LLVM OpenMP* Runtime Library
z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <semaphore.h>
29 #include <sys/resource.h>
30 #include <sys/syscall.h>
31 #include <sys/time.h>
32 #include <sys/times.h>
33 #include <unistd.h>
34 
35 #if KMP_OS_LINUX
36 #include <sys/sysinfo.h>
37 #if KMP_USE_FUTEX
38 // We should really include <futex.h>, but that causes compatibility problems on
39 // different Linux* OS distributions that either require that you include (or
40 // break when you try to include) <pci/types.h>. Since all we need is the two
41 // macros below (which are part of the kernel ABI, so can't change) we just
42 // define the constants here and don't include <futex.h>
43 #ifndef FUTEX_WAIT
44 #define FUTEX_WAIT 0
45 #endif
46 #ifndef FUTEX_WAKE
47 #define FUTEX_WAKE 1
48 #endif
49 #endif
50 #elif KMP_OS_DARWIN
51 #include <mach/mach.h>
52 #include <sys/sysctl.h>
53 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
54 #include <sys/types.h>
55 #include <sys/sysctl.h>
56 #include <sys/user.h>
57 #include <pthread_np.h>
58 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #endif
62 
63 #include <ctype.h>
64 #include <dirent.h>
65 #include <fcntl.h>
66 
67 #include "tsan_annotations.h"
68 
69 struct kmp_sys_timer {
70  struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec) \
75  (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 
97 #ifdef DEBUG_SUSPEND
98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100  cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101  cond->c_cond.__c_waiting);
102 }
103 #endif
104 
105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106 
107 /* Affinity support */
108 
109 void __kmp_affinity_bind_thread(int which) {
110  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111  "Illegal set affinity operation when not capable");
112 
113  kmp_affin_mask_t *mask;
114  KMP_CPU_ALLOC_ON_STACK(mask);
115  KMP_CPU_ZERO(mask);
116  KMP_CPU_SET(which, mask);
117  __kmp_set_system_affinity(mask, TRUE);
118  KMP_CPU_FREE_FROM_STACK(mask);
119 }
120 
121 /* Determine if we can access affinity functionality on this version of
122  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
124 void __kmp_affinity_determine_capable(const char *env_var) {
125  // Check and see if the OS supports thread affinity.
126 
127 #if KMP_OS_LINUX
128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129 #elif KMP_OS_FREEBSD
130 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
131 #endif
132 
133 #if KMP_OS_LINUX
134  // If Linux* OS:
135  // If the syscall fails or returns a suggestion for the size,
136  // then we don't have to search for an appropriate size.
137  long gCode;
138  long sCode;
139  unsigned char *buf;
140  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
141  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
142  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
143  "initial getaffinity call returned %ld errno = %d\n",
144  gCode, errno));
145 
146  // if ((gCode < 0) && (errno == ENOSYS))
147  if (gCode < 0) {
148  // System call not supported
149  if (__kmp_affinity_verbose ||
150  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
151  (__kmp_affinity_type != affinity_default) &&
152  (__kmp_affinity_type != affinity_disabled))) {
153  int error = errno;
154  kmp_msg_t err_code = KMP_ERR(error);
155  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
156  err_code, __kmp_msg_null);
157  if (__kmp_generate_warnings == kmp_warnings_off) {
158  __kmp_str_free(&err_code.str);
159  }
160  }
161  KMP_AFFINITY_DISABLE();
162  KMP_INTERNAL_FREE(buf);
163  return;
164  }
165  if (gCode > 0) { // Linux* OS only
166  // The optimal situation: the OS returns the size of the buffer it expects.
167  //
168  // A verification of correct behavior is that setaffinity on a NULL
169  // buffer with the same size fails with errno set to EFAULT.
170  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
171  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
172  "setaffinity for mask size %ld returned %ld errno = %d\n",
173  gCode, sCode, errno));
174  if (sCode < 0) {
175  if (errno == ENOSYS) {
176  if (__kmp_affinity_verbose ||
177  (__kmp_affinity_warnings &&
178  (__kmp_affinity_type != affinity_none) &&
179  (__kmp_affinity_type != affinity_default) &&
180  (__kmp_affinity_type != affinity_disabled))) {
181  int error = errno;
182  kmp_msg_t err_code = KMP_ERR(error);
183  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
184  err_code, __kmp_msg_null);
185  if (__kmp_generate_warnings == kmp_warnings_off) {
186  __kmp_str_free(&err_code.str);
187  }
188  }
189  KMP_AFFINITY_DISABLE();
190  KMP_INTERNAL_FREE(buf);
191  }
192  if (errno == EFAULT) {
193  KMP_AFFINITY_ENABLE(gCode);
194  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
195  "affinity supported (mask size %d)\n",
196  (int)__kmp_affin_mask_size));
197  KMP_INTERNAL_FREE(buf);
198  return;
199  }
200  }
201  }
202 
203  // Call the getaffinity system call repeatedly with increasing set sizes
204  // until we succeed, or reach an upper bound on the search.
205  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
206  "searching for proper set size\n"));
207  int size;
208  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
209  gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
210  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
211  "getaffinity for mask size %ld returned %ld errno = %d\n",
212  size, gCode, errno));
213 
214  if (gCode < 0) {
215  if (errno == ENOSYS) {
216  // We shouldn't get here
217  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
218  "inconsistent OS call behavior: errno == ENOSYS for mask "
219  "size %d\n",
220  size));
221  if (__kmp_affinity_verbose ||
222  (__kmp_affinity_warnings &&
223  (__kmp_affinity_type != affinity_none) &&
224  (__kmp_affinity_type != affinity_default) &&
225  (__kmp_affinity_type != affinity_disabled))) {
226  int error = errno;
227  kmp_msg_t err_code = KMP_ERR(error);
228  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
229  err_code, __kmp_msg_null);
230  if (__kmp_generate_warnings == kmp_warnings_off) {
231  __kmp_str_free(&err_code.str);
232  }
233  }
234  KMP_AFFINITY_DISABLE();
235  KMP_INTERNAL_FREE(buf);
236  return;
237  }
238  continue;
239  }
240 
241  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
242  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
243  "setaffinity for mask size %ld returned %ld errno = %d\n",
244  gCode, sCode, errno));
245  if (sCode < 0) {
246  if (errno == ENOSYS) { // Linux* OS only
247  // We shouldn't get here
248  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
249  "inconsistent OS call behavior: errno == ENOSYS for mask "
250  "size %d\n",
251  size));
252  if (__kmp_affinity_verbose ||
253  (__kmp_affinity_warnings &&
254  (__kmp_affinity_type != affinity_none) &&
255  (__kmp_affinity_type != affinity_default) &&
256  (__kmp_affinity_type != affinity_disabled))) {
257  int error = errno;
258  kmp_msg_t err_code = KMP_ERR(error);
259  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
260  err_code, __kmp_msg_null);
261  if (__kmp_generate_warnings == kmp_warnings_off) {
262  __kmp_str_free(&err_code.str);
263  }
264  }
265  KMP_AFFINITY_DISABLE();
266  KMP_INTERNAL_FREE(buf);
267  return;
268  }
269  if (errno == EFAULT) {
270  KMP_AFFINITY_ENABLE(gCode);
271  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
272  "affinity supported (mask size %d)\n",
273  (int)__kmp_affin_mask_size));
274  KMP_INTERNAL_FREE(buf);
275  return;
276  }
277  }
278  }
279 #elif KMP_OS_FREEBSD
280  long gCode;
281  unsigned char *buf;
282  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
283  gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
284  reinterpret_cast<cpuset_t *>(buf));
285  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
286  "initial getaffinity call returned %d errno = %d\n",
287  gCode, errno));
288  if (gCode == 0) {
289  KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
290  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
291  "affinity supported (mask size %d)\n",
292  (int)__kmp_affin_mask_size));
293  KMP_INTERNAL_FREE(buf);
294  return;
295  }
296 #endif
297  // save uncaught error code
298  // int error = errno;
299  KMP_INTERNAL_FREE(buf);
300  // restore uncaught error code, will be printed at the next KMP_WARNING below
301  // errno = error;
302 
303  // Affinity is not supported
304  KMP_AFFINITY_DISABLE();
305  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
306  "cannot determine mask size - affinity not supported\n"));
307  if (__kmp_affinity_verbose ||
308  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
309  (__kmp_affinity_type != affinity_default) &&
310  (__kmp_affinity_type != affinity_disabled))) {
311  KMP_WARNING(AffCantGetMaskSize, env_var);
312  }
313 }
314 
315 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
316 
317 #if KMP_USE_FUTEX
318 
319 int __kmp_futex_determine_capable() {
320  int loc = 0;
321  long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
322  int retval = (rc == 0) || (errno != ENOSYS);
323 
324  KA_TRACE(10,
325  ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
326  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
327  retval ? "" : " not"));
328 
329  return retval;
330 }
331 
332 #endif // KMP_USE_FUTEX
333 
334 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
335 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
336  use compare_and_store for these routines */
337 
338 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
339  kmp_int8 old_value, new_value;
340 
341  old_value = TCR_1(*p);
342  new_value = old_value | d;
343 
344  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
345  KMP_CPU_PAUSE();
346  old_value = TCR_1(*p);
347  new_value = old_value | d;
348  }
349  return old_value;
350 }
351 
352 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
353  kmp_int8 old_value, new_value;
354 
355  old_value = TCR_1(*p);
356  new_value = old_value & d;
357 
358  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
359  KMP_CPU_PAUSE();
360  old_value = TCR_1(*p);
361  new_value = old_value & d;
362  }
363  return old_value;
364 }
365 
366 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
367  kmp_uint32 old_value, new_value;
368 
369  old_value = TCR_4(*p);
370  new_value = old_value | d;
371 
372  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
373  KMP_CPU_PAUSE();
374  old_value = TCR_4(*p);
375  new_value = old_value | d;
376  }
377  return old_value;
378 }
379 
380 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
381  kmp_uint32 old_value, new_value;
382 
383  old_value = TCR_4(*p);
384  new_value = old_value & d;
385 
386  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
387  KMP_CPU_PAUSE();
388  old_value = TCR_4(*p);
389  new_value = old_value & d;
390  }
391  return old_value;
392 }
393 
394 #if KMP_ARCH_X86
395 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
396  kmp_int8 old_value, new_value;
397 
398  old_value = TCR_1(*p);
399  new_value = old_value + d;
400 
401  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
402  KMP_CPU_PAUSE();
403  old_value = TCR_1(*p);
404  new_value = old_value + d;
405  }
406  return old_value;
407 }
408 
409 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
410  kmp_int64 old_value, new_value;
411 
412  old_value = TCR_8(*p);
413  new_value = old_value + d;
414 
415  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416  KMP_CPU_PAUSE();
417  old_value = TCR_8(*p);
418  new_value = old_value + d;
419  }
420  return old_value;
421 }
422 #endif /* KMP_ARCH_X86 */
423 
424 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
425  kmp_uint64 old_value, new_value;
426 
427  old_value = TCR_8(*p);
428  new_value = old_value | d;
429  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
430  KMP_CPU_PAUSE();
431  old_value = TCR_8(*p);
432  new_value = old_value | d;
433  }
434  return old_value;
435 }
436 
437 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
438  kmp_uint64 old_value, new_value;
439 
440  old_value = TCR_8(*p);
441  new_value = old_value & d;
442  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
443  KMP_CPU_PAUSE();
444  old_value = TCR_8(*p);
445  new_value = old_value & d;
446  }
447  return old_value;
448 }
449 
450 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
451 
452 void __kmp_terminate_thread(int gtid) {
453  int status;
454  kmp_info_t *th = __kmp_threads[gtid];
455 
456  if (!th)
457  return;
458 
459 #ifdef KMP_CANCEL_THREADS
460  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
461  status = pthread_cancel(th->th.th_info.ds.ds_thread);
462  if (status != 0 && status != ESRCH) {
463  __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
464  __kmp_msg_null);
465  }
466 #endif
467  KMP_YIELD(TRUE);
468 } //
469 
470 /* Set thread stack info according to values returned by pthread_getattr_np().
471  If values are unreasonable, assume call failed and use incremental stack
472  refinement method instead. Returns TRUE if the stack parameters could be
473  determined exactly, FALSE if incremental refinement is necessary. */
474 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
475  int stack_data;
476 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
477  KMP_OS_HURD
478  pthread_attr_t attr;
479  int status;
480  size_t size = 0;
481  void *addr = 0;
482 
483  /* Always do incremental stack refinement for ubermaster threads since the
484  initial thread stack range can be reduced by sibling thread creation so
485  pthread_attr_getstack may cause thread gtid aliasing */
486  if (!KMP_UBER_GTID(gtid)) {
487 
488  /* Fetch the real thread attributes */
489  status = pthread_attr_init(&attr);
490  KMP_CHECK_SYSFAIL("pthread_attr_init", status);
491 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
492  status = pthread_attr_get_np(pthread_self(), &attr);
493  KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
494 #else
495  status = pthread_getattr_np(pthread_self(), &attr);
496  KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
497 #endif
498  status = pthread_attr_getstack(&attr, &addr, &size);
499  KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
500  KA_TRACE(60,
501  ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
502  " %lu, low addr: %p\n",
503  gtid, size, addr));
504  status = pthread_attr_destroy(&attr);
505  KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
506  }
507 
508  if (size != 0 && addr != 0) { // was stack parameter determination successful?
509  /* Store the correct base and size */
510  TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
511  TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
512  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
513  return TRUE;
514  }
515 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \
516  || KMP_OS_HURD */
517  /* Use incremental refinement starting from initial conservative estimate */
518  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
519  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
520  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
521  return FALSE;
522 }
523 
524 static void *__kmp_launch_worker(void *thr) {
525  int status, old_type, old_state;
526 #ifdef KMP_BLOCK_SIGNALS
527  sigset_t new_set, old_set;
528 #endif /* KMP_BLOCK_SIGNALS */
529  void *exit_val;
530 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
531  KMP_OS_OPENBSD || KMP_OS_HURD
532  void *volatile padding = 0;
533 #endif
534  int gtid;
535 
536  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
537  __kmp_gtid_set_specific(gtid);
538 #ifdef KMP_TDATA_GTID
539  __kmp_gtid = gtid;
540 #endif
541 #if KMP_STATS_ENABLED
542  // set thread local index to point to thread-specific stats
543  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
544  __kmp_stats_thread_ptr->startLife();
545  KMP_SET_THREAD_STATE(IDLE);
546  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
547 #endif
548 
549 #if USE_ITT_BUILD
550  __kmp_itt_thread_name(gtid);
551 #endif /* USE_ITT_BUILD */
552 
553 #if KMP_AFFINITY_SUPPORTED
554  __kmp_affinity_set_init_mask(gtid, FALSE);
555 #endif
556 
557 #ifdef KMP_CANCEL_THREADS
558  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
559  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
560  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
561  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
562  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
563 #endif
564 
565 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
566  // Set FP control regs to be a copy of the parallel initialization thread's.
567  __kmp_clear_x87_fpu_status_word();
568  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
569  __kmp_load_mxcsr(&__kmp_init_mxcsr);
570 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
571 
572 #ifdef KMP_BLOCK_SIGNALS
573  status = sigfillset(&new_set);
574  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
575  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
576  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
577 #endif /* KMP_BLOCK_SIGNALS */
578 
579 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
580  KMP_OS_OPENBSD
581  if (__kmp_stkoffset > 0 && gtid > 0) {
582  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
583  }
584 #endif
585 
586  KMP_MB();
587  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
588 
589  __kmp_check_stack_overlap((kmp_info_t *)thr);
590 
591  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
592 
593 #ifdef KMP_BLOCK_SIGNALS
594  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
595  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
596 #endif /* KMP_BLOCK_SIGNALS */
597 
598  return exit_val;
599 }
600 
601 #if KMP_USE_MONITOR
602 /* The monitor thread controls all of the threads in the complex */
603 
604 static void *__kmp_launch_monitor(void *thr) {
605  int status, old_type, old_state;
606 #ifdef KMP_BLOCK_SIGNALS
607  sigset_t new_set;
608 #endif /* KMP_BLOCK_SIGNALS */
609  struct timespec interval;
610 
611  KMP_MB(); /* Flush all pending memory write invalidates. */
612 
613  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
614 
615  /* register us as the monitor thread */
616  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
617 #ifdef KMP_TDATA_GTID
618  __kmp_gtid = KMP_GTID_MONITOR;
619 #endif
620 
621  KMP_MB();
622 
623 #if USE_ITT_BUILD
624  // Instruct Intel(R) Threading Tools to ignore monitor thread.
625  __kmp_itt_thread_ignore();
626 #endif /* USE_ITT_BUILD */
627 
628  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
629  (kmp_info_t *)thr);
630 
631  __kmp_check_stack_overlap((kmp_info_t *)thr);
632 
633 #ifdef KMP_CANCEL_THREADS
634  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
635  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
636  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
637  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
638  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
639 #endif
640 
641 #if KMP_REAL_TIME_FIX
642  // This is a potential fix which allows application with real-time scheduling
643  // policy work. However, decision about the fix is not made yet, so it is
644  // disabled by default.
645  { // Are program started with real-time scheduling policy?
646  int sched = sched_getscheduler(0);
647  if (sched == SCHED_FIFO || sched == SCHED_RR) {
648  // Yes, we are a part of real-time application. Try to increase the
649  // priority of the monitor.
650  struct sched_param param;
651  int max_priority = sched_get_priority_max(sched);
652  int rc;
653  KMP_WARNING(RealTimeSchedNotSupported);
654  sched_getparam(0, &param);
655  if (param.sched_priority < max_priority) {
656  param.sched_priority += 1;
657  rc = sched_setscheduler(0, sched, &param);
658  if (rc != 0) {
659  int error = errno;
660  kmp_msg_t err_code = KMP_ERR(error);
661  __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
662  err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
663  if (__kmp_generate_warnings == kmp_warnings_off) {
664  __kmp_str_free(&err_code.str);
665  }
666  }
667  } else {
668  // We cannot abort here, because number of CPUs may be enough for all
669  // the threads, including the monitor thread, so application could
670  // potentially work...
671  __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
672  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
673  __kmp_msg_null);
674  }
675  }
676  // AC: free thread that waits for monitor started
677  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
678  }
679 #endif // KMP_REAL_TIME_FIX
680 
681  KMP_MB(); /* Flush all pending memory write invalidates. */
682 
683  if (__kmp_monitor_wakeups == 1) {
684  interval.tv_sec = 1;
685  interval.tv_nsec = 0;
686  } else {
687  interval.tv_sec = 0;
688  interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
689  }
690 
691  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
692 
693  while (!TCR_4(__kmp_global.g.g_done)) {
694  struct timespec now;
695  struct timeval tval;
696 
697  /* This thread monitors the state of the system */
698 
699  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
700 
701  status = gettimeofday(&tval, NULL);
702  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
703  TIMEVAL_TO_TIMESPEC(&tval, &now);
704 
705  now.tv_sec += interval.tv_sec;
706  now.tv_nsec += interval.tv_nsec;
707 
708  if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
709  now.tv_sec += 1;
710  now.tv_nsec -= KMP_NSEC_PER_SEC;
711  }
712 
713  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
714  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
715  // AC: the monitor should not fall asleep if g_done has been set
716  if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
717  status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
718  &__kmp_wait_mx.m_mutex, &now);
719  if (status != 0) {
720  if (status != ETIMEDOUT && status != EINTR) {
721  KMP_SYSFAIL("pthread_cond_timedwait", status);
722  }
723  }
724  }
725  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
726  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
727 
728  TCW_4(__kmp_global.g.g_time.dt.t_value,
729  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
730 
731  KMP_MB(); /* Flush all pending memory write invalidates. */
732  }
733 
734  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
735 
736 #ifdef KMP_BLOCK_SIGNALS
737  status = sigfillset(&new_set);
738  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
739  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
740  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
741 #endif /* KMP_BLOCK_SIGNALS */
742 
743  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
744 
745  if (__kmp_global.g.g_abort != 0) {
746  /* now we need to terminate the worker threads */
747  /* the value of t_abort is the signal we caught */
748 
749  int gtid;
750 
751  KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
752  __kmp_global.g.g_abort));
753 
754  /* terminate the OpenMP worker threads */
755  /* TODO this is not valid for sibling threads!!
756  * the uber master might not be 0 anymore.. */
757  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
758  __kmp_terminate_thread(gtid);
759 
760  __kmp_cleanup();
761 
762  KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
763  __kmp_global.g.g_abort));
764 
765  if (__kmp_global.g.g_abort > 0)
766  raise(__kmp_global.g.g_abort);
767  }
768 
769  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
770 
771  return thr;
772 }
773 #endif // KMP_USE_MONITOR
774 
775 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
776  pthread_t handle;
777  pthread_attr_t thread_attr;
778  int status;
779 
780  th->th.th_info.ds.ds_gtid = gtid;
781 
782 #if KMP_STATS_ENABLED
783  // sets up worker thread stats
784  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
785 
786  // th->th.th_stats is used to transfer thread-specific stats-pointer to
787  // __kmp_launch_worker. So when thread is created (goes into
788  // __kmp_launch_worker) it will set its thread local pointer to
789  // th->th.th_stats
790  if (!KMP_UBER_GTID(gtid)) {
791  th->th.th_stats = __kmp_stats_list->push_back(gtid);
792  } else {
793  // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
794  // so set the th->th.th_stats field to it.
795  th->th.th_stats = __kmp_stats_thread_ptr;
796  }
797  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
798 
799 #endif // KMP_STATS_ENABLED
800 
801  if (KMP_UBER_GTID(gtid)) {
802  KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
803  th->th.th_info.ds.ds_thread = pthread_self();
804  __kmp_set_stack_info(gtid, th);
805  __kmp_check_stack_overlap(th);
806  return;
807  }
808 
809  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
810 
811  KMP_MB(); /* Flush all pending memory write invalidates. */
812 
813 #ifdef KMP_THREAD_ATTR
814  status = pthread_attr_init(&thread_attr);
815  if (status != 0) {
816  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
817  }
818  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
819  if (status != 0) {
820  __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
821  }
822 
823  /* Set stack size for this thread now.
824  The multiple of 2 is there because on some machines, requesting an unusual
825  stacksize causes the thread to have an offset before the dummy alloca()
826  takes place to create the offset. Since we want the user to have a
827  sufficient stacksize AND support a stack offset, we alloca() twice the
828  offset so that the upcoming alloca() does not eliminate any premade offset,
829  and also gives the user the stack space they requested for all threads */
830  stack_size += gtid * __kmp_stkoffset * 2;
831 
832 #if defined(__ANDROID__) && __ANDROID_API__ < 19
833  // Round the stack size to a multiple of the page size. Older versions of
834  // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
835  // if the stack size was not a multiple of the page size.
836  stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
837 #endif
838 
839  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
840  "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
841  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
842 
843 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
844  status = pthread_attr_setstacksize(&thread_attr, stack_size);
845 #ifdef KMP_BACKUP_STKSIZE
846  if (status != 0) {
847  if (!__kmp_env_stksize) {
848  stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
849  __kmp_stksize = KMP_BACKUP_STKSIZE;
850  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
851  "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
852  "bytes\n",
853  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
854  status = pthread_attr_setstacksize(&thread_attr, stack_size);
855  }
856  }
857 #endif /* KMP_BACKUP_STKSIZE */
858  if (status != 0) {
859  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
860  KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
861  }
862 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
863 
864 #endif /* KMP_THREAD_ATTR */
865 
866  status =
867  pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
868  if (status != 0 || !handle) { // ??? Why do we check handle??
869 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
870  if (status == EINVAL) {
871  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
872  KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
873  }
874  if (status == ENOMEM) {
875  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
876  KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
877  }
878 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
879  if (status == EAGAIN) {
880  __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
881  KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
882  }
883  KMP_SYSFAIL("pthread_create", status);
884  }
885 
886  th->th.th_info.ds.ds_thread = handle;
887 
888 #ifdef KMP_THREAD_ATTR
889  status = pthread_attr_destroy(&thread_attr);
890  if (status) {
891  kmp_msg_t err_code = KMP_ERR(status);
892  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
893  __kmp_msg_null);
894  if (__kmp_generate_warnings == kmp_warnings_off) {
895  __kmp_str_free(&err_code.str);
896  }
897  }
898 #endif /* KMP_THREAD_ATTR */
899 
900  KMP_MB(); /* Flush all pending memory write invalidates. */
901 
902  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
903 
904 } // __kmp_create_worker
905 
906 #if KMP_USE_MONITOR
907 void __kmp_create_monitor(kmp_info_t *th) {
908  pthread_t handle;
909  pthread_attr_t thread_attr;
910  size_t size;
911  int status;
912  int auto_adj_size = FALSE;
913 
914  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
915  // We don't need monitor thread in case of MAX_BLOCKTIME
916  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
917  "MAX blocktime\n"));
918  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
919  th->th.th_info.ds.ds_gtid = 0;
920  return;
921  }
922  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
923 
924  KMP_MB(); /* Flush all pending memory write invalidates. */
925 
926  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
927  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
928 #if KMP_REAL_TIME_FIX
929  TCW_4(__kmp_global.g.g_time.dt.t_value,
930  -1); // Will use it for synchronization a bit later.
931 #else
932  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
933 #endif // KMP_REAL_TIME_FIX
934 
935 #ifdef KMP_THREAD_ATTR
936  if (__kmp_monitor_stksize == 0) {
937  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
938  auto_adj_size = TRUE;
939  }
940  status = pthread_attr_init(&thread_attr);
941  if (status != 0) {
942  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
943  }
944  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
945  if (status != 0) {
946  __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
947  }
948 
949 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
950  status = pthread_attr_getstacksize(&thread_attr, &size);
951  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
952 #else
953  size = __kmp_sys_min_stksize;
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955 #endif /* KMP_THREAD_ATTR */
956 
957  if (__kmp_monitor_stksize == 0) {
958  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
959  }
960  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
961  __kmp_monitor_stksize = __kmp_sys_min_stksize;
962  }
963 
964  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
965  "requested stacksize = %lu bytes\n",
966  size, __kmp_monitor_stksize));
967 
968 retry:
969 
970 /* Set stack size for this thread now. */
971 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
972  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
973  __kmp_monitor_stksize));
974  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
975  if (status != 0) {
976  if (auto_adj_size) {
977  __kmp_monitor_stksize *= 2;
978  goto retry;
979  }
980  kmp_msg_t err_code = KMP_ERR(status);
981  __kmp_msg(kmp_ms_warning, // should this be fatal? BB
982  KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
983  err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
984  if (__kmp_generate_warnings == kmp_warnings_off) {
985  __kmp_str_free(&err_code.str);
986  }
987  }
988 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
989 
990  status =
991  pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
992 
993  if (status != 0) {
994 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
995  if (status == EINVAL) {
996  if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
997  __kmp_monitor_stksize *= 2;
998  goto retry;
999  }
1000  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1001  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
1002  __kmp_msg_null);
1003  }
1004  if (status == ENOMEM) {
1005  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1006  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
1007  __kmp_msg_null);
1008  }
1009 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1010  if (status == EAGAIN) {
1011  __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
1012  KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
1013  }
1014  KMP_SYSFAIL("pthread_create", status);
1015  }
1016 
1017  th->th.th_info.ds.ds_thread = handle;
1018 
1019 #if KMP_REAL_TIME_FIX
1020  // Wait for the monitor thread is really started and set its *priority*.
1021  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1022  sizeof(__kmp_global.g.g_time.dt.t_value));
1023  __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
1024  &__kmp_neq_4, NULL);
1025 #endif // KMP_REAL_TIME_FIX
1026 
1027 #ifdef KMP_THREAD_ATTR
1028  status = pthread_attr_destroy(&thread_attr);
1029  if (status != 0) {
1030  kmp_msg_t err_code = KMP_ERR(status);
1031  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1032  __kmp_msg_null);
1033  if (__kmp_generate_warnings == kmp_warnings_off) {
1034  __kmp_str_free(&err_code.str);
1035  }
1036  }
1037 #endif
1038 
1039  KMP_MB(); /* Flush all pending memory write invalidates. */
1040 
1041  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1042  th->th.th_info.ds.ds_thread));
1043 
1044 } // __kmp_create_monitor
1045 #endif // KMP_USE_MONITOR
1046 
1047 void __kmp_exit_thread(int exit_status) {
1048  pthread_exit((void *)(intptr_t)exit_status);
1049 } // __kmp_exit_thread
1050 
1051 #if KMP_USE_MONITOR
1052 void __kmp_resume_monitor();
1053 
1054 void __kmp_reap_monitor(kmp_info_t *th) {
1055  int status;
1056  void *exit_val;
1057 
1058  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1059  " %#.8lx\n",
1060  th->th.th_info.ds.ds_thread));
1061 
1062  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1063  // If both tid and gtid are 0, it means the monitor did not ever start.
1064  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1065  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1066  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1067  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1068  return;
1069  }
1070 
1071  KMP_MB(); /* Flush all pending memory write invalidates. */
1072 
1073  /* First, check to see whether the monitor thread exists to wake it up. This
1074  is to avoid performance problem when the monitor sleeps during
1075  blocktime-size interval */
1076 
1077  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1078  if (status != ESRCH) {
1079  __kmp_resume_monitor(); // Wake up the monitor thread
1080  }
1081  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1082  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1083  if (exit_val != th) {
1084  __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1085  }
1086 
1087  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1088  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1089 
1090  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1091  " %#.8lx\n",
1092  th->th.th_info.ds.ds_thread));
1093 
1094  KMP_MB(); /* Flush all pending memory write invalidates. */
1095 }
1096 #endif // KMP_USE_MONITOR
1097 
1098 void __kmp_reap_worker(kmp_info_t *th) {
1099  int status;
1100  void *exit_val;
1101 
1102  KMP_MB(); /* Flush all pending memory write invalidates. */
1103 
1104  KA_TRACE(
1105  10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1106 
1107  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1108 #ifdef KMP_DEBUG
1109  /* Don't expose these to the user until we understand when they trigger */
1110  if (status != 0) {
1111  __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1112  }
1113  if (exit_val != th) {
1114  KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1115  "exit_val = %p\n",
1116  th->th.th_info.ds.ds_gtid, exit_val));
1117  }
1118 #endif /* KMP_DEBUG */
1119 
1120  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1121  th->th.th_info.ds.ds_gtid));
1122 
1123  KMP_MB(); /* Flush all pending memory write invalidates. */
1124 }
1125 
1126 #if KMP_HANDLE_SIGNALS
1127 
1128 static void __kmp_null_handler(int signo) {
1129  // Do nothing, for doing SIG_IGN-type actions.
1130 } // __kmp_null_handler
1131 
1132 static void __kmp_team_handler(int signo) {
1133  if (__kmp_global.g.g_abort == 0) {
1134 /* Stage 1 signal handler, let's shut down all of the threads */
1135 #ifdef KMP_DEBUG
1136  __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1137 #endif
1138  switch (signo) {
1139  case SIGHUP:
1140  case SIGINT:
1141  case SIGQUIT:
1142  case SIGILL:
1143  case SIGABRT:
1144  case SIGFPE:
1145  case SIGBUS:
1146  case SIGSEGV:
1147 #ifdef SIGSYS
1148  case SIGSYS:
1149 #endif
1150  case SIGTERM:
1151  if (__kmp_debug_buf) {
1152  __kmp_dump_debug_buffer();
1153  }
1154  __kmp_unregister_library(); // cleanup shared memory
1155  KMP_MB(); // Flush all pending memory write invalidates.
1156  TCW_4(__kmp_global.g.g_abort, signo);
1157  KMP_MB(); // Flush all pending memory write invalidates.
1158  TCW_4(__kmp_global.g.g_done, TRUE);
1159  KMP_MB(); // Flush all pending memory write invalidates.
1160  break;
1161  default:
1162 #ifdef KMP_DEBUG
1163  __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1164 #endif
1165  break;
1166  }
1167  }
1168 } // __kmp_team_handler
1169 
1170 static void __kmp_sigaction(int signum, const struct sigaction *act,
1171  struct sigaction *oldact) {
1172  int rc = sigaction(signum, act, oldact);
1173  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1174 }
1175 
1176 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1177  int parallel_init) {
1178  KMP_MB(); // Flush all pending memory write invalidates.
1179  KB_TRACE(60,
1180  ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1181  if (parallel_init) {
1182  struct sigaction new_action;
1183  struct sigaction old_action;
1184  new_action.sa_handler = handler_func;
1185  new_action.sa_flags = 0;
1186  sigfillset(&new_action.sa_mask);
1187  __kmp_sigaction(sig, &new_action, &old_action);
1188  if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1189  sigaddset(&__kmp_sigset, sig);
1190  } else {
1191  // Restore/keep user's handler if one previously installed.
1192  __kmp_sigaction(sig, &old_action, NULL);
1193  }
1194  } else {
1195  // Save initial/system signal handlers to see if user handlers installed.
1196  __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1197  }
1198  KMP_MB(); // Flush all pending memory write invalidates.
1199 } // __kmp_install_one_handler
1200 
1201 static void __kmp_remove_one_handler(int sig) {
1202  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1203  if (sigismember(&__kmp_sigset, sig)) {
1204  struct sigaction old;
1205  KMP_MB(); // Flush all pending memory write invalidates.
1206  __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1207  if ((old.sa_handler != __kmp_team_handler) &&
1208  (old.sa_handler != __kmp_null_handler)) {
1209  // Restore the users signal handler.
1210  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1211  "restoring: sig=%d\n",
1212  sig));
1213  __kmp_sigaction(sig, &old, NULL);
1214  }
1215  sigdelset(&__kmp_sigset, sig);
1216  KMP_MB(); // Flush all pending memory write invalidates.
1217  }
1218 } // __kmp_remove_one_handler
1219 
1220 void __kmp_install_signals(int parallel_init) {
1221  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1222  if (__kmp_handle_signals || !parallel_init) {
1223  // If ! parallel_init, we do not install handlers, just save original
1224  // handlers. Let us do it even __handle_signals is 0.
1225  sigemptyset(&__kmp_sigset);
1226  __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1227  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1228  __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1229  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1230  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1231  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1232  __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1233  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1234 #ifdef SIGSYS
1235  __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1236 #endif // SIGSYS
1237  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1238 #ifdef SIGPIPE
1239  __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1240 #endif // SIGPIPE
1241  }
1242 } // __kmp_install_signals
1243 
1244 void __kmp_remove_signals(void) {
1245  int sig;
1246  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1247  for (sig = 1; sig < NSIG; ++sig) {
1248  __kmp_remove_one_handler(sig);
1249  }
1250 } // __kmp_remove_signals
1251 
1252 #endif // KMP_HANDLE_SIGNALS
1253 
1254 void __kmp_enable(int new_state) {
1255 #ifdef KMP_CANCEL_THREADS
1256  int status, old_state;
1257  status = pthread_setcancelstate(new_state, &old_state);
1258  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1259  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1260 #endif
1261 }
1262 
1263 void __kmp_disable(int *old_state) {
1264 #ifdef KMP_CANCEL_THREADS
1265  int status;
1266  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1267  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1268 #endif
1269 }
1270 
1271 static void __kmp_atfork_prepare(void) {
1272  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1273  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1274 }
1275 
1276 static void __kmp_atfork_parent(void) {
1277  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1278  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1279 }
1280 
1281 /* Reset the library so execution in the child starts "all over again" with
1282  clean data structures in initial states. Don't worry about freeing memory
1283  allocated by parent, just abandon it to be safe. */
1284 static void __kmp_atfork_child(void) {
1285  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1286  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1287  /* TODO make sure this is done right for nested/sibling */
1288  // ATT: Memory leaks are here? TODO: Check it and fix.
1289  /* KMP_ASSERT( 0 ); */
1290 
1291  ++__kmp_fork_count;
1292 
1293 #if KMP_AFFINITY_SUPPORTED
1294 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1295  // reset the affinity in the child to the initial thread
1296  // affinity in the parent
1297  kmp_set_thread_affinity_mask_initial();
1298 #endif
1299  // Set default not to bind threads tightly in the child (we’re expecting
1300  // over-subscription after the fork and this can improve things for
1301  // scripting languages that use OpenMP inside process-parallel code).
1302  __kmp_affinity_type = affinity_none;
1303  if (__kmp_nested_proc_bind.bind_types != NULL) {
1304  __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1305  }
1306 #endif // KMP_AFFINITY_SUPPORTED
1307 
1308 #if KMP_USE_MONITOR
1309  __kmp_init_monitor = 0;
1310 #endif
1311  __kmp_init_parallel = FALSE;
1312  __kmp_init_middle = FALSE;
1313  __kmp_init_serial = FALSE;
1314  TCW_4(__kmp_init_gtid, FALSE);
1315  __kmp_init_common = FALSE;
1316 
1317  TCW_4(__kmp_init_user_locks, FALSE);
1318 #if !KMP_USE_DYNAMIC_LOCK
1319  __kmp_user_lock_table.used = 1;
1320  __kmp_user_lock_table.allocated = 0;
1321  __kmp_user_lock_table.table = NULL;
1322  __kmp_lock_blocks = NULL;
1323 #endif
1324 
1325  __kmp_all_nth = 0;
1326  TCW_4(__kmp_nth, 0);
1327 
1328  __kmp_thread_pool = NULL;
1329  __kmp_thread_pool_insert_pt = NULL;
1330  __kmp_team_pool = NULL;
1331 
1332  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1333  here so threadprivate doesn't use stale data */
1334  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1335  __kmp_threadpriv_cache_list));
1336 
1337  while (__kmp_threadpriv_cache_list != NULL) {
1338 
1339  if (*__kmp_threadpriv_cache_list->addr != NULL) {
1340  KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1341  &(*__kmp_threadpriv_cache_list->addr)));
1342 
1343  *__kmp_threadpriv_cache_list->addr = NULL;
1344  }
1345  __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1346  }
1347 
1348  __kmp_init_runtime = FALSE;
1349 
1350  /* reset statically initialized locks */
1351  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1352  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1353  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1354  __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1355 
1356 #if USE_ITT_BUILD
1357  __kmp_itt_reset(); // reset ITT's global state
1358 #endif /* USE_ITT_BUILD */
1359 
1360  __kmp_serial_initialize();
1361 
1362  /* This is necessary to make sure no stale data is left around */
1363  /* AC: customers complain that we use unsafe routines in the atfork
1364  handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1365  in dynamic_link when check the presence of shared tbbmalloc library.
1366  Suggestion is to make the library initialization lazier, similar
1367  to what done for __kmpc_begin(). */
1368  // TODO: synchronize all static initializations with regular library
1369  // startup; look at kmp_global.cpp and etc.
1370  //__kmp_internal_begin ();
1371 }
1372 
1373 void __kmp_register_atfork(void) {
1374  if (__kmp_need_register_atfork) {
1375  int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1376  __kmp_atfork_child);
1377  KMP_CHECK_SYSFAIL("pthread_atfork", status);
1378  __kmp_need_register_atfork = FALSE;
1379  }
1380 }
1381 
1382 void __kmp_suspend_initialize(void) {
1383  int status;
1384  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1385  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1386  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1387  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1388 }
1389 
1390 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1391  ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1392  int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1393  int new_value = __kmp_fork_count + 1;
1394  // Return if already initialized
1395  if (old_value == new_value)
1396  return;
1397  // Wait, then return if being initialized
1398  if (old_value == -1 || !__kmp_atomic_compare_store(
1399  &th->th.th_suspend_init_count, old_value, -1)) {
1400  while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1401  KMP_CPU_PAUSE();
1402  }
1403  } else {
1404  // Claim to be the initializer and do initializations
1405  int status;
1406  status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1407  &__kmp_suspend_cond_attr);
1408  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1409  status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1410  &__kmp_suspend_mutex_attr);
1411  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1412  KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1413  ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1414  }
1415 }
1416 
1417 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1418  if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1419  /* this means we have initialize the suspension pthread objects for this
1420  thread in this instance of the process */
1421  int status;
1422 
1423  status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1424  if (status != 0 && status != EBUSY) {
1425  KMP_SYSFAIL("pthread_cond_destroy", status);
1426  }
1427  status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1428  if (status != 0 && status != EBUSY) {
1429  KMP_SYSFAIL("pthread_mutex_destroy", status);
1430  }
1431  --th->th.th_suspend_init_count;
1432  KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1433  __kmp_fork_count);
1434  }
1435 }
1436 
1437 // return true if lock obtained, false otherwise
1438 int __kmp_try_suspend_mx(kmp_info_t *th) {
1439  return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1440 }
1441 
1442 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1443  int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1444  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1445 }
1446 
1447 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1448  int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1449  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1450 }
1451 
1452 /* This routine puts the calling thread to sleep after setting the
1453  sleep bit for the indicated flag variable to true. */
1454 template <class C>
1455 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1456  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1457  kmp_info_t *th = __kmp_threads[th_gtid];
1458  int status;
1459  typename C::flag_t old_spin;
1460 
1461  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1462  flag->get()));
1463 
1464  __kmp_suspend_initialize_thread(th);
1465 
1466  __kmp_lock_suspend_mx(th);
1467 
1468  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1469  th_gtid, flag->get()));
1470 
1471  /* TODO: shouldn't this use release semantics to ensure that
1472  __kmp_suspend_initialize_thread gets called first? */
1473  old_spin = flag->set_sleeping();
1474  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1475  __kmp_pause_status != kmp_soft_paused) {
1476  flag->unset_sleeping();
1477  __kmp_unlock_suspend_mx(th);
1478  return;
1479  }
1480  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1481  " was %x\n",
1482  th_gtid, flag->get(), flag->load(), old_spin));
1483 
1484  if (flag->done_check_val(old_spin)) {
1485  old_spin = flag->unset_sleeping();
1486  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1487  "for spin(%p)\n",
1488  th_gtid, flag->get()));
1489  } else {
1490  /* Encapsulate in a loop as the documentation states that this may
1491  "with low probability" return when the condition variable has
1492  not been signaled or broadcast */
1493  int deactivated = FALSE;
1494  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1495 
1496  while (flag->is_sleeping()) {
1497 #ifdef DEBUG_SUSPEND
1498  char buffer[128];
1499  __kmp_suspend_count++;
1500  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1501  __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1502  buffer);
1503 #endif
1504  // Mark the thread as no longer active (only in the first iteration of the
1505  // loop).
1506  if (!deactivated) {
1507  th->th.th_active = FALSE;
1508  if (th->th.th_active_in_pool) {
1509  th->th.th_active_in_pool = FALSE;
1510  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1511  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1512  }
1513  deactivated = TRUE;
1514  }
1515 
1516 #if USE_SUSPEND_TIMEOUT
1517  struct timespec now;
1518  struct timeval tval;
1519  int msecs;
1520 
1521  status = gettimeofday(&tval, NULL);
1522  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1523  TIMEVAL_TO_TIMESPEC(&tval, &now);
1524 
1525  msecs = (4 * __kmp_dflt_blocktime) + 200;
1526  now.tv_sec += msecs / 1000;
1527  now.tv_nsec += (msecs % 1000) * 1000;
1528 
1529  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1530  "pthread_cond_timedwait\n",
1531  th_gtid));
1532  status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1533  &th->th.th_suspend_mx.m_mutex, &now);
1534 #else
1535  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1536  " pthread_cond_wait\n",
1537  th_gtid));
1538  status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1539  &th->th.th_suspend_mx.m_mutex);
1540 #endif // USE_SUSPEND_TIMEOUT
1541 
1542  if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1543  KMP_SYSFAIL("pthread_cond_wait", status);
1544  }
1545 #ifdef KMP_DEBUG
1546  if (status == ETIMEDOUT) {
1547  if (flag->is_sleeping()) {
1548  KF_TRACE(100,
1549  ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1550  } else {
1551  KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1552  "not set!\n",
1553  th_gtid));
1554  }
1555  } else if (flag->is_sleeping()) {
1556  KF_TRACE(100,
1557  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1558  }
1559 #endif
1560  } // while
1561 
1562  // Mark the thread as active again (if it was previous marked as inactive)
1563  if (deactivated) {
1564  th->th.th_active = TRUE;
1565  if (TCR_4(th->th.th_in_pool)) {
1566  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1567  th->th.th_active_in_pool = TRUE;
1568  }
1569  }
1570  }
1571 #ifdef DEBUG_SUSPEND
1572  {
1573  char buffer[128];
1574  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1575  __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1576  buffer);
1577  }
1578 #endif
1579 
1580  __kmp_unlock_suspend_mx(th);
1581  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1582 }
1583 
1584 template <bool C, bool S>
1585 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1586  __kmp_suspend_template(th_gtid, flag);
1587 }
1588 template <bool C, bool S>
1589 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1590  __kmp_suspend_template(th_gtid, flag);
1591 }
1592 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1593  __kmp_suspend_template(th_gtid, flag);
1594 }
1595 
1596 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1597 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1598 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1599 
1600 /* This routine signals the thread specified by target_gtid to wake up
1601  after setting the sleep bit indicated by the flag argument to FALSE.
1602  The target thread must already have called __kmp_suspend_template() */
1603 template <class C>
1604 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1605  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1606  kmp_info_t *th = __kmp_threads[target_gtid];
1607  int status;
1608 
1609 #ifdef KMP_DEBUG
1610  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1611 #endif
1612 
1613  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1614  gtid, target_gtid));
1615  KMP_DEBUG_ASSERT(gtid != target_gtid);
1616 
1617  __kmp_suspend_initialize_thread(th);
1618 
1619  __kmp_lock_suspend_mx(th);
1620 
1621  if (!flag) { // coming from __kmp_null_resume_wrapper
1622  flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1623  }
1624 
1625  // First, check if the flag is null or its type has changed. If so, someone
1626  // else woke it up.
1627  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1628  // simply shows what flag was cast to
1629  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1630  "awake: flag(%p)\n",
1631  gtid, target_gtid, NULL));
1632  __kmp_unlock_suspend_mx(th);
1633  return;
1634  } else { // if multiple threads are sleeping, flag should be internally
1635  // referring to a specific thread here
1636  typename C::flag_t old_spin = flag->unset_sleeping();
1637  if (!flag->is_sleeping_val(old_spin)) {
1638  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1639  "awake: flag(%p): "
1640  "%u => %u\n",
1641  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1642  __kmp_unlock_suspend_mx(th);
1643  return;
1644  }
1645  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1646  "sleep bit for flag's loc(%p): "
1647  "%u => %u\n",
1648  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1649  }
1650  TCW_PTR(th->th.th_sleep_loc, NULL);
1651 
1652 #ifdef DEBUG_SUSPEND
1653  {
1654  char buffer[128];
1655  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1656  __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1657  target_gtid, buffer);
1658  }
1659 #endif
1660  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1661  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1662  __kmp_unlock_suspend_mx(th);
1663  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1664  " for T#%d\n",
1665  gtid, target_gtid));
1666 }
1667 
1668 template <bool C, bool S>
1669 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1670  __kmp_resume_template(target_gtid, flag);
1671 }
1672 template <bool C, bool S>
1673 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1674  __kmp_resume_template(target_gtid, flag);
1675 }
1676 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1677  __kmp_resume_template(target_gtid, flag);
1678 }
1679 
1680 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1681 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1682 
1683 #if KMP_USE_MONITOR
1684 void __kmp_resume_monitor() {
1685  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1686  int status;
1687 #ifdef KMP_DEBUG
1688  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1689  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1690  KMP_GTID_MONITOR));
1691  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1692 #endif
1693  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1694  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1695 #ifdef DEBUG_SUSPEND
1696  {
1697  char buffer[128];
1698  __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1699  __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1700  KMP_GTID_MONITOR, buffer);
1701  }
1702 #endif
1703  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1704  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1705  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1706  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1707  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1708  " for T#%d\n",
1709  gtid, KMP_GTID_MONITOR));
1710 }
1711 #endif // KMP_USE_MONITOR
1712 
1713 void __kmp_yield() { sched_yield(); }
1714 
1715 void __kmp_gtid_set_specific(int gtid) {
1716  if (__kmp_init_gtid) {
1717  int status;
1718  status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1719  (void *)(intptr_t)(gtid + 1));
1720  KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1721  } else {
1722  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1723  }
1724 }
1725 
1726 int __kmp_gtid_get_specific() {
1727  int gtid;
1728  if (!__kmp_init_gtid) {
1729  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1730  "KMP_GTID_SHUTDOWN\n"));
1731  return KMP_GTID_SHUTDOWN;
1732  }
1733  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1734  if (gtid == 0) {
1735  gtid = KMP_GTID_DNE;
1736  } else {
1737  gtid--;
1738  }
1739  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1740  __kmp_gtid_threadprivate_key, gtid));
1741  return gtid;
1742 }
1743 
1744 double __kmp_read_cpu_time(void) {
1745  /*clock_t t;*/
1746  struct tms buffer;
1747 
1748  /*t =*/times(&buffer);
1749 
1750  return (double)(buffer.tms_utime + buffer.tms_cutime) /
1751  (double)CLOCKS_PER_SEC;
1752 }
1753 
1754 int __kmp_read_system_info(struct kmp_sys_info *info) {
1755  int status;
1756  struct rusage r_usage;
1757 
1758  memset(info, 0, sizeof(*info));
1759 
1760  status = getrusage(RUSAGE_SELF, &r_usage);
1761  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1762 
1763  // The maximum resident set size utilized (in kilobytes)
1764  info->maxrss = r_usage.ru_maxrss;
1765  // The number of page faults serviced without any I/O
1766  info->minflt = r_usage.ru_minflt;
1767  // The number of page faults serviced that required I/O
1768  info->majflt = r_usage.ru_majflt;
1769  // The number of times a process was "swapped" out of memory
1770  info->nswap = r_usage.ru_nswap;
1771  // The number of times the file system had to perform input
1772  info->inblock = r_usage.ru_inblock;
1773  // The number of times the file system had to perform output
1774  info->oublock = r_usage.ru_oublock;
1775  // The number of times a context switch was voluntarily
1776  info->nvcsw = r_usage.ru_nvcsw;
1777  // The number of times a context switch was forced
1778  info->nivcsw = r_usage.ru_nivcsw;
1779 
1780  return (status != 0);
1781 }
1782 
1783 void __kmp_read_system_time(double *delta) {
1784  double t_ns;
1785  struct timeval tval;
1786  struct timespec stop;
1787  int status;
1788 
1789  status = gettimeofday(&tval, NULL);
1790  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1791  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1792  t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1793  *delta = (t_ns * 1e-9);
1794 }
1795 
1796 void __kmp_clear_system_time(void) {
1797  struct timeval tval;
1798  int status;
1799  status = gettimeofday(&tval, NULL);
1800  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1801  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1802 }
1803 
1804 static int __kmp_get_xproc(void) {
1805 
1806  int r = 0;
1807 
1808 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
1809  KMP_OS_OPENBSD || KMP_OS_HURD
1810 
1811  __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1812 
1813 #elif KMP_OS_DARWIN
1814 
1815  // Bug C77011 High "OpenMP Threads and number of active cores".
1816 
1817  // Find the number of available CPUs.
1818  kern_return_t rc;
1819  host_basic_info_data_t info;
1820  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1821  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1822  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1823  // Cannot use KA_TRACE() here because this code works before trace support
1824  // is initialized.
1825  r = info.avail_cpus;
1826  } else {
1827  KMP_WARNING(CantGetNumAvailCPU);
1828  KMP_INFORM(AssumedNumCPU);
1829  }
1830 
1831 #else
1832 
1833 #error "Unknown or unsupported OS."
1834 
1835 #endif
1836 
1837  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1838 
1839 } // __kmp_get_xproc
1840 
1841 int __kmp_read_from_file(char const *path, char const *format, ...) {
1842  int result;
1843  va_list args;
1844 
1845  va_start(args, format);
1846  FILE *f = fopen(path, "rb");
1847  if (f == NULL)
1848  return 0;
1849  result = vfscanf(f, format, args);
1850  fclose(f);
1851 
1852  return result;
1853 }
1854 
1855 void __kmp_runtime_initialize(void) {
1856  int status;
1857  pthread_mutexattr_t mutex_attr;
1858  pthread_condattr_t cond_attr;
1859 
1860  if (__kmp_init_runtime) {
1861  return;
1862  }
1863 
1864 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1865  if (!__kmp_cpuinfo.initialized) {
1866  __kmp_query_cpuid(&__kmp_cpuinfo);
1867  }
1868 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1869 
1870  __kmp_xproc = __kmp_get_xproc();
1871 
1872 #if !KMP_32_BIT_ARCH
1873  struct rlimit rlim;
1874  // read stack size of calling thread, save it as default for worker threads;
1875  // this should be done before reading environment variables
1876  status = getrlimit(RLIMIT_STACK, &rlim);
1877  if (status == 0) { // success?
1878  __kmp_stksize = rlim.rlim_cur;
1879  __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1880  }
1881 #endif /* KMP_32_BIT_ARCH */
1882 
1883  if (sysconf(_SC_THREADS)) {
1884 
1885  /* Query the maximum number of threads */
1886  __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1887  if (__kmp_sys_max_nth == -1) {
1888  /* Unlimited threads for NPTL */
1889  __kmp_sys_max_nth = INT_MAX;
1890  } else if (__kmp_sys_max_nth <= 1) {
1891  /* Can't tell, just use PTHREAD_THREADS_MAX */
1892  __kmp_sys_max_nth = KMP_MAX_NTH;
1893  }
1894 
1895  /* Query the minimum stack size */
1896  __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1897  if (__kmp_sys_min_stksize <= 1) {
1898  __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1899  }
1900  }
1901 
1902  /* Set up minimum number of threads to switch to TLS gtid */
1903  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1904 
1905  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1906  __kmp_internal_end_dest);
1907  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1908  status = pthread_mutexattr_init(&mutex_attr);
1909  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1910  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1911  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1912  status = pthread_mutexattr_destroy(&mutex_attr);
1913  KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1914  status = pthread_condattr_init(&cond_attr);
1915  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1916  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1917  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1918  status = pthread_condattr_destroy(&cond_attr);
1919  KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1920 #if USE_ITT_BUILD
1921  __kmp_itt_initialize();
1922 #endif /* USE_ITT_BUILD */
1923 
1924  __kmp_init_runtime = TRUE;
1925 }
1926 
1927 void __kmp_runtime_destroy(void) {
1928  int status;
1929 
1930  if (!__kmp_init_runtime) {
1931  return; // Nothing to do.
1932  }
1933 
1934 #if USE_ITT_BUILD
1935  __kmp_itt_destroy();
1936 #endif /* USE_ITT_BUILD */
1937 
1938  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1939  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1940 
1941  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1942  if (status != 0 && status != EBUSY) {
1943  KMP_SYSFAIL("pthread_mutex_destroy", status);
1944  }
1945  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1946  if (status != 0 && status != EBUSY) {
1947  KMP_SYSFAIL("pthread_cond_destroy", status);
1948  }
1949 #if KMP_AFFINITY_SUPPORTED
1950  __kmp_affinity_uninitialize();
1951 #endif
1952 
1953  __kmp_init_runtime = FALSE;
1954 }
1955 
1956 /* Put the thread to sleep for a time period */
1957 /* NOTE: not currently used anywhere */
1958 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1959 
1960 /* Calculate the elapsed wall clock time for the user */
1961 void __kmp_elapsed(double *t) {
1962  int status;
1963 #ifdef FIX_SGI_CLOCK
1964  struct timespec ts;
1965 
1966  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1967  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1968  *t =
1969  (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1970 #else
1971  struct timeval tv;
1972 
1973  status = gettimeofday(&tv, NULL);
1974  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1975  *t =
1976  (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1977 #endif
1978 }
1979 
1980 /* Calculate the elapsed wall clock tick for the user */
1981 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1982 
1983 /* Return the current time stamp in nsec */
1984 kmp_uint64 __kmp_now_nsec() {
1985  struct timeval t;
1986  gettimeofday(&t, NULL);
1987  kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1988  (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1989  return nsec;
1990 }
1991 
1992 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1993 /* Measure clock ticks per millisecond */
1994 void __kmp_initialize_system_tick() {
1995  kmp_uint64 now, nsec2, diff;
1996  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1997  kmp_uint64 nsec = __kmp_now_nsec();
1998  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1999  while ((now = __kmp_hardware_timestamp()) < goal)
2000  ;
2001  nsec2 = __kmp_now_nsec();
2002  diff = nsec2 - nsec;
2003  if (diff > 0) {
2004  kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
2005  if (tpms > 0)
2006  __kmp_ticks_per_msec = tpms;
2007  }
2008 }
2009 #endif
2010 
2011 /* Determine whether the given address is mapped into the current address
2012  space. */
2013 
2014 int __kmp_is_address_mapped(void *addr) {
2015 
2016  int found = 0;
2017  int rc;
2018 
2019 #if KMP_OS_LINUX || KMP_OS_HURD
2020 
2021  /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2022  address ranges mapped into the address space. */
2023 
2024  char *name = __kmp_str_format("/proc/%d/maps", getpid());
2025  FILE *file = NULL;
2026 
2027  file = fopen(name, "r");
2028  KMP_ASSERT(file != NULL);
2029 
2030  for (;;) {
2031 
2032  void *beginning = NULL;
2033  void *ending = NULL;
2034  char perms[5];
2035 
2036  rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2037  if (rc == EOF) {
2038  break;
2039  }
2040  KMP_ASSERT(rc == 3 &&
2041  KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2042 
2043  // Ending address is not included in the region, but beginning is.
2044  if ((addr >= beginning) && (addr < ending)) {
2045  perms[2] = 0; // 3th and 4th character does not matter.
2046  if (strcmp(perms, "rw") == 0) {
2047  // Memory we are looking for should be readable and writable.
2048  found = 1;
2049  }
2050  break;
2051  }
2052  }
2053 
2054  // Free resources.
2055  fclose(file);
2056  KMP_INTERNAL_FREE(name);
2057 #elif KMP_OS_FREEBSD
2058  char *buf;
2059  size_t lstsz;
2060  int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2061  rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2062  if (rc < 0)
2063  return 0;
2064  // We pass from number of vm entry's semantic
2065  // to size of whole entry map list.
2066  lstsz = lstsz * 4 / 3;
2067  buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2068  rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2069  if (rc < 0) {
2070  kmpc_free(buf);
2071  return 0;
2072  }
2073 
2074  char *lw = buf;
2075  char *up = buf + lstsz;
2076 
2077  while (lw < up) {
2078  struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2079  size_t cursz = cur->kve_structsize;
2080  if (cursz == 0)
2081  break;
2082  void *start = reinterpret_cast<void *>(cur->kve_start);
2083  void *end = reinterpret_cast<void *>(cur->kve_end);
2084  // Readable/Writable addresses within current map entry
2085  if ((addr >= start) && (addr < end)) {
2086  if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2087  (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2088  found = 1;
2089  break;
2090  }
2091  }
2092  lw += cursz;
2093  }
2094  kmpc_free(buf);
2095 
2096 #elif KMP_OS_DARWIN
2097 
2098  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2099  using vm interface. */
2100 
2101  int buffer;
2102  vm_size_t count;
2103  rc = vm_read_overwrite(
2104  mach_task_self(), // Task to read memory of.
2105  (vm_address_t)(addr), // Address to read from.
2106  1, // Number of bytes to be read.
2107  (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2108  &count // Address of var to save number of read bytes in.
2109  );
2110  if (rc == 0) {
2111  // Memory successfully read.
2112  found = 1;
2113  }
2114 
2115 #elif KMP_OS_NETBSD
2116 
2117  int mib[5];
2118  mib[0] = CTL_VM;
2119  mib[1] = VM_PROC;
2120  mib[2] = VM_PROC_MAP;
2121  mib[3] = getpid();
2122  mib[4] = sizeof(struct kinfo_vmentry);
2123 
2124  size_t size;
2125  rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2126  KMP_ASSERT(!rc);
2127  KMP_ASSERT(size);
2128 
2129  size = size * 4 / 3;
2130  struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2131  KMP_ASSERT(kiv);
2132 
2133  rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2134  KMP_ASSERT(!rc);
2135  KMP_ASSERT(size);
2136 
2137  for (size_t i = 0; i < size; i++) {
2138  if (kiv[i].kve_start >= (uint64_t)addr &&
2139  kiv[i].kve_end <= (uint64_t)addr) {
2140  found = 1;
2141  break;
2142  }
2143  }
2144  KMP_INTERNAL_FREE(kiv);
2145 #elif KMP_OS_OPENBSD
2146 
2147  int mib[3];
2148  mib[0] = CTL_KERN;
2149  mib[1] = KERN_PROC_VMMAP;
2150  mib[2] = getpid();
2151 
2152  size_t size;
2153  uint64_t end;
2154  rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2155  KMP_ASSERT(!rc);
2156  KMP_ASSERT(size);
2157  end = size;
2158 
2159  struct kinfo_vmentry kiv = {.kve_start = 0};
2160 
2161  while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2162  KMP_ASSERT(size);
2163  if (kiv.kve_end == end)
2164  break;
2165 
2166  if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2167  found = 1;
2168  break;
2169  }
2170  kiv.kve_start += 1;
2171  }
2172 #elif KMP_OS_DRAGONFLY
2173 
2174  // FIXME(DragonFly): Implement this
2175  found = 1;
2176 
2177 #else
2178 
2179 #error "Unknown or unsupported OS"
2180 
2181 #endif
2182 
2183  return found;
2184 
2185 } // __kmp_is_address_mapped
2186 
2187 #ifdef USE_LOAD_BALANCE
2188 
2189 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2190 
2191 // The function returns the rounded value of the system load average
2192 // during given time interval which depends on the value of
2193 // __kmp_load_balance_interval variable (default is 60 sec, other values
2194 // may be 300 sec or 900 sec).
2195 // It returns -1 in case of error.
2196 int __kmp_get_load_balance(int max) {
2197  double averages[3];
2198  int ret_avg = 0;
2199 
2200  int res = getloadavg(averages, 3);
2201 
2202  // Check __kmp_load_balance_interval to determine which of averages to use.
2203  // getloadavg() may return the number of samples less than requested that is
2204  // less than 3.
2205  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2206  ret_avg = (int)averages[0]; // 1 min
2207  } else if ((__kmp_load_balance_interval >= 180 &&
2208  __kmp_load_balance_interval < 600) &&
2209  (res >= 2)) {
2210  ret_avg = (int)averages[1]; // 5 min
2211  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2212  ret_avg = (int)averages[2]; // 15 min
2213  } else { // Error occurred
2214  return -1;
2215  }
2216 
2217  return ret_avg;
2218 }
2219 
2220 #else // Linux* OS
2221 
2222 // The function returns number of running (not sleeping) threads, or -1 in case
2223 // of error. Error could be reported if Linux* OS kernel too old (without
2224 // "/proc" support). Counting running threads stops if max running threads
2225 // encountered.
2226 int __kmp_get_load_balance(int max) {
2227  static int permanent_error = 0;
2228  static int glb_running_threads = 0; // Saved count of the running threads for
2229  // the thread balance algorithm
2230  static double glb_call_time = 0; /* Thread balance algorithm call time */
2231 
2232  int running_threads = 0; // Number of running threads in the system.
2233 
2234  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2235  struct dirent *proc_entry = NULL;
2236 
2237  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2238  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2239  struct dirent *task_entry = NULL;
2240  int task_path_fixed_len;
2241 
2242  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2243  int stat_file = -1;
2244  int stat_path_fixed_len;
2245 
2246  int total_processes = 0; // Total number of processes in system.
2247  int total_threads = 0; // Total number of threads in system.
2248 
2249  double call_time = 0.0;
2250 
2251  __kmp_str_buf_init(&task_path);
2252  __kmp_str_buf_init(&stat_path);
2253 
2254  __kmp_elapsed(&call_time);
2255 
2256  if (glb_call_time &&
2257  (call_time - glb_call_time < __kmp_load_balance_interval)) {
2258  running_threads = glb_running_threads;
2259  goto finish;
2260  }
2261 
2262  glb_call_time = call_time;
2263 
2264  // Do not spend time on scanning "/proc/" if we have a permanent error.
2265  if (permanent_error) {
2266  running_threads = -1;
2267  goto finish;
2268  }
2269 
2270  if (max <= 0) {
2271  max = INT_MAX;
2272  }
2273 
2274  // Open "/proc/" directory.
2275  proc_dir = opendir("/proc");
2276  if (proc_dir == NULL) {
2277  // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2278  // error now and in subsequent calls.
2279  running_threads = -1;
2280  permanent_error = 1;
2281  goto finish;
2282  }
2283 
2284  // Initialize fixed part of task_path. This part will not change.
2285  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2286  task_path_fixed_len = task_path.used; // Remember number of used characters.
2287 
2288  proc_entry = readdir(proc_dir);
2289  while (proc_entry != NULL) {
2290  // Proc entry is a directory and name starts with a digit. Assume it is a
2291  // process' directory.
2292  if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2293 
2294  ++total_processes;
2295  // Make sure init process is the very first in "/proc", so we can replace
2296  // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2297  // 1. We are going to check that total_processes == 1 => d_name == "1" is
2298  // true (where "=>" is implication). Since C++ does not have => operator,
2299  // let us replace it with its equivalent: a => b == ! a || b.
2300  KMP_DEBUG_ASSERT(total_processes != 1 ||
2301  strcmp(proc_entry->d_name, "1") == 0);
2302 
2303  // Construct task_path.
2304  task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2305  __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2306  KMP_STRLEN(proc_entry->d_name));
2307  __kmp_str_buf_cat(&task_path, "/task", 5);
2308 
2309  task_dir = opendir(task_path.str);
2310  if (task_dir == NULL) {
2311  // Process can finish between reading "/proc/" directory entry and
2312  // opening process' "task/" directory. So, in general case we should not
2313  // complain, but have to skip this process and read the next one. But on
2314  // systems with no "task/" support we will spend lot of time to scan
2315  // "/proc/" tree again and again without any benefit. "init" process
2316  // (its pid is 1) should exist always, so, if we cannot open
2317  // "/proc/1/task/" directory, it means "task/" is not supported by
2318  // kernel. Report an error now and in the future.
2319  if (strcmp(proc_entry->d_name, "1") == 0) {
2320  running_threads = -1;
2321  permanent_error = 1;
2322  goto finish;
2323  }
2324  } else {
2325  // Construct fixed part of stat file path.
2326  __kmp_str_buf_clear(&stat_path);
2327  __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2328  __kmp_str_buf_cat(&stat_path, "/", 1);
2329  stat_path_fixed_len = stat_path.used;
2330 
2331  task_entry = readdir(task_dir);
2332  while (task_entry != NULL) {
2333  // It is a directory and name starts with a digit.
2334  if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2335  ++total_threads;
2336 
2337  // Construct complete stat file path. Easiest way would be:
2338  // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2339  // task_entry->d_name );
2340  // but seriae of __kmp_str_buf_cat works a bit faster.
2341  stat_path.used =
2342  stat_path_fixed_len; // Reset stat path to its fixed part.
2343  __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2344  KMP_STRLEN(task_entry->d_name));
2345  __kmp_str_buf_cat(&stat_path, "/stat", 5);
2346 
2347  // Note: Low-level API (open/read/close) is used. High-level API
2348  // (fopen/fclose) works ~ 30 % slower.
2349  stat_file = open(stat_path.str, O_RDONLY);
2350  if (stat_file == -1) {
2351  // We cannot report an error because task (thread) can terminate
2352  // just before reading this file.
2353  } else {
2354  /* Content of "stat" file looks like:
2355  24285 (program) S ...
2356 
2357  It is a single line (if program name does not include funny
2358  symbols). First number is a thread id, then name of executable
2359  file name in paretheses, then state of the thread. We need just
2360  thread state.
2361 
2362  Good news: Length of program name is 15 characters max. Longer
2363  names are truncated.
2364 
2365  Thus, we need rather short buffer: 15 chars for program name +
2366  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2367 
2368  Bad news: Program name may contain special symbols like space,
2369  closing parenthesis, or even new line. This makes parsing
2370  "stat" file not 100 % reliable. In case of fanny program names
2371  parsing may fail (report incorrect thread state).
2372 
2373  Parsing "status" file looks more promissing (due to different
2374  file structure and escaping special symbols) but reading and
2375  parsing of "status" file works slower.
2376  -- ln
2377  */
2378  char buffer[65];
2379  ssize_t len;
2380  len = read(stat_file, buffer, sizeof(buffer) - 1);
2381  if (len >= 0) {
2382  buffer[len] = 0;
2383  // Using scanf:
2384  // sscanf( buffer, "%*d (%*s) %c ", & state );
2385  // looks very nice, but searching for a closing parenthesis
2386  // works a bit faster.
2387  char *close_parent = strstr(buffer, ") ");
2388  if (close_parent != NULL) {
2389  char state = *(close_parent + 2);
2390  if (state == 'R') {
2391  ++running_threads;
2392  if (running_threads >= max) {
2393  goto finish;
2394  }
2395  }
2396  }
2397  }
2398  close(stat_file);
2399  stat_file = -1;
2400  }
2401  }
2402  task_entry = readdir(task_dir);
2403  }
2404  closedir(task_dir);
2405  task_dir = NULL;
2406  }
2407  }
2408  proc_entry = readdir(proc_dir);
2409  }
2410 
2411  // There _might_ be a timing hole where the thread executing this
2412  // code get skipped in the load balance, and running_threads is 0.
2413  // Assert in the debug builds only!!!
2414  KMP_DEBUG_ASSERT(running_threads > 0);
2415  if (running_threads <= 0) {
2416  running_threads = 1;
2417  }
2418 
2419 finish: // Clean up and exit.
2420  if (proc_dir != NULL) {
2421  closedir(proc_dir);
2422  }
2423  __kmp_str_buf_free(&task_path);
2424  if (task_dir != NULL) {
2425  closedir(task_dir);
2426  }
2427  __kmp_str_buf_free(&stat_path);
2428  if (stat_file != -1) {
2429  close(stat_file);
2430  }
2431 
2432  glb_running_threads = running_threads;
2433 
2434  return running_threads;
2435 
2436 } // __kmp_get_load_balance
2437 
2438 #endif // KMP_OS_DARWIN
2439 
2440 #endif // USE_LOAD_BALANCE
2441 
2442 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2443  ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
2444  KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2445 
2446 // we really only need the case with 1 argument, because CLANG always build
2447 // a struct of pointers to shared variables referenced in the outlined function
2448 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2449  void *p_argv[]
2450 #if OMPT_SUPPORT
2451  ,
2452  void **exit_frame_ptr
2453 #endif
2454 ) {
2455 #if OMPT_SUPPORT
2456  *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2457 #endif
2458 
2459  switch (argc) {
2460  default:
2461  fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2462  fflush(stderr);
2463  exit(-1);
2464  case 0:
2465  (*pkfn)(&gtid, &tid);
2466  break;
2467  case 1:
2468  (*pkfn)(&gtid, &tid, p_argv[0]);
2469  break;
2470  case 2:
2471  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2472  break;
2473  case 3:
2474  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2475  break;
2476  case 4:
2477  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2478  break;
2479  case 5:
2480  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2481  break;
2482  case 6:
2483  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2484  p_argv[5]);
2485  break;
2486  case 7:
2487  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2488  p_argv[5], p_argv[6]);
2489  break;
2490  case 8:
2491  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2492  p_argv[5], p_argv[6], p_argv[7]);
2493  break;
2494  case 9:
2495  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2496  p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2497  break;
2498  case 10:
2499  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2500  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2501  break;
2502  case 11:
2503  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2504  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2505  break;
2506  case 12:
2507  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2508  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2509  p_argv[11]);
2510  break;
2511  case 13:
2512  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2513  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2514  p_argv[11], p_argv[12]);
2515  break;
2516  case 14:
2517  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2518  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2519  p_argv[11], p_argv[12], p_argv[13]);
2520  break;
2521  case 15:
2522  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2523  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2524  p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2525  break;
2526  }
2527 
2528  return 1;
2529 }
2530 
2531 #endif
2532 
2533 // Functions for hidden helper task
2534 namespace {
2535 // Condition variable for initializing hidden helper team
2536 pthread_cond_t hidden_helper_threads_initz_cond_var;
2537 pthread_mutex_t hidden_helper_threads_initz_lock;
2538 volatile int hidden_helper_initz_signaled = FALSE;
2539 
2540 // Condition variable for deinitializing hidden helper team
2541 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2542 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2543 volatile int hidden_helper_deinitz_signaled = FALSE;
2544 
2545 // Condition variable for the wrapper function of main thread
2546 pthread_cond_t hidden_helper_main_thread_cond_var;
2547 pthread_mutex_t hidden_helper_main_thread_lock;
2548 volatile int hidden_helper_main_thread_signaled = FALSE;
2549 
2550 // Semaphore for worker threads. We don't use condition variable here in case
2551 // that when multiple signals are sent at the same time, only one thread might
2552 // be waken.
2553 sem_t hidden_helper_task_sem;
2554 } // namespace
2555 
2556 void __kmp_hidden_helper_worker_thread_wait() {
2557  int status = sem_wait(&hidden_helper_task_sem);
2558  KMP_CHECK_SYSFAIL("sem_wait", status);
2559 }
2560 
2561 void __kmp_do_initialize_hidden_helper_threads() {
2562  // Initialize condition variable
2563  int status =
2564  pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2565  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2566 
2567  status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2568  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2569 
2570  status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2571  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2572 
2573  status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2574  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2575 
2576  status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2577  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2578 
2579  status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2580  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2581 
2582  // Initialize the semaphore
2583  status = sem_init(&hidden_helper_task_sem, 0, 0);
2584  KMP_CHECK_SYSFAIL("sem_init", status);
2585 
2586  // Create a new thread to finish initialization
2587  pthread_t handle;
2588  status = pthread_create(
2589  &handle, nullptr,
2590  [](void *) -> void * {
2591  __kmp_hidden_helper_threads_initz_routine();
2592  return nullptr;
2593  },
2594  nullptr);
2595  KMP_CHECK_SYSFAIL("pthread_create", status);
2596 }
2597 
2598 void __kmp_hidden_helper_threads_initz_wait() {
2599  // Initial thread waits here for the completion of the initialization. The
2600  // condition variable will be notified by main thread of hidden helper teams.
2601  int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2602  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2603 
2604  if (!TCR_4(hidden_helper_initz_signaled)) {
2605  status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2606  &hidden_helper_threads_initz_lock);
2607  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2608  }
2609 
2610  status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2611  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2612 }
2613 
2614 void __kmp_hidden_helper_initz_release() {
2615  // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2616  int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2617  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2618 
2619  status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2620  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2621 
2622  TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2623 
2624  status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2625  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2626 }
2627 
2628 void __kmp_hidden_helper_main_thread_wait() {
2629  // The main thread of hidden helper team will be blocked here. The
2630  // condition variable can only be signal in the destructor of RTL.
2631  int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2632  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2633 
2634  if (!TCR_4(hidden_helper_main_thread_signaled)) {
2635  status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2636  &hidden_helper_main_thread_lock);
2637  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2638  }
2639 
2640  status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2641  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2642 }
2643 
2644 void __kmp_hidden_helper_main_thread_release() {
2645  // The initial thread of OpenMP RTL should call this function to wake up the
2646  // main thread of hidden helper team.
2647  int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2648  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2649 
2650  status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2651  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2652 
2653  // The hidden helper team is done here
2654  TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2655 
2656  status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2657  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2658 }
2659 
2660 void __kmp_hidden_helper_worker_thread_signal() {
2661  int status = sem_post(&hidden_helper_task_sem);
2662  KMP_CHECK_SYSFAIL("sem_post", status);
2663 }
2664 
2665 void __kmp_hidden_helper_threads_deinitz_wait() {
2666  // Initial thread waits here for the completion of the deinitialization. The
2667  // condition variable will be notified by main thread of hidden helper teams.
2668  int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2669  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2670 
2671  if (!TCR_4(hidden_helper_deinitz_signaled)) {
2672  status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2673  &hidden_helper_threads_deinitz_lock);
2674  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2675  }
2676 
2677  status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2678  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2679 }
2680 
2681 void __kmp_hidden_helper_threads_deinitz_release() {
2682  int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2683  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2684 
2685  status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2686  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2687 
2688  TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2689 
2690  status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2691  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2692 }
2693 
2694 // end of file //
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the partitioned timers to begin with name.
Definition: kmp_stats.h:933