
3351 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3352  size_t size KMP_SRC_LOC_DECL);
3353 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3354 #define __kmp_thread_malloc(th, size) \
3355  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3356 #define __kmp_thread_calloc(th, nelem, elsize) \
3357  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3358 #define __kmp_thread_realloc(th, ptr, size) \
3359  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3360 #define __kmp_thread_free(th, ptr) \
3361  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3362 
3363 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3364 #define KMP_INTERNAL_FREE(p) free(p)
3365 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3366 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3367 
3368 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3369 
3370 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3371  kmp_proc_bind_t proc_bind);
3372 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3373  int num_threads);
3374 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3375  int num_teams_ub, int num_threads);
3376 
3377 extern void __kmp_yield();
3378 
3379 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3380  enum sched_type schedule, kmp_int32 lb,
3381  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3382 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3383  enum sched_type schedule, kmp_uint32 lb,
3384  kmp_uint32 ub, kmp_int32 st,
3385  kmp_int32 chunk);
3386 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3387  enum sched_type schedule, kmp_int64 lb,
3388  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3389 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3390  enum sched_type schedule, kmp_uint64 lb,
3391  kmp_uint64 ub, kmp_int64 st,
3392  kmp_int64 chunk);
3393 
3394 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3395  kmp_int32 *p_last, kmp_int32 *p_lb,
3396  kmp_int32 *p_ub, kmp_int32 *p_st);
3397 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3398  kmp_int32 *p_last, kmp_uint32 *p_lb,
3399  kmp_uint32 *p_ub, kmp_int32 *p_st);
3400 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3401  kmp_int32 *p_last, kmp_int64 *p_lb,
3402  kmp_int64 *p_ub, kmp_int64 *p_st);
3403 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3404  kmp_int32 *p_last, kmp_uint64 *p_lb,
3405  kmp_uint64 *p_ub, kmp_int64 *p_st);
3406 
3407 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3408 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3409 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3410 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3411 
3412 #ifdef KMP_GOMP_COMPAT
3413 
3414 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3415  enum sched_type schedule, kmp_int32 lb,
3416  kmp_int32 ub, kmp_int32 st,
3417  kmp_int32 chunk, int push_ws);
3418 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3419  enum sched_type schedule, kmp_uint32 lb,
3420  kmp_uint32 ub, kmp_int32 st,
3421  kmp_int32 chunk, int push_ws);
3422 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3423  enum sched_type schedule, kmp_int64 lb,
3424  kmp_int64 ub, kmp_int64 st,
3425  kmp_int64 chunk, int push_ws);
3426 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3427  enum sched_type schedule, kmp_uint64 lb,
3428  kmp_uint64 ub, kmp_int64 st,
3429  kmp_int64 chunk, int push_ws);
3430 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3431 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3432 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3433 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3434 
3435 #endif /* KMP_GOMP_COMPAT */
3436 
3437 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3438 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3439 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3440 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3441 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3442 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3443  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3444  void *obj);
3445 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3446  kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3447 
3448 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3449  int final_spin
3450 #if USE_ITT_BUILD
3451  ,
3452  void *itt_sync_obj
3453 #endif
3454 );
3455 extern void __kmp_release_64(kmp_flag_64<> *flag);
3456 
3457 extern void __kmp_infinite_loop(void);
3458 
3459 extern void __kmp_cleanup(void);
3460 
3461 #if KMP_HANDLE_SIGNALS
3462 extern int __kmp_handle_signals;
3463 extern void __kmp_install_signals(int parallel_init);
3464 extern void __kmp_remove_signals(void);
3465 #endif
3466 
3467 extern void __kmp_clear_system_time(void);
3468 extern void __kmp_read_system_time(double *delta);
3469 
3470 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3471 
3472 extern void __kmp_expand_host_name(char *buffer, size_t size);
3473 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3474 
3475 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3476 extern void
3477 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3478 #endif
3479 
3480 extern void
3481 __kmp_runtime_initialize(void); /* machine specific initialization */
3482 extern void __kmp_runtime_destroy(void);
3483 
3484 #if KMP_AFFINITY_SUPPORTED
3485 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3486  kmp_affin_mask_t *mask);
3487 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3488  kmp_affin_mask_t *mask);
3489 extern void __kmp_affinity_initialize(void);
3490 extern void __kmp_affinity_uninitialize(void);
3491 extern void __kmp_affinity_set_init_mask(
3492  int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3493 extern void __kmp_affinity_set_place(int gtid);
3494 extern void __kmp_affinity_determine_capable(const char *env_var);
3495 extern int __kmp_aux_set_affinity(void **mask);
3496 extern int __kmp_aux_get_affinity(void **mask);
3497 extern int __kmp_aux_get_affinity_max_proc();
3498 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3499 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3500 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3501 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3502 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3503 extern int kmp_set_thread_affinity_mask_initial(void);
3504 #endif
3505 #endif /* KMP_AFFINITY_SUPPORTED */
3506 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3507 // format string is for affinity, so platforms that do not support
3508 // affinity can still use the other fields, e.g., %n for num_threads
3509 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3510  kmp_str_buf_t *buffer);
3511 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3512 
3513 extern void __kmp_cleanup_hierarchy();
3514 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3515 
3516 #if KMP_USE_FUTEX
3517 
3518 extern int __kmp_futex_determine_capable(void);
3519 
3520 #endif // KMP_USE_FUTEX
3521 
3522 extern void __kmp_gtid_set_specific(int gtid);
3523 extern int __kmp_gtid_get_specific(void);
3524 
3525 extern double __kmp_read_cpu_time(void);
3526 
3527 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3528 
3529 #if KMP_USE_MONITOR
3530 extern void __kmp_create_monitor(kmp_info_t *th);
3531 #endif
3532 
3533 extern void *__kmp_launch_thread(kmp_info_t *thr);
3534 
3535 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3536 
3537 #if KMP_OS_WINDOWS
3538 extern int __kmp_still_running(kmp_info_t *th);
3539 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3540 extern void __kmp_free_handle(kmp_thread_t tHandle);
3541 #endif
3542 
3543 #if KMP_USE_MONITOR
3544 extern void __kmp_reap_monitor(kmp_info_t *th);
3545 #endif
3546 extern void __kmp_reap_worker(kmp_info_t *th);
3547 extern void __kmp_terminate_thread(int gtid);
3548 
3549 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3550 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3551 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3552 
3553 extern void __kmp_elapsed(double *);
3554 extern void __kmp_elapsed_tick(double *);
3555 
3556 extern void __kmp_enable(int old_state);
3557 extern void __kmp_disable(int *old_state);
3558 
3559 extern void __kmp_thread_sleep(int millis);
3560 
3561 extern void __kmp_common_initialize(void);
3562 extern void __kmp_common_destroy(void);
3563 extern void __kmp_common_destroy_gtid(int gtid);
3564 
3565 #if KMP_OS_UNIX
3566 extern void __kmp_register_atfork(void);
3567 #endif
3568 extern void __kmp_suspend_initialize(void);
3569 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3570 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3571 
3572 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3573  int tid);
3574 extern kmp_team_t *
3575 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3576 #if OMPT_SUPPORT
3577  ompt_data_t ompt_parallel_data,
3578 #endif
3579  kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3580  int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3581 extern void __kmp_free_thread(kmp_info_t *);
3582 extern void __kmp_free_team(kmp_root_t *,
3583  kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3584 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3585 
3586 /* ------------------------------------------------------------------------ */
3587 
3588 extern void __kmp_initialize_bget(kmp_info_t *th);
3589 extern void __kmp_finalize_bget(kmp_info_t *th);
3590 
3591 KMP_EXPORT void *kmpc_malloc(size_t size);
3592 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3593 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3594 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3595 KMP_EXPORT void kmpc_free(void *ptr);
3596 
3597 /* declarations for internal use */
3598 
3599 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3600  size_t reduce_size, void *reduce_data,
3601  void (*reduce)(void *, void *));
3602 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3603 extern int __kmp_barrier_gomp_cancel(int gtid);
3604 
3609 enum fork_context_e {
3610  fork_context_gnu,
3612  fork_context_intel,
3613  fork_context_last
3614 };
3615 extern int __kmp_fork_call(ident_t *loc, int gtid,
3616  enum fork_context_e fork_context, kmp_int32 argc,
3617  microtask_t microtask, launch_t invoker,
3618  kmp_va_list ap);
3619 
3620 extern void __kmp_join_call(ident_t *loc, int gtid
3621 #if OMPT_SUPPORT
3622  ,
3623  enum fork_context_e fork_context
3624 #endif
3625  ,
3626  int exit_teams = 0);
3627 
3628 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3629 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3630 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3631 extern int __kmp_invoke_task_func(int gtid);
3632 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3633  kmp_info_t *this_thr,
3634  kmp_team_t *team);
3635 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3636  kmp_info_t *this_thr,
3637  kmp_team_t *team);
3638 
3639 // should never have been exported
3640 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3641 extern int __kmp_invoke_teams_master(int gtid);
3642 extern void __kmp_teams_master(int gtid);
3643 extern int __kmp_aux_get_team_num();
3644 extern int __kmp_aux_get_num_teams();
3645 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3646 extern void __kmp_user_set_library(enum library_type arg);
3647 extern void __kmp_aux_set_library(enum library_type arg);
3648 extern void __kmp_aux_set_stacksize(size_t arg);
3649 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3650 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3651 
3652 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3653 void kmpc_set_blocktime(int arg);
3654 void ompc_set_nested(int flag);
3655 void ompc_set_dynamic(int flag);
3656 void ompc_set_num_threads(int arg);
3657 
3658 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3659  kmp_team_t *team, int tid);
3660 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3661 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3662  kmp_tasking_flags_t *flags,
3663  size_t sizeof_kmp_task_t,
3664  size_t sizeof_shareds,
3665  kmp_routine_entry_t task_entry);
3666 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3667  kmp_team_t *team, int tid,
3668  int set_curr_task);
3669 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3670 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3671 
3672 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3673  int gtid,
3674  kmp_task_t *task);
3675 extern void __kmp_fulfill_event(kmp_event_t *event);
3676 
3677 extern void __kmp_free_task_team(kmp_info_t *thread,
3678  kmp_task_team_t *task_team);
3679 extern void __kmp_reap_task_teams(void);
3680 extern void __kmp_wait_to_unref_task_teams(void);
3681 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3682  int always);
3683 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3684 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3685 #if USE_ITT_BUILD
3686  ,
3687  void *itt_sync_obj
3688 #endif /* USE_ITT_BUILD */
3689  ,
3690  int wait = 1);
3691 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3692  int gtid);
3693 
3694 extern int __kmp_is_address_mapped(void *addr);
3695 extern kmp_uint64 __kmp_hardware_timestamp(void);
3696 
3697 #if KMP_OS_UNIX
3698 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3699 #endif
3700 
3701 /* ------------------------------------------------------------------------ */
3702 //
3703 // Assembly routines that have no compiler intrinsic replacement
3704 //
3705 
3706 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3707  void *argv[]
3708 #if OMPT_SUPPORT
3709  ,
3710  void **exit_frame_ptr
3711 #endif
3712 );
3713 
3714 /* ------------------------------------------------------------------------ */
3715 
3716 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3717 KMP_EXPORT void __kmpc_end(ident_t *);
3718 
3719 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3720  kmpc_ctor_vec ctor,
3721  kmpc_cctor_vec cctor,
3722  kmpc_dtor_vec dtor,
3723  size_t vector_length);
3724 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3725  kmpc_ctor ctor, kmpc_cctor cctor,
3726  kmpc_dtor dtor);
3727 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3728  void *data, size_t size);
3729 
3730 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3731 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3732 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3733 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3734 
3735 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3736 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3737  kmpc_micro microtask, ...);
3738 
3739 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3740 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3741 
3742 KMP_EXPORT void __kmpc_flush(ident_t *);
3743 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3744 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3745 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3746 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
3747  kmp_int32 filter);
3748 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
3749 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3750 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3751 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3752  kmp_critical_name *);
3753 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3754  kmp_critical_name *);
3755 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3756  kmp_critical_name *, uint32_t hint);
3757 
3758 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3759 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3760 
3761 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3762  kmp_int32 global_tid);
3763 
3764 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3765 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3766 
3767 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3768  kmp_int32 schedtype, kmp_int32 *plastiter,
3769  kmp_int *plower, kmp_int *pupper,
3770  kmp_int *pstride, kmp_int incr,
3771  kmp_int chunk);
3772 
3773 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3774 
3775 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3776  size_t cpy_size, void *cpy_data,
3777  void (*cpy_func)(void *, void *),
3778  kmp_int32 didit);
3779 
3780 extern void KMPC_SET_NUM_THREADS(int arg);
3781 extern void KMPC_SET_DYNAMIC(int flag);
3782 extern void KMPC_SET_NESTED(int flag);
3783 
3784 /* OMP 3.0 tasking interface routines */
3785 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3786  kmp_task_t *new_task);
3787 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3788  kmp_int32 flags,
3789  size_t sizeof_kmp_task_t,
3790  size_t sizeof_shareds,
3791  kmp_routine_entry_t task_entry);
3792 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
3793  ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
3794  size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
3795 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3796  kmp_task_t *task);
3797 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3798  kmp_task_t *task);
3799 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3800  kmp_task_t *new_task);
3801 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3802 
3803 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3804  int end_part);
3805 
3806 #if TASK_UNUSED
3807 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3808 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3809  kmp_task_t *task);
3810 #endif // TASK_UNUSED
3811 
3812 /* ------------------------------------------------------------------------ */
3813 
3814 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3815 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3816 
3817 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3818  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3819  kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3820  kmp_depend_info_t *noalias_dep_list);
3821 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3822  kmp_int32 ndeps,
3823  kmp_depend_info_t *dep_list,
3824  kmp_int32 ndeps_noalias,
3825  kmp_depend_info_t *noalias_dep_list);
3826 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3827  bool serialize_immediate);
3828 
3829 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3830  kmp_int32 cncl_kind);
3831 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3832  kmp_int32 cncl_kind);
3833 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3834 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3835 
3836 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3837 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3838 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3839  kmp_int32 if_val, kmp_uint64 *lb,
3840  kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3841  kmp_int32 sched, kmp_uint64 grainsize,
3842  void *task_dup);
3843 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3844  kmp_task_t *task, kmp_int32 if_val,
3845  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3846  kmp_int32 nogroup, kmp_int32 sched,
3847  kmp_uint64 grainsize, kmp_int32 modifier,
3848  void *task_dup);
3849 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3850 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3851 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3852 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3853  int is_ws, int num,
3854  void *data);
3855 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3856  int num, void *data);
3857 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3858  int is_ws);
3859 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3860  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3861  kmp_task_affinity_info_t *affin_list);
3862 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
3863 KMP_EXPORT int __kmp_get_max_teams(void);
3864 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
3865 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
3866 
3867 /* Lock interface routines (fast versions with gtid passed in) */
3868 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3869  void **user_lock);
3870 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3871  void **user_lock);
3872 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3873  void **user_lock);
3874 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3875  void **user_lock);
3876 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3877 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3878  void **user_lock);
3879 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3880  void **user_lock);
3881 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3882  void **user_lock);
3883 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3884 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3885  void **user_lock);
3886 
3887 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3888  void **user_lock, uintptr_t hint);
3889 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3890  void **user_lock,
3891  uintptr_t hint);
3892 
3893 /* Interface to fast scalable reduce methods routines */
3894 
3895 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3896  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3897  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3898  kmp_critical_name *lck);
3899 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3900  kmp_critical_name *lck);
3901 KMP_EXPORT kmp_int32 __kmpc_reduce(
3902  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3903  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3904  kmp_critical_name *lck);
3905 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3906  kmp_critical_name *lck);
3907 
3908 /* Internal fast reduction routines */
3909 
3910 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3911  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3912  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3913  kmp_critical_name *lck);
3914 
3915 // this function is for testing set/get/determine reduce method
3916 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3917 
3918 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3919 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3920 
3921 // C++ port
3922 // missing 'extern "C"' declarations
3923 
3924 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3925 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3926 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3927  kmp_int32 num_threads);
3928 
3929 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3930  int proc_bind);
3931 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3932  kmp_int32 num_teams,
3933  kmp_int32 num_threads);
3934 /* Function for OpenMP 5.1 num_teams clause */
3935 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
3936  kmp_int32 num_teams_lb,
3937  kmp_int32 num_teams_ub,
3938  kmp_int32 num_threads);
3939 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3940  kmpc_micro microtask, ...);
3941 struct kmp_dim { // loop bounds info casted to kmp_int64
3942  kmp_int64 lo; // lower
3943  kmp_int64 up; // upper
3944  kmp_int64 st; // stride
3945 };
3946 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3947  kmp_int32 num_dims,
3948  const struct kmp_dim *dims);
3949 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3950  const kmp_int64 *vec);
3951 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3952  const kmp_int64 *vec);
3953 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3954 
3955 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3956  void *data, size_t size,
3957  void ***cache);
3958 
3959 // Symbols for MS mutual detection.
3960 extern int _You_must_link_with_exactly_one_OpenMP_library;
3961 extern int _You_must_link_with_Intel_OpenMP_library;
3962 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
3963 extern int _You_must_link_with_Microsoft_OpenMP_library;
3964 #endif
3965 
3966 // The routines below are not exported.
3967 // Consider making them 'static' in corresponding source files.
3968 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
3969  void *data_addr, size_t pc_size);
3970 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
3971  void *data_addr,
3972  size_t pc_size);
3973 void __kmp_threadprivate_resize_cache(int newCapacity);
3974 void __kmp_cleanup_threadprivate_caches();
3975 
3976 // ompc_, kmpc_ entries moved from omp.h.
3977 #if KMP_OS_WINDOWS
3978 #define KMPC_CONVENTION __cdecl
3979 #else
3980 #define KMPC_CONVENTION
3981 #endif
3982 
3983 #ifndef __OMP_H
3984 typedef enum omp_sched_t {
3985  omp_sched_static = 1,
3986  omp_sched_dynamic = 2,
3987  omp_sched_guided = 3,
3988  omp_sched_auto = 4
3989 } omp_sched_t;
3990 typedef void *kmp_affinity_mask_t;
3991 #endif
3992 
3993 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
3994 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
3995 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
3996 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
3997 KMP_EXPORT int KMPC_CONVENTION
3998 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
3999 KMP_EXPORT int KMPC_CONVENTION
4000 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4001 KMP_EXPORT int KMPC_CONVENTION
4002 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4003 
4004 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4005 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4006 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4007 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4008 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4009 
4010 enum kmp_target_offload_kind {
4011  tgt_disabled = 0,
4012  tgt_default = 1,
4013  tgt_mandatory = 2
4014 };
4015 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4016 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4017 extern kmp_target_offload_kind_t __kmp_target_offload;
4018 extern int __kmpc_get_target_offload();
4019 
4020 // Constants used in libomptarget
4021 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4022 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4023 
4024 // OMP Pause Resource
4025 
4026 // The following enum is used both to set the status in __kmp_pause_status, and
4027 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4028 typedef enum kmp_pause_status_t {
4029  kmp_not_paused = 0, // status is not paused, or, requesting resume
4030  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4031  kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4032 } kmp_pause_status_t;
4033 
4034 // This stores the pause state of the runtime
4035 extern kmp_pause_status_t __kmp_pause_status;
4036 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4037 extern int __kmp_pause_resource(kmp_pause_status_t level);
4038 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4039 extern void __kmp_resume_if_soft_paused();
4040 // Hard resume simply resets the status to not paused. Library will appear to
4041 // be uninitialized after hard pause. Let OMP constructs trigger required
4042 // initializations.
4043 static inline void __kmp_resume_if_hard_paused() {
4044  if (__kmp_pause_status == kmp_hard_paused) {
4045  __kmp_pause_status = kmp_not_paused;
4046  }
4047 }
4048 
4049 extern void __kmp_omp_display_env(int verbose);
4050 
4051 // 1: it is initializing hidden helper team
4052 extern volatile int __kmp_init_hidden_helper;
4053 // 1: the hidden helper team is done
4054 extern volatile int __kmp_hidden_helper_team_done;
4055 // 1: enable hidden helper task
4056 extern kmp_int32 __kmp_enable_hidden_helper;
4057 // Main thread of hidden helper team
4058 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4059 // Descriptors for the hidden helper threads
4060 extern kmp_info_t **__kmp_hidden_helper_threads;
4061 // Number of hidden helper threads
4062 extern kmp_int32 __kmp_hidden_helper_threads_num;
4063 // Number of hidden helper tasks that have not been executed yet
4064 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4065 
4066 extern void __kmp_hidden_helper_initialize();
4067 extern void __kmp_hidden_helper_threads_initz_routine();
4068 extern void __kmp_do_initialize_hidden_helper_threads();
4069 extern void __kmp_hidden_helper_threads_initz_wait();
4070 extern void __kmp_hidden_helper_initz_release();
4071 extern void __kmp_hidden_helper_threads_deinitz_wait();
4072 extern void __kmp_hidden_helper_threads_deinitz_release();
4073 extern void __kmp_hidden_helper_main_thread_wait();
4074 extern void __kmp_hidden_helper_worker_thread_wait();
4075 extern void __kmp_hidden_helper_worker_thread_signal();
4076 extern void __kmp_hidden_helper_main_thread_release();
4077 
4078 // Check whether a given thread is a hidden helper thread
4079 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4080  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4081 
4082 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4083  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4084 
4085 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4086 // main thread, is skipped.
4087 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4088  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4089 
4090 // Support for error directive
4091 typedef enum kmp_severity_t {
4092  severity_warning = 1,
4093  severity_fatal = 2
4094 } kmp_severity_t;
4095 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4096 
4097 #ifdef __cplusplus
4098 }
4099 #endif
4100 
4101 template <bool C, bool S>
4102 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4103 template <bool C, bool S>
4104 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4105 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4106 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4107 template <bool C, bool S>
4108 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4109 template <bool C, bool S>
4110 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4111 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4112 #endif
4113 template <bool C, bool S>
4114 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4115 template <bool C, bool S>
4116 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4117 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4118 
4119 template <bool C, bool S>
4120 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4121  kmp_flag_32<C, S> *flag, int final_spin,
4122  int *thread_finished,
4123 #if USE_ITT_BUILD
4124  void *itt_sync_obj,
4125 #endif /* USE_ITT_BUILD */
4126  kmp_int32 is_constrained);
4127 template <bool C, bool S>
4128 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4129  kmp_flag_64<C, S> *flag, int final_spin,
4130  int *thread_finished,
4131 #if USE_ITT_BUILD
4132  void *itt_sync_obj,
4133 #endif /* USE_ITT_BUILD */
4134  kmp_int32 is_constrained);
4135 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4136  kmp_flag_oncore *flag, int final_spin,
4137  int *thread_finished,
4138 #if USE_ITT_BUILD
4139  void *itt_sync_obj,
4140 #endif /* USE_ITT_BUILD */
4141  kmp_int32 is_constrained);
4142 
4150  FILE *f;
4151 
4152  void close() {
4153  if (f && f != stdout && f != stderr) {
4154  fclose(f);
4155  f = nullptr;
4156  }
4157  }
4158 
4159 public:
4160  kmp_safe_raii_file_t() : f(nullptr) {}
4161  kmp_safe_raii_file_t(const char *filename, const char *mode,
4162  const char *env_var = nullptr)
4163  : f(nullptr) {
4164  open(filename, mode, env_var);
4165  }
4166  ~kmp_safe_raii_file_t() { close(); }
4167 
4171  void open(const char *filename, const char *mode,
4172  const char *env_var = nullptr) {
4173  KMP_ASSERT(!f);
4174  f = fopen(filename, mode);
4175  if (!f) {
4176  int code = errno;
4177  if (env_var) {
4178  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4179  KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4180  } else {
4181  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4182  __kmp_msg_null);
4183  }
4184  }
4185  }
4188  void set_stdout() {
4189  KMP_ASSERT(!f);
4190  f = stdout;
4191  }
4194  void set_stderr() {
4195  KMP_ASSERT(!f);
4196  f = stderr;
4197  }
4198  operator bool() { return bool(f); }
4199  operator FILE *() { return f; }
4200 };
4201 
4202 template <typename SourceType, typename TargetType,
4203  bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4204  bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4205  bool isSourceSigned = std::is_signed<SourceType>::value,
4206  bool isTargetSigned = std::is_signed<TargetType>::value>
4207 struct kmp_convert {};
4208 
4209 // Both types are signed; Source smaller
4210 template <typename SourceType, typename TargetType>
4211 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4212  static TargetType to(SourceType src) { return (TargetType)src; }
4213 };
4214 // Source equal
4215 template <typename SourceType, typename TargetType>
4216 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4217  static TargetType to(SourceType src) { return src; }
4218 };
4219 // Source bigger
4220 template <typename SourceType, typename TargetType>
4221 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4222  static TargetType to(SourceType src) {
4223  KMP_ASSERT(src <= static_cast<SourceType>(
4224  (std::numeric_limits<TargetType>::max)()));
4225  KMP_ASSERT(src >= static_cast<SourceType>(
4226  (std::numeric_limits<TargetType>::min)()));
4227  return (TargetType)src;
4228  }
4229 };
4230 
4231 // Source signed, Target unsigned
4232 // Source smaller
4233 template <typename SourceType, typename TargetType>
4234 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4235  static TargetType to(SourceType src) {
4236  KMP_ASSERT(src >= 0);
4237  return (TargetType)src;
4238  }
4239 };
4240 // Source equal
4241 template <typename SourceType, typename TargetType>
4242 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4243  static TargetType to(SourceType src) {
4244  KMP_ASSERT(src >= 0);
4245  return (TargetType)src;
4246  }
4247 };
4248 // Source bigger
4249 template <typename SourceType, typename TargetType>
4250 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4251  static TargetType to(SourceType src) {
4252  KMP_ASSERT(src >= 0);
4253  KMP_ASSERT(src <= static_cast<SourceType>(
4254  (std::numeric_limits<TargetType>::max)()));
4255  return (TargetType)src;
4256  }
4257 };
4258 
4259 // Source unsigned, Target signed
4260 // Source smaller
4261 template <typename SourceType, typename TargetType>
4262 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4263  static TargetType to(SourceType src) { return (TargetType)src; }
4264 };
4265 // Source equal
4266 template <typename SourceType, typename TargetType>
4267 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4268  static TargetType to(SourceType src) {
4269  KMP_ASSERT(src <= static_cast<SourceType>(
4270  (std::numeric_limits<TargetType>::max)()));
4271  return (TargetType)src;
4272  }
4273 };
4274 // Source bigger
4275 template <typename SourceType, typename TargetType>
4276 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4277  static TargetType to(SourceType src) {
4278  KMP_ASSERT(src <= static_cast<SourceType>(
4279  (std::numeric_limits<TargetType>::max)()));
4280  return (TargetType)src;
4281  }
4282 };
4283 
4284 // Source unsigned, Target unsigned
4285 // Source smaller
4286 template <typename SourceType, typename TargetType>
4287 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4288  static TargetType to(SourceType src) { return (TargetType)src; }
4289 };
4290 // Source equal
4291 template <typename SourceType, typename TargetType>
4292 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4293  static TargetType to(SourceType src) { return src; }
4294 };
4295 // Source bigger
4296 template <typename SourceType, typename TargetType>
4297 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4298  static TargetType to(SourceType src) {
4299  KMP_ASSERT(src <= static_cast<SourceType>(
4300  (std::numeric_limits<TargetType>::max)()));
4301  return (TargetType)src;
4302  }
4303 };
4304 
4305 template <typename T1, typename T2>
4306 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4307  *dest = kmp_convert<T1, T2>::to(src);
4308 }
4309 
4310 #endif /* KMP_H */
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
void set_stderr()
Definition: kmp.h:4194
kmp_int32 reserved_2
Definition: kmp.h:233
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1554
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1577
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
void set_stdout()
Definition: kmp.h:4188
kmp_int32 reserved_1
Definition: kmp.h:230
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1571
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
kmp_int32 reserved_3
Definition: kmp.h:238
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1583
KMP_EXPORT void __kmpc_flush(ident_t *)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1561
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
sched_type
Definition: kmp.h:351
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
Definition: kmp.h:229
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1548
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4171
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1530
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
char const * psource
Definition: kmp.h:239
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
kmp_int32 flags
Definition: kmp.h:231
struct ident ident_t