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10

Advanced variance reduction

This chapter collects together some advanced and specialized topics in vari-
ance reduction. They are generalizations, extensions and hybrids of methods
previously considered.

We begin with §10.1 on grid-based stratification, suitable for low dimensions
In dimension d it improves the Monte Carlo RMSE to O(n−1/2−1/d). In §10.2
we apply antithetic sampling within those strata, yielding a method of Haber
with RMSE O(n−1/2−2/d). Then §10.3 presents Latin hypercube sampling, a
stratification method suitable for large or even unbounded dimension. We round
out our mini-chapter on advanced stratification with §10.4 on orthogonal array
sampling, which is very well suited to intermediate dimensionalities.

Importance sampling can provide great efficiency gains, but it is difficult to
do well and a poor choice can severely reduce efficiency. Adaptive importance
sampling (§10.5) uses importance sampled data to choose a new density for
further importance sampling. We study nonparametric versions of adaptive
importance sampling in §10.6.

Generalizations of antithetic sampling (§10.7) use clusters of two or more
points to reduce variance. We look at combining control variates with antithetic
or stratified sampling in §10.8. One very advanced use of importance sampling
is to estimate normalizing constants or ratios of them as described in §10.9 on
bridge, umbrella and path sampling, as well as warp bridge sampling.

10.1 Grid-based stratification

For stratification to bring an enormous efficiency gain, we need our integrand
f to be nearly constant within strata. That is, f must be highly correlated
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Antithetic

Figure 10.1: The left panel shows an unreplicated grid-based stratified sample
of 25 points in [0, 1)2. The right panel shows the combination with antithetic
sampling described in §10.2.

with a piece-wise constant function. Such high correlation can be hard to ar-
range with a small number of strata, but if we allow the number of strata to
grow proportionally to n we can get much more close-fitting piece-wise constant
functions.

We will work with µ =
∫

[0,1)d
f(x) dx, where X ∼ U[0, 1)d may represent

the uniform random variables that we transform into the random quantities
the problem uses. The d dimensional unit cube [0, 1)d can be split into md

congruent subcubes with sides of length 1/m. Let Xi be sampled uniformly
within the i’th cube (listed in any order) for i = 1, . . . , n = md. The left panel
of Figure 10.1 illustrates this sample.

The grid-based stratified estimate is now

µ̂gs =
1

md

md∑
i=1

f(Xi)

where Xi is uniformly distributed within a cube of volume m−d, whose center
we will call ci. The uniformity of the Xi imply that E(µ̂gs) = µ. We need only
consider the variance of µ̂gs.

Now, suppose that f is continuously differentiable on [0, 1]d. It follows that
the first derivative of f is uniformly continuous on [0, 1]d and hence also on the
integration region [0, 1)d (which partitions more cleanly than [0, 1]d does). Then

f(Xi) = Li + Zi, where (10.1)
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10.1. Grid-based stratification 5

Li = f(ci) +

d∑
j=1

∂

∂xj
f(ci)(Xij − cij), and

Zi = o
( 1

m

)
.

Equation (10.1) has a linear term Li and an error term Zi. We consider first
the linear term:

Var(Li) =
1

12m2

d∑
j=1

( ∂

∂xj
f(ci)

)2

=
1

12m2
‖∇f(ci)‖2,

because Xij−cij are independent U[−1/(2m), 1/(2m)) random variables which
have variance 1/(12m2). Now, the variance of

∑n
i=1 Li is

1

n212m2

n∑
i=1

‖∇f(ci)‖2 →
1

n12m2

∫
‖∇f(x)‖2 dx

=
1

12n1+2/d

∫
‖∇f(x)‖2 dx

as m and n go to ∞.
As for the error terms Zi, each of them has variance o(1/m2) and their

average has variance o(1/(nm2)) which is negligible compared to the variance
of the average of Li. Similarly, the covariance of (1/n)

∑
i Li and (1/n)

∑
i Zi

is negligible compared to the variance of (1/n)
∑
i Li. As a result

lim
n→∞

n1+2/d Var(µ̂gs) =
1

12

∫
‖∇f(x)‖2 dx, (10.2)

the limit being taken through values n = md as m→∞.
What is striking about (10.2) is that the error variance does not decrease

at the usual 1/n rate. It is O(n−1−2/d) instead. For small dimensions d, the
improvement in (10.2) compared to the usual variance σ2/n, can be dramatic.
For example, when d = 1 the stratification variance is O(n−3) compared to
O(n−1) for ordinary Monte Carlo. It is comparable to cubing the sample size.
For d = 2 the variance is O(n−2). For larger d, the variance decrease from
stratification becomes small. Even though the factor n2/d tends to infinity with
n, plugging in realistic sample sizes n and a large dimension d, gives a meager
result.

The most direct way to estimate the variance of µ̂gs is to take k > 2 replicates
within each subcube. The usual choice is k = 2 because that allows the largest
value of m for n = kmd function evaluations. Let Xi and X ′i be independently
sampled uniformly within the subcube centered at ci. Then we may use

µ̂gs =
1

2md

md∑
i=1

(f(Xi) + f(X ′i)), and

V̂ar(µ̂gs) =
1

4m2d

md∑
i=1

(f(Xi)− f(X ′i))
2.

(10.3)
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6 10. Advanced variance reduction

For very large d, stratification becomes cumbersome to implement. The
smallest available sample size is 2d which may already be too large to use. Even
if 2d is not too large, there is no good way to extend a grid-based stratified
sample of md points to one with (m+ 1)d points. We could take samples of size
kmd for integer k > 2 by replicating the stratification but the variance of µ̂gs

along a sequence with increasing k and fixed m is the ordinary O(n−1) rate.

Stratifying works so well for small d, because the function f becomes nearly
constant within cells of side 1/m. In §10.2 a combination of stratification and
antithetic sampling exploits near linearity of f within such cells to reduce the
variance to O(n−1−4/d).

In practice, there is no need to use the same value of m on every dimension,
and it is straightforward to use an m1 ×m2 × · · · ×md grid of strata. Also, to
allow variance estimation, we should take 2 observations per cell.

The practical utility of fully d-dimensional grid-based stratification is lim-
ited. It brings a large improvement over Monte Carlo when d is small and f
is smooth. But that case is already well handled by classical quadrature meth-
ods, discussed in Chapter 7. Compared to classical methods, stratification has
the advantage of providing unbiased estimates along with variance estimates.
But we can usually expect better results from randomized quasi-Monte Carlo
(Chapter 17). It remains useful though to stratify on a small subset of the
most important input variables. This strategy will usually be outperformed by
randomized quasi-Monte Carlo, but it has the advantage of a simpler implemen-
tation.

10.2 Stratification and antithetics

Antithetic sampling can be combined with stratification. A natural way to do
this is to apply antithetic sampling within some, typically all, of the strata. Let
there be strata Dj for j = 1, . . . , J with ωj = P(X ∈ Dj) and within-stratum
distributions pj(x) = p(x)1x∈Dj

/ωj .

We takeXij ∼ pj for i = 1, . . . , nj and j = 1, . . . , J . Then we take antithetic

counterparts X̃ij appropriate to their strata. If pj is symmetric about cj ∈ Dj
then we may take X̃ij = 2cj −Xij . We estimate µj =

∫
f(x)pj(x) dx by

µ̂anti,j =
1

2nj

nj∑
i=1

f(Xij) + f(X̃ij) =
1

nj

nj∑
i=1

fj,E(Xij),

where fj,E = (f(Xij) + f(X̃ij))/2.

The combined estimate is

µ̂strat,anti =

J∑
j=1

ωj µ̂anti,j . (10.4)
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10.2. Stratification and antithetics 7

If all nj > 2, then we have a variance estimate

V̂ar(µ̂strat,anti) =

J∑
j=1

ω2
j

nj − 1

nj∑
i=1

fj,E(Xij − µ̂anti,j)
2. (10.5)

Antithetic sampling within each of cell of an md grid can be extremely
effective when f is smooth. The error of µ̂gs for stratified sampling within
subcubes, from §10.1, was dominated by a linear term within each subcube.
Antithetic sampling integrates those dominant terms with zero error.

We split [0, 1)d into md congruent subcubes with side 1/m. We will assume
that f has a uniformly bounded second derivative matrix on [0, 1)d, as it would
have if its second derivative were continuous on the closed cube [0, 1]d.

Let Xi be sampled uniformly within the cubical cell centered at ci and put

X̃i = 2ci −Xi. The right panel of Figure 10.1 illustrates this sample. With
this strategy, we have n = 2md sample points and the estimate of µ is

µ̂gs,anti =
1

2md

n∑
i=1

(
f(Xi) + f(X̃i)

)
=

1

md

n∑
i=1

fi,E(Xi).

The expected value of fi,E(Xi) is the integral of f over the subcube containing
ci. As a result E(µ̂gs,anti) = µ.

It remains to study the variance of µ̂gs,anti. The function fi,E has first order
partial derivatives equal to 0 at ci by symmetry. It has uniformly bounded
second order derivatives because f does. Finally, the distance from Xi to ci is
at most

√
d/(2m) because Xi is in a d dimensional cube of side 1/m centered

at ci. Putting these together we have

fi,E(Xi) = fi,E(ci) +O(m−2) = f(ci) +O(m−2)

with an implied constant that is uniform in Xi and in n. Averaging over Xi

yields µi = f(ci) +O(m−2) too. Therefore

Var(µ̂gs,anti) =
1

n2

n∑
i=1

E((fi,E(Xi)− µi)2)

= O(n−1m−4) = O(n−1−4/d).

If we want a variance estimate then we can take 2 or more antithetic pairs inside
every subcube and use equation (10.5).

As for the grid-based stratification of §10.1, the value of the higher rate of
convergence diminishes with dimension and the method is awkward to apply
in very high dimensions. The combination of antithetic sampling within cubic
strata remains valuable for use on a small number of very important input
variables.

There is one minor theoretical complication. If Xi is on the lower boundary

of its cell, then X̃i is on the corresponding upper boundary. The cells are
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8 10. Advanced variance reduction
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Latin hypercube sample

Figure 10.2: This figure shows 25 points of a Latin hypercube sample in [0, 1]2.

constructed to contain their lower, but not upper boundaries. As a result X̃i

is not always strictly inside its own stratum. In the extreme it is possible for

X̃i to be outside of [0, 1)d, but of course, inside [0, 1]d. These events have zero
probability of arising. They don’t affect the sampling algorithm, but do add a
complication to its description.

10.3 Latin hypercube sampling

When one of the d components of X is particularly important, we can improve
on Monte Carlo by stratifying that component. If we want to stratify on all of
d > 1 components, then we may use grid-based stratification of §10.1. But a
regular grid only has n1/d � n strata per component. Also for large d, grids
are infeasible.

For higher accuracy, we want to use more levels than grid-based stratification
will allow. In Latin hypercube sampling (LHS) we generate a sample in
which each of d components for X ∼ U(0, 1)d is stratified into n equal strata.
That is Figure 10.2 illustrates a Latin hypercube sample of n = 25 points in
d = 2 dimensions. A grid of lines is overlaid. Each of 25 horizontal strata gets
one point. The same is true for each of 25 vertical strata.

© Art Owen 2009–2013 do not distribute or post electronically without
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10.3. Latin hypercube sampling 9

There is a simple formula for Latin hypercube sampling:

Xij =
πj(i− 1) + Uij

n
, 1 6 i 6 n, 1 6 j 6 d (10.6)

where π1, . . . , πd are uniform random permutations of {0, 1, . . . , n − 1}, Uij ∼
U[0, 1), and all the Uij and πj are independent.

Latin hypercube sampling has a multiple stratification property: for all a =
0, . . . , n− 1 and all j = 1, . . . , d we have

#

{
1 6 i 6 n | a

n
6 Xij <

a+ 1

n

}
= 1. (10.7)

With just n points we balance nd strata of volume 1/n each. We can even use
LHS with d > n.

Latin hypercube sampling has been discovered several times in different lit-
eratures. It is known as n-rooks in computer graphics. If we interpret the
25 points in Figure 10.2 as rooks on a 25 × 25 chessboard, none of them could
capture any of the others. A centered version given in (10.8) below was called
lattice sampling in an agricultural context. See page 52 of the chapter end
notes.

The multiple stratification property (10.7) follows easily from equation (10.6).
Let Ia be the interval [a/n, (a + 1)/n) for a ∈ {0, . . . , n − 1}. Now Xij ∈ Ia if
and only if πj(i−1) = a. This in turn happens if and only if i−1 = π−1

j (a). For
each j = 1, . . . , d there is precisely one such i. Therefore LHS satisfies (10.7).

LHS combines stratification with uniform distribution. Theorem 10.1 shows
that each of the LHS points Xi has the U[0, 1)d distribution.

Theorem 10.1. Let d > 1 and n > 1 be integers. Let Xij be a Latin hypercube
sample defined by (10.6). Then Xi ∼ U[0, 1)d holds for each i = 1, . . . , n.

Proof. First Xi = (Xi1, . . . , Xid) has independent components. So it is enough
to show that eachXij ∼ U[0, 1). Let A = πj(i−1). Then A ∼ U{0, 1, . . . , n−1}.
The conditional distribution of Xij given that A = a is U[a/n, (a+ 1)/n) which
has probability density function

fa(x) =

{
n, a/n 6 x < (a+ 1)/n

0, else.

The probability density function of Xij is (1/n)
∑n−1
a=0 fa(x) which equals 1 if

0 6 x < 1 and 0 otherwise.

The LHS estimate of µ =
∫

[0,1)d
f(x) dx is simply

µ̂LHS =
1

n

n∑
i=1

f(Xi)

with Xi generated by (10.6). An immediate consequence of Theorem 10.1 is
that E(µ̂LHS) = µ.
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10 10. Advanced variance reduction

An alternative form that is sometimes useful takes

Xij =
πj(i− 1) + 1/2

n
, 1 6 i 6 n, 1 6 j 6 d. (10.8)

We write µ̂LHS−c = (1/n)
∑n
i=1 f(Xi) for this centered version of LHS. The

centered LHS has a small bias of O(n−2).
LHS can be much more accurate than plain Monte Carlo. Intuitively we

would expect LHS to perform well whenever stratification on one of the d com-
ponents xj would be effective. We would not even need to know in advance
which j ∈ {1, . . . , d} was the important one. It turns out the LHS works well in
somewhat greater generality.

The favorable circumstance for LHS arises when f(x) is nearly an additive
function of the d components of x. It is convenient to write the additive function

as f0 +
∑d
j=1 fj(xj) where

∫ 1

0
fj(x) dx = 0 and f0 ∈ R. Centering the fj to

have mean 0 removes an indeterminacy in which we could have replaced fj by
fj + c while simultaneously replacing fk by fk − c for k 6= j and c ∈ R.

Using the ANOVA decomposition of the unit cube [0, 1]d (see Appendix A)
we may identify the best additive approximation to f . It is

fadd(x) = µ+

d∑
j=1

fj(xj), where

µ =

∫
f(x) dx, and

fj(xj) =

∫
[0,1]d−1

(f(x)− µ)
∏

k∈{1,...,d}−{j}

dxk.

The function fadd is the best additive approximation to f in the following sense:
If g(x) is any other additive function on [0, 1]d then, by Lemma A.6,∫

(g(x)− f(x))2 dx >
∫

(fadd(x)− f(x))2 dx.

Now define the residual from additivity e(·) by f(x) = fadd(x)+e(x). Then,
in the centered version (10.8):

µ̂LHS−c =
1

n

n∑
i=1

(
µ+

d∑
j=1

fj(Xij) + e(Xi)

)

= µ+

d∑
j=1

1

n

n∑
i=1

fj

( i− 1/2

n

)
+

1

n

n∑
i=1

e(Xi),

after reordering the points Xij for each fixed j.
We see that the LHS error µ̂LHS−c − µ is a summed error of d midpoint

rules applied to fj , plus the LHS estimate of the mean of e(x). When the fj are
smooth enough, then the midpoint rule is much more accurate than plain Monte
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10.3. Latin hypercube sampling 11

Carlo for estimating
∫ 1

0
fj(x) dx. The average of e(Xi) is typically Op(1/

√
n)

and then it dominates the error of LHS. So if f is nearly additive, in the sense
that e(X) has small variance, then LHS is a big improvement over ordinary
Monte Carlo. For the unbiased version (10.6), LHS uses an estimate that has
stratified sampling instead of midpoint rules for the gj . Once again the error is
dominated by the average of e(Xi).

Next we list some facts about Latin hypercube sampling.

Proposition 10.1. Let f(x) be a real-valued function on [0, 1]d with
∫
f(x)2 dx <

∞. Let X1, . . . ,Xn be the unbiased Latin hypercube sample defined by (10.6)
and let µ̂LHS = (1/n)

∑n
i=1 f(Xi). Then

Var(µ̂LHS) =
1

n

∫
e(x)2 dx+ o

(
1

n

)
,

where e(x) = f(x)− fadd(x).

Proof. Stein (1987).

Proposition 10.1 shows us that the additive part of f does not contribute
to the asymptotic variance in Latin hypercube sampling. It is as if the ad-
ditive part were simply not there, at least for large n. The normalized error√
n(µ̂LHS − µ) has the same mean and asymptotically the same variance as

√
n

times (1/n)
∑n
i=1 e(Xi).

Proposition 10.2. Let f(x) be a bounded function on [0, 1]d and put e(x) =
f(x) − fadd(x). Let ēLHS = (1/n)

∑n
i=1 e(Xi) where X1, . . . ,Xn are points

of a Latin hypercube sample defined by (10.6). Let X̃1, . . . , X̃n be independent

U[0, 1]d random vectors and set ēIID = (1/n)
∑n
i=1 e(X̃i). Then for integer

p > 1

E
(
(
√
n ēLHS)p

)
= E

(
(
√
n ēIID)p

)
+O(n−1)

as n→∞.

Proof. Lemma 2 of Owen (1992a).

Not only does
√
n ēIID have the same mean and variance as

√
n ēLHS but

higher moments converge too. So a good heuristic is that µ̂ behaves like µ plus
the average of n IID e(Xi) random variables. As a result a central limit theorem
holds for Latin hypercube sampling of bounded random variables. The central
limit theorem holds given only finite third moments:

Proposition 10.3. Let f(x) be a function from [0, 1]d to Rk for 1 6 k 6 ∞.
Suppose that

∫
‖f(x)‖3 dx <∞ and Σ =

∫
(f(x)−fadd(x))(f(x)−fadd(x))T dx

has rank k. Then
√
n(µ̂LHS − µ)

d→ N (0,Σ) as n→∞.

Proof. Corollary 2 of Loh (1996).
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12 10. Advanced variance reduction

x y x+y x+2y

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

Table 10.1: An orthogonal array of type OA(9, 4, 3, 2).

Proposition 10.4. Let f(x) be a real-valued function on [0, 1]d with µ =∫
f(x) dx and σ2 =

∫
(f(x) − µ)2 dx < ∞. For n > 2 let X1, . . . ,Xn be a

Latin hypercube sample. Then Var(µ̂LHS) 6 σ2/(n− 1).

Proof. Owen (1997).

The point of Proposition 10.4 is that while Latin hypercube sampling can be
much better than IID sampling, it cannot be much worse. At the worst, LHS
has a variance n/(n− 1) times as large as under IID sampling on n values, as if
we had thrown out one sample point.

LHS is easy to implement, can greatly reduce variance for nearly additive
functions, and otherwise does not make the variance much larger. It is somewhat
more difficult to estimate the variance of µ̂LHS than it is for IID sampling. The
most straightforward way is to use some independent replicates of the Latin
hypercube sample.

10.4 Orthogonal array sampling

Latin hypercube sampling stratifies the components of Xi one at a time. We
might be able to do better by stratifying all pairs of components. The combi-
natorial object that does this is known as an orthogonal array. By randomizing
an orthogonal array and embedding it into the unit cube [0, 1]d we obtain a
generalization of Latin hypercube sampling.

Definition 10.1. For integers b > 2 and d > t > 1, let A ∈ {0, 1, . . . , b−1}n×d.
The matrix A is called an orthogonal array of strength t if each n by t
submatrix of A contains all bt possible distinct rows, the same number λ of
times. We denote such a matrix by OA(n, d, b, t).

An example orthogonal array is shown in in Table 10.1. There are 4 columns.
Each 9 by 2 submatrix has all 9 values from {0, 1, 2}2.

The d columns of A are called constraints. Orthogonal arrays are often
defined with n columns and d rows instead, which makes the smaller ones easier

© Art Owen 2009–2013 do not distribute or post electronically without
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10.4. Orthogonal array sampling 13

to print. The arrangement here has a row for each sample point we will generate
and a column for each component that we will sample.

If we were to plot an n by t submatrix of A in Rt using one data point for
each row of the submatrix in the natural way, then the result would be a bt grid
of points each one repeated λ times.

Counting the rows shows that n = λbt. The number λ is called the index of
the array. There are good orthogonal arrays with λ = 1.

Example 10.1 (Bose construction). The Bose construction gives us orthogonal
arrays of type OA(p2, p + 1, p, 2) where p is a prime number. In the Bose
construction Ai1 = b(i − 1)/pc and Ai2 = (i − 1) mod p for i = 1, . . . , p2. The
first two columns of A go through their p2 possibilities just like the last two digits
in a base p odometer. See the first two columns of Table 10.1 for an example.
To complete the array, put Aij = Ai1 + (j − 2)Ai2 mod p for 3 6 j 6 p+ 1. If
we name the first and second columns x and y respectively, then the array also
contains columns x+ ay for a = 1, . . . , p− 1.

The Bose construction is easy to apply. It requires a prime base p. If for
example, one carries out the algorithm in base 4 or 6 the result is certainly not
an orthogonal array of strength 2. The Bose construction can be generalized to
OA(b2, b + 1, b, 2) where b = pr for prime p and any integer r > 1. The gen-
eralization requires arithmetic in the finite field of pr elements. Using modular
arithmetic will not be correct for r > 1.

To understand why the Bose construction works, pick two values a1 and a2,
not necessarily distinct, from {0, 1, . . . , p − 1}. Now pick two distinct columns
from A, indexed for example by j1 and j2 where 1 6 j1 < j2 6 p+ 1. If we can
always find a unique row i where Aij1 = a1 and Aij2 = a2 both hold, then A is
a strength 2 array as required.

It is convenient to index the row i by the values of Ai1 and Ai2 respec-
tively. For simplicity we’ll call these values x and y respectively, which belong
to {0, 1, . . . , p− 1}. If neither j1 nor j2 is 2 then the values of x and y satisfy(

a1

a2

)
=

(
1 c1
1 c2

)(
x
y

)
for distinct c1 and c2 in {0, . . . , p− 1}. The solution is(

x
y

)
=

(
1 c1
1 c2

)−1(
a1

a2

)
with all the arithmetic done modulo p. Integers modulo a prime p form a finite
field, and so the arithmetic is well defined unless the matrix is singular. Then
its inversion would require division by 0. But the matrix has determinant c2−c1
which is not zero. Therefore(

x
y

)
=

1

c2 − c1

(
c2 −c1
−1 1

)(
a1

a2

)
=

(
(a1c2 − c1a2)/(c2 − c1)

(a2 − a1)/(c2 − c1)

)
exists (and is unique).
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14 10. Advanced variance reduction

If one of the columns that we chose (say j1) was column 2 of A, then the
critical matrix in the above analysis becomes

(
0 1
1 c

)
for c ∈ {0, . . . , p− 1}. This

matrix is also nonsingular, having determinant −1 ≡ p− 1 mod p. So in every
case we can find the required x and y, hence the required row i, and so A is
indeed OA(p2, p+ 1, p, 2).

The Bose construction gives p3(p+ 1)/2 properly balanced strata of volume
1/n using n = p2 sample values. That is, the number of strata is larger than
n2/2 for a sample size n. When p = 101 the Bose array constructs n = 10201
points in up to 102 dimensions. All

(
102
2

)
= 102×101/2 = 5151 pairs of columns

of the array plot as regular 101 by 101 grids. The design balances over 5× 107

strata.
The Bose construction requires p2 points where p > d− 1, so for very large

d it may be unwieldy. For small d we only need to construct the first d 6 p+ 1
columns of the array.

To use the Bose construction in a Monte Carlo context, we could take xij =
Aij/p. But this direct embedding into [0, 1]p has a serious flaw. Consider the
first three columns, named x, y and x+ y mod p. The values of (Ai1, Ai2, Ai3)
lie within just two planes in [0, p − 1]3. Other triples in the Bose construction
are also flawed, lying within just a small number of planes, but the first three
columns are most seriously affected.

Randomization serves to break up the planar flaw in the Bose construction.
A randomized orthogonal array sample has

Xij =
πj(Aij) + Uij

b
, for 1 6 i 6 n and 1 6 j 6 d, (10.9)

where A is an orthogonal array of type OA(n, d, b, t), π1, . . . , πd are uniform
random permutations of {0, . . . , b − 1}, each Uij ∼ U[0, 1) and the random
components πj and Uij are all mutually independent. The centered version
takes

Xij =
πj(Aij) + 1/2

b
∈ [0, 1)d (10.10)

under the same conditions on A and πj . Figure 10.3 illustrates an orthogonal
array Aij and the values πj(Aij) for its randomized counterpart. Randomizing
the levels of the orthogonal array is essential.

If X1, . . . ,Xn are defined via (10.9) then Xi ∼ U[0, 1)d by the same argu-
ments that served for Latin hypercube sampling in Theorem 10.1.

Randomized orthogonal array sampling has a t-dimensional stratification
property which generalizes the one for LHS at (10.7). Let X1, . . . ,Xn be
a randomized orthogonal array of type OA(n, d, b, t). Then for every a ∈
{0, 1, . . . , b− 1}t and every u ⊂ {1, . . . , d} with |u| = t,

#

{
1 6 i 6 n | aj

b
6 Xij <

aj + 1

b
, ∀j ∈ u

}
= nb−t = λ. (10.11)

Randomized orthogonal array sampling generalizes Latin hypercube sam-
pling. The LHS corresponds to use of a strength t = 1 array with Aij = i
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Figure 10.3: This figure shows 121 points of a Bose orthogonal array
OA(121, 3, 11, 2) and the same points randomized.

for i = 1, . . . , n and j = 1, . . . , d. Full grid-based stratification of [0, 1]d also
corresponds to randomized orthogonal array sampling, using strength t = d.

In Latin hypercube sampling the sample mean µ̂ had a variance close to
(1/n)

∑
|u|>1 σ

2
u where σ2

u are the variances from the ANOVA decomposition of
f . For randomized orthogonal array sampling we expect a variance something
like (1/n)

∑
|u|>t σ

2
u when t < d. See references on page 52 of the end notes.

For t = d the variance is of smaller order than 1/n. These variance results all
assume that f is twice continuously differentiable.

Theorem 10.2. Let b = pr where p is a prime number and r is a positive
integer. Then for an integer t > 1 with t < b the orthogonal array OA(bt, b +
1, b, t) exists.

Proof. Bush (1952).

Example 10.2 (Bush construction). The Bose construction was generalized by
Bush. Here we give Bush’s construction of OA(pt, p+1, p, t) for 1 6 t < p where
p is a prime number. In this case we can use arithmetic modulo p. The general
case with b = pr for r > 1 requires Galois field arithmetic (and arithmetic
modulo b is then incorrect).

The construction uses pt distinct polynomials of the form

φi(x) = ai,t−1x
t−1 + · · ·+ ai,1x+ ai,0

for 0 6 i < pt, where ai,0, . . . , ai,t−1 ∈ {0, . . . , p − 1}. For sake of definiteness

we can pick the coefficients so that i =
∑t−1
`=0 ai,`p

`. Now, for i = 1, . . . , pt and
j = 1, . . . , p let Aij = φi−1(j − 1) mod p. Finally, put Ai p+1 = (i − 1) mod p.
Now A is an orthogonal array of type OA(pt, p+1, p, t). It should be randomized
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Randomized Bose OA

Figure 10.4: This figure shows 121 points of a randomized orthogonal array
OA(121, 12, 11, 2) embedded in the unit cube. All

(
12
2

)
= 66 pairwise projections

of these points are stratified into a 11 × 11 grid. The pairs among the first 4
variables are shown.

prior to use in a Monte Carlo application. Bush’s proof for this construction is
similar to that for the Bose construction above. Once again there is a critical
matrix, this time it is the Vandermonde matrix, that we can show is not singular
in arithmetic modulo p.

The best strength for randomized orthogonal array sampling is probably
t = 2 or 3 depending on the problem. Larger values of t start to take on the
disadvantages of high dimensional grids.

A disadvantage of randomized orthogonal array sampling, compared to Latin
hypercube sampling, is that the univariate margins are only stratified into b
intervals not n. Because b = (n/λ)1/t is much smaller than n, the additive
component of f will be handled less well than with Latin hypercube sampling.

Orthogonal array-based Latin hypercube samples are simultaneously
randomized orthogonal arrays and Latin hypercube samples. For the Bose con-
struction, for any given coordinate j ∈ {1, . . . , d} and value a ∈ {0, . . . , b − 1},
we could find the b values of i for which Aij = a and arrange that the b cor-
responding Uij values are a stratified sample of [0, 1) (into b intervals of length
1/b) instead of independent U[0, 1).
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10.5. Adaptive importance sampling 17

Randomized orthogonal arrays are a stepping stone between Latin hypercube
sampling and randomized quasi-Monte Carlo (RQMC) methods presented in
Chapter 17. These methods have two ingredients: some raw input points with
a balance property, and a randomization which gives those points a U[0, 1)d

distribution, while preserving their balance.
While orthogonal arrays are largely superceded by RQMC they retain some

advantages. They have a simpler construction. When we are searching for in-
teresting values of a function f(x) the orthogonal array will provide points in
all
(
d
t

)
× 2t corners of all t-dimensional coordinate projections of [0, 1]d with

n �
(
d
t

)
× 2t points. When, for example, f is singular or negative or oth-

erwise interesting in just a few extreme portions of its domain, randomized
orthogonal arrays provide are useful for detecting those locations. The centered
version (10.10) is advantageous for graphical exploration of high dimensional
functions.

10.5 Adaptive importance sampling

In ordinary importance sampling (Chapter 9) we sample Xi
iid∼ q and estimate

µ = Ep(f(X)) by

µ̂q =
1

n

n∑
i=1

w(Xi)f(Xi), for w(Xi) =
p(Xi)

q(Xi)
.

Self-normalized importance sampling uses the estimate

µ̃q =

n∑
i=1

w̃if(Xi), where w̃i =
w(Xi)∑n
j=1 w(Xj)

.

When either p or q or both are unnormalized we can only compute an unnormal-
ized version wu(X) of w but the unknown normalization factor cancels when
we compute w̃i.

As we saw in Chapter 9, the choice of q can be a delicate matter. A poor
choice could yield an infinite variance for the estimate of µ.

A common practice for choosing q for ordinary importance sampling is to
reflect on the nature of p and f and seek a density q that is nearly proportional
to pf (when f > 0 everywhere). This q should also have tails that are at least
as heavy as those of p. This approach usually takes some informal iteration and
may be time consuming and, in difficult settings, we might never find a very
good q.

After having sampled Xi
iid∼ q we learn something about how effective q was.

From the resulting data we can estimate the variance of µ̂q and, via what-if
simulations (§9.14), we can even estimate the variance we would have gotten
from some different importance distribution.

The possibility of finding a better importance distribution from q allows us
to implement adaptive importance sampling (AIS) schemes. In AIS we alternate
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18 10. Advanced variance reduction

Algorithm 10.1 Generic adaptive importance sampling

given nominal density p, set Q of importance densities, integrands f1, . . . , fM
k ← 0
done← FALSE
while not done do
k ← k + 1
choose q(k) ∈ Q and nk > 1

X
(k)
i

iid∼ q(k), i = 1, . . . , nk
choose done ∈ {TRUE,FALSE}

choose weights w(X
(1)
1 ), . . . , w(X

(k)
nk )

Generic algorithm for AIS. To instantiate it requires choosing importance distri-
butions q(k), sample sizes nk, a stopping rule and weights on all of the generated
samples.

between sampling X
(k)
i

iid∼ q(k) and using the sampled values to choose an im-
proved importance distribution q(k+1). The promise of AIS is that it automates
the difficult and subjective task of selecting q, saving considerable labor.

Algorithm 10.1 gives an outline of an AIS algorithm. Turning the AIS idea
into an algorithm requires us to make a number of choices. We need to select
a family Q from which to pick the iterates q(k) and an update scheme. Given
those, we have to allocate our effort. We might want a large number of small
steps, perhaps as small as nk = 1 observation at step k, or a smaller number
of steps with larger nk. The choice depends on how expensive it is to update
from q(k) to q(k+1). We might want to spend most of our effort on the last
stage with presumably the best q(k). Or we might want to allocate a lot of
effort to sampling from q(1), in case the algorithm cannot recover from a bad
start. In addition to these choices, we need to pick a stopping rule. Once we
have stopped we have to decide how to weight the data from all the iterations.
One approach is to only use the very last sample, and another is to weight data
from all iterations equally. We will also want confidence intervals on the final
estimates.

Some of these choices are difficult to make, not easily automated, and may
require some user intervention to tune. Our choices may depend on whether
we are seeking a single integral

∫
f(x)p(x) dx, a small set of such integrals, or

a weighted distribution approximating p for general use. While AIS provides
computer-assisted importance sampling, it is not always completely automatic.

In very hard problems even Algorithm 10.1 must be treated as a building
block and not as the full algorithm. For example, if f(x) = 1A(x) for a very
rare event A, our first sample might not contain any instances of A. Then an
adaptive algorithm that tried to find q more nearly proportional to |f |p would
have no information to go on. In that case, we may define a sequence of easier
problems defined by somewhat less rare events than A. If we use AIS along that
sequence then Algorithm 10.1 becomes the inner loop of our algorithm. If we
use some other algorithm to get started, then AIS becomes the second stage in
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10.5. Adaptive importance sampling 19

a two-stage algorithm.
In this section we survey some AIS schemes where Q is a finite dimensional

family of distributions. We focus mainly on how they select Q and how they
update q(k+1) ∈ Q. Section §10.6 looks at nonparametric families Q.

The adaptive methods are not guaranteed to succeed. An AIS strategy may
find a density q that is a good approximation to one mode of fp or, in the
self-normalized case, one mode of p.

AIS for self-normalized importance sampling

In self-normalized importance sampling we are not usually trying to estimate
probabilities of rare events. We are more usually looking for a distribution q
that we can sample from and which provides a close approximation to p. Usually
we work with pu, an unnormalized version of p.

Letting Q = {q(·; θ) | θ ∈ Θ ⊆ Rr} our problem becomes one of choosing θ.
In this context we almost never have p ∈ Q. We use Eθ(·) as a shorthand for
Eq(·;θ).

A very basic way to make q match p is for it to have the same expectation.
We might get a better fit by matching both the mean and variance-covariance
matrix of q(·; θ) to those of p. More generally, let h(x) ∈ RJ be a vector of
functions for which we want Eθ(h(x))

.
= Ep(h(X)). For example, to match the

mean and variance-covariance matrix we could use

h(x) = (x1, . . . , xd, x
2
1, . . . , x

2
d, x1x2, . . . , xd−1xd).

When using this method we should choose a family Q for which Eθ(h(X)) has
a convenient closed form. Often θ = Eθ(h(X)), as for example with q(X; θ) =
N (θ, I) and h(X) = X.

We can use sample values X
(k)
i , . . . ,X

(k)
nk to form the self-normalized esti-

mate of Ep(h(X))

Ẽ(k)(h) =

∑nk

i=1 w
(k)
u,ih(X

(k)
i )∑nk

i=1 w
(k)
u,i

for weights w
(k)
u,i = pu(X

(k)
i )/q(X

(k)
i ; θ(k)). If we want to combine all samples

from the first k steps then we can use

Ẽ(1:k)(h) =

∑k
s=1

∑ns

i=1 w
(s)
u,ih(X

(s)
i )∑k

s=1

∑ns

i=1 w
(s)
u,i

instead.
The AIS update can be either

θ(k+1) ← arg min
θ∈Q
‖Ẽ(k)(h)− Eθ(h(X))‖, or (10.12)

θ(k+1) ← arg min
θ∈Q
‖Ẽ(1:k)(h)− Eθ(h(X))‖. (10.13)
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20 10. Advanced variance reduction

We call (10.12) the recent update and (10.13) the cumulative update.
If we are using a family with Eθ(h(X)) = θ then the recent and cumulative

updates simplify to

θ(k) ← Ẽ(k)(h), and θ(k) ← Ẽ(1:k)(h)

respectively. This spares us the task of defining and minimizing an appropriate
distance ‖ · ‖ to use in (10.12) and (10.13).

The recent update (10.12) makes sense if we think that θ(k) is much better
than all the previous parameter values and if nk is reasonably large. The cu-
mulative update (10.13) has the advantage that it can be used with very small

nk, even as small as nk = 1. The numerator and denominator of Ẽ(1:k)(h) can
be easily updated when new data come in.

The recent update is more stable when q(·, θ) are not normalized. For un-
normalized q the ratios of normalizing constants in q(·, θ) will affect the relative
weighting of different stages of the algorithm. To see the issue, suppose that
q is an unormalized N (θ1, θ

2
2) density. Leaving the

√
2π out of the denomi-

nator would give us q(x, θ) = exp(−½(x − θ1)2/θ2
2)/θ2. We might have used

exp(−½(x − θ1)2/θ2
2) instead. The recent update is the same either way. But

if the value of θ2 changes sharply as the iterations proceed then the cumula-
tive update may use unpredictable relative weights on the output from different
stages.

The cross-entropy method

Now we consider a problem where the the goal is to estimate µ =
∫
f(x)p(x) dx

with f(x) > 0 and µ strictly greater than 0. In this case there exists a zero-
variance importance distribution q ∝ fp, although it is usually not in our family
Q. We assume that p and q(·; θ) are both normalized. Then we may use the
estimate

µ̂θ =
1

n

n∑
i=1

wθ(Xi)f(Xi)

where wθ(x) = p(x)/q(x; θ). The optimal density from within our family is the
one that minimizes

v(θ) ≡
∫
f(x)2p(x)2

q(x; θ)
dx.

Given a sample X
(k)
i from q(·; θ(k)), we can estimate v(θ) by

v̂(k)(θ) =
1

n

n∑
i=1

f(X
(k)
i )2p(X

(k)
i )2

q(X
(k)
i ; θ)q(X

(k)
i ; θ(k))

.

In principal, we might minimize v̂(k) over θ to find θ(k+1). In practice, this
may be difficult to do. The form of q may not be convenient for optimization.
Furthermore, as we saw in §9.14, the sample from θ(k) might only provide good
estimates for θ near θ(k).
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The cross-entropy method makes two simplifications to enable a more
convenient update. First, it replaces variance by the Kullback-Leibler distance
presented below. Second, it works with a familyQ defined by exponential tilting.
We will take

q(x; θ) = exp(θTx−A(x)− C(θ)). (10.14)

This makes Q a natural exponential family. In a more general exponential
family, the term θTx is generalized to η(θ)TT (x) for functions η(·) and T (·).
The combination of Kullback-Leibler distance and a natural exponential family
will yield a closed-form update for θ.

The Kullback-Leibler distance from density g to h is

D(g‖h) = Eg
(

log
( g(X)

h(X)

))
.

It is not a proper distance in that it lacks symmetry: D(g‖h) 6= D(h‖g) in
general. But it does satisfy D(g‖g) = 0. Also, by convexity of − log(·) and
Jensen’s inequality

D(g‖h) = Eg(− log(h/g)) > − log(Eg(h/g)) = 0.

We will interpret D(g‖h) as a measure of how far h is from g. Although we
describe K-L and cross-entropy for probability density functions they also apply
to probability mass functions. The cross-entropy method takes its name from
the function −Eg(log(h)), which is called the cross-entropy.

The optimal q is q∗ = fp/µ. Now

D(q∗‖ q(·; θ)) = Eq∗
(
log(q∗(X))− log(q(X; θ))

)
and so to minimize D(q∗‖q(·; θ)) we maximize Eq∗(log(q(X; θ))). Let q be a
distribution such that q(x) > 0 whenever q∗(x) > 0. Then our optimal θ
maximizes

Eq
(q∗(X)

q(X)
log(q(X; θ))

)
= µEq

(p(X)f(X)

q(X)
log(q(X; θ))

)
.

The constant µ > 0 does not affect the optimizer.

Given data X
(k)
i ∼ q(·; θ(k)) the cross-entropy method chooses θ(k+1) to

maximize

G(k)(θ) =
1

nk

nk∑
i=1

p(X
(k)
i )f(X

(k)
i )

q(X
(k)
i ; θ(k))

log(q(X
(k)
i ; θ))

≡ 1

nk

k∑
i=1

Hi log(q(X
(k)
i ; θ)),

(10.15)

over θ, where we use H
(k)
i > 0 to soak up computable quantities that do not

depend on θ. Equation (10.15) contains three distributions: the nominal density
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p, the density q(·, θ(k)) from which the most recent data were sampled, and the
candidate density q(·; θ) for the next iteration.

When Q is a natural exponential family then

log(q(X
(k)
i ; θ)) = θTX

(k)
i −A(X

(k)
i )− C(θ)

where C(·) is known to be a convex function of θ. Then (10.15) becomes

G(k)(θ) =
1

nk

k∑
i=1

H
(k)
i

(
θTX

(k)
i −A(X

(k)
i )− C(θ)

)
.

It is possible that all the H
(k)
i = 0 and then maximizing (10.15) cannot

work. For now we suppose that
∑
iH

(k)
i > 0.

Because C(θ) is convex, G(k) is a concave function of θ. When C(·) is
differentiable we may then find θ(k+1) by setting ∂G(k)(θ)/∂θ = 0. Then θ(k+1)

solves ∑
iH

(k)
i X

(k)
i

T∑
iH

(k)
i

=
∂

∂θ
C(θ(k+1)). (10.16)

There is a transpose onX
(k)
i to reflect the convention thatX are column vectors

and the gradient of the scalar function C is a row vector. Equation (10.16) sets

a weighted average of the X
(k)
i equal to the gradient of C(·) at the new iterate

θ(k+1).
To see how this works, suppose that q(x; θ) is the N (θ,Σ) distribution for

some fixed nonsingular matrix Σ. Then after some rearrangement

q(x; θ) = exp(θTx− ½xTΣ−1x− ½θTΣ−1θ − ½ log |Σ| − (d/2) log(2π)).

Matching with (10.14) we find that C(θ) = ½θTΣ−1θ from which ∂/∂θC(θ) =
θTΣ−1 and so the update is

θ(k+1) ← Σ×
∑
iH

(k)
i X

(k)
i∑

iH
(k)
i

. (10.17)

That is, one uses (10.17) to choose the next density q in Algorithm 10.1.
For another example, suppose that X ∈ {0, 1}d with independent but not

identically distributed components. We will use the logit function logit(η) =
log(η/(1− η)). Then the probability mass function of x is

d∏
j=1

η
xj

j (1− ηj)1−xj = exp

(
d∑
j=1

xj logit(ηj) + log(1− ηj)

)
.

If we adopt the parameter θ ∈ Rd with θj = logit(ηj) then we can put the
distribution into the natural exponential form

q(x; θ) = exp

(
xTθ −

d∑
j=1

log(1 + eθj )

)
.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission



10.5. Adaptive importance sampling 23

Algorithm 10.2 Cross-entropy for P(f(X) > τ)

given family Q = {q(·; θ), θ ∈ Θ}, p(·), f(·), τ , n, K, θ(1), ε
for k = 1, . . . ,K do

X1, . . . ,Xn
iid∼ q(·; θ(k))

τ (k) ← (1− ε)-quantile of f(X1), . . . , f(Xn)
τ (k) ← min(τ, τ (k))
wi ← p(Xi)/q(Xi; θ

(k)), i = 1, . . . , n
Hi ← wi1f(Xi)>τ(k) , i = 1, . . . , n

θ(k+1) ← arg maxθ
∑n
i=1Hi log(q(Xi; θ))

µ̂(K) ← 1
n

∑n
i=1 wi1f(Xi)>τ

deliver µ̂(K), τ (K)

Basic cross-entropy for rare events. Often ε = 0.01 is used. Then n > 1000
is advisable. More sophisticated versions could pool estimates from all stages,
attempt to diagnose convergence failures and produce confidence intervals.

In this form we get C(θ) =
∑d
j=1 log(1 + eθj ). Then ∂C/∂θj = eθj/(1 + eθj ),

the inverse of the logit function. The cross-entropy update is

θ(k+1) ← logit

(∑
iH

(k)
i X

(k)
i∑

iH
(k)
i

)
,

interpreted componentwise.

The cross-entropy update is not well defined if all of the H
(k)
i are zero. This

may happen if f(X
(k)
i ) = 0 for i = 1, . . . , nk. If f(x) = 1S(x)>τ for a very high

threshold τ , then we might expect our first sample to contain no points with
f 6= 0. The cross-entropy method can recover from this problem by using a

smaller value of τ . For instance, if all S(X
(k)
i ) < τ we may replace τ by a lower

value τ (k) such as the 99’th percentile of X
(k)
1 , . . . ,X

(k)
nk . The next iteration

should generate larger values of S(X) with a larger 99’th percentile. We may
use the larger of the original τ or the 99’th percentile from step k to define θ
for step k + 1. Ideally, the value τ (k) reaches τ early on and remains there.

The cross-entropy method is one of the easiest adaptive importance sampling
methods to use. It tilts the distribution of X in a direction θ and chooses θ
with little intervention from the user. In Exercise 10.7 there is only one direction
that brings extreme values for f(X) and the cross-entropy method finds it very
efficiently and gives a good estimate for a very small event probability.

The cross-entropy method can go astray. If we tilt towards one source of
extreme values, we may well tilt away from another and miss that source’s
contribution to µ. Exercise 10.8 provides a cautionary tale.

Exponential convergence

In some settings f(x) > 0 and the optimal density q∗ = pf/µ belongs to our set
Q. There is then a zero variance sampling density among our choices for some
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Figure 10.5: Toy example where absolute error converges exponentially to zero
in AIS.

value θ∗. Sometimes we can get an estimate θ̂ from n observations with RMSE
(E((θ̂ − θ∗)2))1/2 = O(1/

√
n). Sampling from a better θ̂ may then lead to an

even better estimate of θ̂. The result may be an exponential convergence where
exp(κk)(µ̂(k) − µ) converges to 0 as k increases for some κ > 0.

We can illustrate the phenomenon in a toy example where we would not
use AIS. This toy example will even use the known relationship between µ
and θ to do the updates. Let p(x) = N (0, 1), f(x) = exp(Ax) for A > 0
and q(x; θ) = N (θ, 1). We then find that µ = exp(A2/2) and proportionality
fp = q(·; θ)µ holds for θ = θ∗ = A. Because A > 0, we have A =

√
2 log(µ).

Since the optimal sampler has θ = A and Ep(f(X)) = exp(A2/2) we may
consider an AIS scheme starting with θ(1) = 0, and then for k > 1 updating by

X
(k)
i

iid∼ q(·; θ(k)), i = 1, . . . , n,

µ̂(k) ← 1

n

n∑
i=1

f(X
(k)
i )p(X

(k)
i )

q(X
(k)
i ; θ(k))

, and

θ̂(k+1) ←
√

2 log(µ̂(k)).

(10.18)

Figure 10.5 illustrates this update for steps k = 1, . . . , 20 with n = 20 and
A = 1. The log absolute error versus iteration is nearly linear and by k = 20
the error has reached 0 in double precision.

The AIS update illustrated in Figure 10.5 is delicate in one way. When run
with n = 3 it was observed to give an estimate µ̂(1) < 1. In that case θ(2) is not
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10.5. Adaptive importance sampling 25

well defined. We know that in this case µ > 1. A better update would be

θ̂(k+1) ←
√

2 log(max(1, µ̂(k))). (10.19)

This is an example of the special attention we may have to pay to the starting
conditions for AIS.

The simulation in Figure 10.5 used K = 20 steps of n = 20 observations.
A smaller sample size n might allow the simulation to adapt more quickly. On
the other hand it might be less stable. Exercise 10.10 looks at the algorithm
in (10.18) for K = 400 steps of size n = 1 using (10.19).

Exponential or near-exponential convergence is seen is in some Monte Carlo
calculations used in particle transport. Example problems include simulations
to measure the effectiveness of sensors or shields in nuclear reactors or in medical
imaging. The goal is to compute a quantity like the average energy of particles
reaching a target area. When the particles don’t interfere with each other or
change the material that they pass through, then it is enough to find the average
behavior of one random particle and multiply that by the number of particles.

The particle moves through a material such as a lead or concrete shield. It
will fly through the material for some distance until it either leaves the region of
interest, enters a region made of a different material, or collides with an atom.
In a collision it could be absorbed. Or it could lose some energy and resume
its journey in a new direction. The important properties of the particle are its
location in three dimensions, its velocity which is also three dimensional, and
its energy level, for a total state space of seven dimensions.

A direct simulation from the particle transport distributions is not effective
here because the probability of a nonzero score is extremely small. Therefore,
some kind of importance sampling is in order. Intuitively, we could sample
particles with increased energy, or give them longer trajectories or bias them
in the direction of the shielded region. The optimal approach is likely some
combination of these and maybe other strategies.

We can simplify the problem by supposing that the particle may be in one
of d states, {1, 2, . . . , d}. Because the state space is seven dimensional we might
need a large d to cover it adequately. After presenting the basic idea, we will look
at ways to mitigate the large state space. The description here follows Kollman
et al. (1999) and other references given in the end notes.

Once the particle is absorbed or leaves the region of interest, we don’t have
to follow it any more. Instead, we suppose that it has entered a terminal state
∆. Once the particle reaches state ∆, it remains there forever.

The path the particle takes is described by a time homogeneous Markov
chain. Some background on Markov chains is in Chapter 11 on Markov chain
Monte Carlo. Letting Xn record the state that the particle is in at step n, the
homogeneous Markov property implies that P(Xn+1 = x | Xn, Xn−1, . . . , X0) =
P(Xn+1 = x | Xn). For i, j ∈ {1, . . . , d} we let Pij = P(Xn+1 = j | Xn = i).

The probability of a transition from state i to ∆ is Pi∆ ≡ 1−
∑d
j=1 Pij . Though

we write Pi∆, we will use P itself to refer to just the d×d matrix of non-terminal
transitions.
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In these problems, the matrix P ∈ [0, 1]d×d satisfies limn→∞ Pn = 0 and it
then follows that limn→∞ P(Xn = ∆ |X0 = i) = 1 for all i ∈ {1, . . . , d}. The
particle will not bounce forever but must eventually be absorbed or leave the
region of interest. Let

τ = min{n > 1 | Xn = ∆}

be the hitting time of ∆. We have P(τ <∞|X0 = i) = 1 for all i.
To capture the measurement of interest we define a score function sij such

that a transition from state i to state j adds the score sij > 0 to that particle’s
total. For example, si∆ may be the amount of energy hitting a target region
when a particle is absorbed from state i. Similarly, sij may be the energy left
in the target region when the particle loses energy due to a collision. Particles
in the terminal state do not increase their score: s∆∆ = 0. When it is typo-
graphically more convenient, we write s(i → j) instead of sij . The total score
from a particle’s trajectory is

Y =

∞∑
n=1

s(Xn−1 → Xn) =

τ∑
n=1

s(Xn−1 → Xn),

and we want to find µi = Ep(Y |X0 = i) for all or some of i = 1, . . . , d.
We will importance sample replacing the matrix P by another one, Q. We

require that Qij > 0 whenever Pij > 0. We assume this even if sij = 0, in
case a later score along the path leaving j is positive. We also require Qi∆ > 0
whenever Pi∆ > 0. The likelihood ratio appropriate to the n’th transition is
wn(X) =

∏n
j=1 PXj−1Xj/QXj−1Xj . If we sample Xi from Q, then

Eq
( τ∑
n=1

s(Xn−1 → Xn)wn(X) |X0 = i

)
= µi

providing a basis for importance sampled estimation of µi.
There is a zero variance importance sampling distribution for the vector

µ = (µ1, . . . , µd). The optimal transition from i to j takes place with proba-
bility proportional to Pij times the expected score of the ij transition and all
future transitions. The immediate score is sij and having landed in state j, the
expected future score is µj . For i, j ∈ {1, . . . , d}, the zero variance importance
sampler has transitions

Qij(µ) =
Pij(sij + µj)

Pi∆si∆ +
∑d
`=1 Pi`(si` + µ`)

, and

Qi∆(µ) =
Pi∆si∆

Pi∆si∆ +
∑d
`=1 Pi`(si` + µ`)

.

As usual, the optimal sampler depends on the unknown µ. Adaptive impor-
tance sampling here alternates between sampling M trajectories from Q(µ̂(k))
starting at each state X0 ∈ {1, . . . , d} and computing µ̂(k+1) from those trajec-
tories.
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There is a hazard here with an interesting resolution. Many of the sij = 0.

It is possible to get an estimate µ̂
(k)
j = 0 even when µj > 0. That would have

the very undesirable consequence of making Qij(µ̂
(k)) = 0 and the algorithm

might never recover from wrongly making i → j transitions impossible. We

have to bound all of the µ̂
(k)
i away from zero. The solution is to artificially add

some δ > 0 to every si∆. Every walk terminates with a step to ∆ and so then
all µi > δ and all µ̂i > 0. When the algorithm finishes we can subtract δ from
each estimated µi.

The algorithm starts with every µ̂
(0)
i > δ > 0. To update from µ(k) to µ(k+1)

we run M simulated paths starting at X0 = i for every state i = 1, . . . , d using
Q(µ(k)) as transition matrix, and let

Ȳ
(k)
i =

1

M

M∑
m=1

τ(k)
m∑
n=1

s
(
X(k)
mn → X

(k)
mn+1

)
× wn(X(k)

m ), for X
(k)
m0 = i.

Then we take

µ̂
(k+1)
i = max(Ȳ

(k)
i , δ), i = 1, . . . , d. (10.20)

This estimate is biased but never less accurate than the unbiased estimate Ȳ
(k)
i

because we have arranged for µi > δ.

Theorem 10.3. Let the matrix P satisfy limn→∞ Pn = 0. Assume that there
is a δ > 0 with si∆ > δ for i = 1, . . . , d. Let µ̂(k+1) be given by (10.20) starting

with all µ
(0)
i > δ > 0. Then there exist constants κ > 0 and M0 such that

lim
k→∞

P(eκk‖µ(k) − µ‖ → 0) = 1

if M >M0.

Proof. This is Theorem 3.2 of Kollman (1993).

Theorem 10.3 verifies that exponential convergence is possible for AIS. In
practice, we have to contend with the large state space. Sometimes it is possible
to reduce the physical space to one dimension representing how far through a
planar shield the particle has traveled. Then the state space has three dimen-
sions, depth, velocity in the retained direction and energy. Another approach is
to work in a continuous state space but with the function µ(·) = E(Y |X0 = ·) on
that space approximated within a finite dimensional parametric family. We then
only need to use a number of starting points X0 as large as or somewhat larger
than the dimension of this family. In such cases there are theorems showing
exponential convergence when the true µ(·) really has the assumed parametric
form. Empirical results often show initial exponential convergence followed by
slower convergence, when lack of fit to the functional form comes to dominate
the errors. The estimates remain unbiased, but fail to be from a zero variance
estimator. See page 53 of the end notes for references.
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10.6 Nonparametric AIS

Nonparametric versions of AIS use larger and more flexible families Q of impor-
tance sampling candidate densities. They usually have parameters, but perhaps
a large or indefinite number of them. A common strategy is to let q be a piece-
wise constant density, that is, a mixture of uniform distributions. Adaptive
importance sampling with a mixture of uniform distributions amounts to adap-
tive stratification. It is convenient to work in a setting where X ∼ U(0, 1)d

under the nominal distribution p. Many problems involving non-uniform vari-
ables can be accomodated through a transformation φ(X).

It is usual for q to be constant in hyper-rectangular subregions of (0, 1)d.
The algorithms alternate between strategic partitioning of the input space and
sampling from the resulting mixture distribution.

Here we will study the main ideas behind a few nonparametric AIS algo-
rithms. Those ideas are of interest because they can be built in to new algo-
rithms or guide our choice of algorithm for a specific problem. Implementations
of these algorithms involve a number of technical decisions and even some ad
hoc choices to safeguard against problems that their authors anticipated. We
will not cover all of those issues. They are needed if we want to duplicate the
algorithms precisely, but in that case it is better to consult the original research
or obtain the original authors’ code.

Vegas

The Vegas algorithm (Lepage, 1978) is an adaptive importance sampling method
used in physics. Sometimes the term Las Vegas algorithm is to describe an
algorithm that uses randomness to get an exact result in a possibly random
amount of computation. That is a different usage.

Vegas is a complicated algorithm and we will not describe it in full. There
is a brief description in Press et al. (2007, Chapter 7) which includes the source
code with some added comments. There are more details in the technical re-
port Lepage (1980). This account is based in part on Zhou’s (1998) very thor-
ough description.

Vegas works with a product density q(x) =
∏d
j=1 qj(xj). Each factor in the

product density is a piece-wise constant function. The distribution qj is defined
by break points 0 = xj,0 < xj,1 < · · · < xj,Nj

= 1. Let ∆j,` = xj,` − xj,`−1 for
1 6 ` 6 Nj . Then

qj(x) =
1

Nj∆j,`
, xj,`−1 6 x < xj,`.

Instead of splitting [0, 1) into Nj equal width pieces and varying their proba-
bilities, the algorithm splits [0, 1) into Nj intervals Ij,` = [xj,`−1, xj,`) of varying
width but equal probability content 1/Nj . That choice is one of Vegas’ most
important features. It allows Vegas to focus on very narrow modes in f by
using very small widths ∆j,` for number of consecutive values of `. It is easy
to sample Xj ∼ qj by inversion. For U ∼ U(0, 1), we use ` ← bNjUc and
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Xj ← xj,` + Nj(U − `/Nj)∆j,`. Though easy to sample, this parameterization
is challenging to update.

The optimal importance sampling distribution is proportional to |f | because
p is constant. The optimal importance sampling distribution within the class of
product densities has

qj(xj) ∝

√√√√∫
(0,1)d−1

f(x)2∏
` 6=j q`(x`)

∏
` 6=j

dx`. (10.21)

Given a sample from q(k), Vegas updates its estimates to q(k+1). The first
step is to iterate a sample analogue of (10.21) to update the probability content
that Xj should place on Ij,`. Let this new value be pj,`.

Vegas does its updating by moving the endpoints xj,` instead of updating
the probability content of Ij,`. That is a very complicated process which uses
the pj,` values to guide the move. It first sets rj,` = pj,`∆j,` which is an estimate
of the desired probability content for Ij,`. Then it smooths these values getting
r̃j,` a weighted average of rj,` and its neighbors rj,`−1 (if ` > 2) and rj,`+1 (if
` 6 Nj − 1). The r̃j,` values are then normalized to sum to 1. This smoothing
is designed to reduce variance.

The r̃j,` values are ‘flattened’ using the transformation

r̃j,` ← F (r̃j,`), where F (r) ≡
( 1− r
− log(r)

)α
(default α = 1.5). The flattening transformation F is nearly linear for all but
the smallest r̃j,`. It has the effect of raising the smaller r̃j,` relative to the others,
like defensive importance sampling of §9.11 does. Taking limits, F (0) = 0 and
F (1) = 1. The lower limit implies no defensive mixing at r̃j,` = 0 but with
F (10−100)

.
= 0.00029 we see that even very small r̃j,` get boosted up.

We may now consider a piecewise constant density function with a value

proportional to r̃j,` in the old interval I
(k)
j,` . The updated break point x

(k+1)
j,` is

the `/Nj quantile of this mixture of uniforms.
As Vegas runs throughK iterations, it retains estimates µ̂(k) for k = 1, . . . ,K

and estimates V̂ar(µ̂(k)) of Var(µ̂(k)), both based on importance sampling for-
mulas. The final estimate from Vegas is

µ̂Vegas =

∑K
k=1 µ̂k/V̂ar(µ̂(k))∑K
k=1 1/V̂ar(µ̂(k))

. (10.22)

Vegas also produces a variance estimate

V̂ar(µ̂Vegas) =

( K∑
k=1

V̂ar(µ̂(k))−1

)−1/2

,

and a diagnostic statistic

χ2 =

K∑
k=1

(µ̂(k) − µ̂Vegas)
2

V̂arµ(k)
.
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If χ2 is significantly larger than K − 1 it indicates that the K estimates being
pooled appear to be estimating different quantities and then Lepage (1978) says
the results are not to be trusted. An alternative to the pooling method (10.22)
is given on page 34.

The user of Vegas chooses K as well as the number of sample points to
be drawn at each iteration. Vegas has a built-in upper bound on the input
dimension, d 6 10.

Divonne

The Divonne algorithm described in Friedman and Wright (1979, 1981) uses
recursive splitting of the cube [0, 1]d. The special ingredient in their algorithm
is the use of numerical optimization algorithms to guide the partitioning. If
f has two continuous derivatives then we can reliably find local minima and
maxima of f , often with a modest number of function evaluations. Optimizing
within hyperrectangular subsets of [0, 1]d amounts to imposing simple bound
constraints on the components xj and such constraints are built in to many
optimizers. Local optima are not necessarily global ones, but for a well-behaved
function f and a not too large subregion of [0, 1]d they will coincide. When the
local optima are not global, that will affect efficiency but not unbiasedness of
the resulting estimated expectation.

Divonne uses multiple random starts each time it seeks a maximum or min-
imum, to improve the odds of finding the global optimum. It employs a quasi-
Newton algorithm using divided differences to estimate gradients, so the user
does not have to supply a function to compute the gradient of f .

Divonne maintains a list of hyperrectangular subsets R1, . . . , RL ⊂ [0, 1]d

with ∪L`=1R` = [0, 1]d and vol(Rj ∩ Rk) = 0 for j 6= k. Initially L = 1 and
R1 = [0, 1]d. We’ll refer to these subsets as simply ‘rectangular’ with the un-
derstanding that d 6= 2 is included.

Let R = [a, b] =
∏d
j=1[aj , bj ] be a rectangular subset of [0, 1]d. They define

a badness, or spread function

s(R) = vol(R)×
(
max
x∈R

f(x)−min
x∈R

f(x)
)

for this rectangle. Each step of the algorithm involves replacing the worst rect-
angle in the list (largest s(·)) by two or more sub-rectangles. The selected
rectangle is removed from the list and replaced by its sub-rectangles. That op-
eration continues until a convergence criterion based on estimated accuracy is
met. Their approach to subdividing R differs from most. Instead of splitting
R into two congruent halves they seek the most prominent spike of f within R
and find a subrectangle that isolates this spike from the rest of R.

To subdivide R they find xmin and xmax, the minimizer and maximizer
respectively of f over x ∈ R. They also get a sample based estimate µ̂(R) of
E(f(X) |X ∈ R). The partition of R is based on a rectangle RM ⊂ R built
around xM which is either the mode at xmax or the minimum at xmin, whichever
of these has an f value farther from µ̂(R).
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The new rectangle RM isolating xM has the form
∏d
j=1[xMj−δ−j , xMj +δ+

j ]

for carefully chosen δ±j . If xMj is at or near aj then δ−j = xMj−aj . Specifically,

if xMj − aj 6 β(bj − aj) (default β = 0.05) then δ−j = xMj − aj . Similarly,
if XMj is at or near bj then the new box will have j’th upper limit bj . When
the interval [xMj , bj ] is splittable a further constraint is that δ+

j 6 α|bj − xMj |
(default α = 0.5) and similarly when [aj , xMj ] is splittable.

When there is some freedom to choose δ±j it is used to make f(xM + ejδ
+
j )

and/or f(xM − ejδ−j ) take on a common value f̃ . Here ej is the unit vector in

the component j’s direction. The value f̃ is chosen to make estimates of s(RM )
and s(R∩RcM ) match. Having carved out the modal rectangle RM from within
R, the complement R − RM is now a rectangle minus a rectangular hole. The
complement R−RM is split into a list of rectangles, possibly as many as 2d but
often fewer because RM may share some upper and lower limits with R. The
rectangle R gets replaced by a new list of up to 2d+ 1 rectangles.

Given a set of rectangles R1, . . . , RL, the estimate of µ =
∫
f(x) dx is

µ̂divonne =

L∑
`=1

vol(R`)

n

n∑
i=1

f(X`,i) (10.23)

where X`,i ∼ U(R`) independently. An alternative version of Divonne replaces
randomX`,i by quasi-random points using Korobov rule. That is a lattice based
QMC rule (see Chapter 16). The algorithm terminates when the Monte Carlo
standard error is below a tolerance. If QMC points are used then they replace
the standard error by

1

2n

√√√√ L∑
`=1

s(R`)2.

This estimate is O(1/n) to reflect the improved convergence in QMC versus
MC. They report that this error estimate is usually conservative.

Divonne is not well suited to unbounded integrands. When f is unbounded
we may be able to use some problem-dependent reformulations to replace it by a
bounded function with a known relationship to µ. In some cases, subtracting off
a singular function will work. In others, a variable transformation may replace
f by a bounded function.

Miser

Miser was developed in Press and Farrar (1990) and is also described in the
Numerical Recipes books, such as Press et al. (2007, Chapter 7.9). That series
of books includes code for Miser in multiple programming languages. Miser
estimates the average of f(x) over x ∈ [0, 1)d by recursively splitting the cube
into two subcubes and estimating the average within each of those parts. It
allocates a portion p (default 10%) of its budget of n function evaluations to
deciding on which of the d axes the cube should be split. The rest of the budget-
ted evaluations are used to estimate

∫
f(x) dx over each of the two subcubes.
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The algorithm is recursive, treating those two subcubes the same way that the
original one was, and stopping to ensure at least a minimum number (default
15) of function evaluations in every terminal subcube.

To describe the search for the split, suppose that we are working with the
subcube C = [a, b) =

∏d
j=1[aj , bj) ⊆ [0, 1)d. Let cj = (aj + bj)/2 be the

midpoint of the interval [aj , bj). We can split C into left and right halves

CLj = {x ∈ C | aj 6 xj < cj}, and

CRj = {x ∈ C | cj 6 xj < bj},

along the j’th axis.
Let µC =

∫
C
f(x) dx/vol(C) and σ2

C =
∫
C

(f(x) − µC)2 dx/vol(C) be the
mean and variance of f within C, respectively. From pN points uniformly
distributed in C we can form estimates σ̂2

CLj
and σ̂2

CRj
for any of those sets that

get at least 2 of our Np observations.
We have n = N(1 − p) points to distribute between two strata, CLj and

CRj . If we put nθ points in CLj and the other n(1− θ) points in CRj then we
can estimate µCLj

by the average µ̂CLj
of the nθ points in CLj and similarly for

CRj . Our estimate of µC is

µ̂C,j =
1

2

(
µ̂CLj

+ µ̂CRj

)
.

The variance of this estimate under simple random sampling is

Var(µ̂C,j) =
1

4

(σ2
CLj

nθ
+

σ2
CRj

n(1− θ)

)
. (10.24)

We can use the optimal stratified sampling allocation given by (8.17) of §8.4
and take θ = σCLj

/(σCLj
+ σCLj

). The result is that

Var(µ̂C,j) =
1

4n

(
σCLj

+ σCRj

)2
. (10.25)

Equation (10.25) motivates a rule of splitting on the axis j that minimizes
σ̂CLj

+ σ̂CRj
. Miser does not split this way. The reason is that the averages

over left and right sides of C will not be estimated by simple random sampling
but instead by a recursive application of Miser. They anticipate achieving a
variance more like

Var(µ̂C,j) =
1

4

( σ2
CLj

(nθ)α
+

σ2
CRj

(n(1− θ))α
)

(10.26)

for some quantity α > 1. Equation (10.26) motivates choosing

θ = (σ2
CLj

)1/(1+α)
/ [

(σ2
CLj

)1/(1+α) + (σ2
CLj

)1/(1+α)
]

which leads to variance

Var(µ̂C,j) =
1

4nα

[
σ

2/(1+α)
CLj

+ σ
2/(1+α)
CLj

]1+α

. (10.27)
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They settle on α = 2 after some experimentation.
The cube C is split along the axis j that minimizes an estimate of (10.27).

Instead of using the usual sample estimates they replace σCL,j
in (10.27) by

σ̃CL,j
= m̂ax{f(x) | x ∈ CL,j} − m̂in{f(x) | x ∈ CL,j}

where m̂ax and m̂in are sample maxima and minima. The analogous estimate
is used for σ̃CR,j

. They report that these values are empirically more reliable
than sample standard deviations.

The preliminary sampling using np points to search for the best split may in
some cases leave one or more of CL,j or CR,j empty. In that case axis j is not
eligible for splitting. In the (very unlikely) event that all d axes are ineligible
this way, they split on axis j for a random j ∼ U{1, 2, . . . , d}.

Miser can have a bad result when the function f is nearly symmetric about
the point (1/2, 1/2, . . . , 1/2) ∈ [0, 1)d. It may use up all of its possible splits in an
attempt to partition the unit cube into 2d pieces to be sampled independently.
In such cases a small set of only d off-center splits might have been able to
isolate the mode for further sampling. For such problems they introduce a
dither parameter δ (such as 0.1 when not 0) and the splits are proposed at
cj ± δ(bj − aj)/2 instead of at cj . The formulas all have to be modified to
account for unequal volumes in CLj and CRj . The choice between +1 and −1
is made at random with equal probability.

Split Vegas

As noted above, Miser can have difficulties with unimodal functions. Conversely,
Vegas is well suited to unimodal functions, but has a problem with multimodal
functions. To see that problem, suppose that f(x) ∈ [0, 1)d has two equal
modes, one at (0.1, 0.1, . . . , 0.1) and one at (0.9, 0.9, . . . , 0.9). We might then
find that each of the estimated factors qj of the importance distribution has

two modes, one at 0.1 and one at 0.9. Then q(x) =
∏d
j=1 qj(xj) has 2d modes

of which only 2 correspond to modes of f . The next sample has on average
2−dn observations in each of those modes. It might well get zero observations
near one of the true modes. When this happens the algorithm can lock on to
the other mode and only estimate half of the integral. Zhou (1998) gives an
example of two Gaussian bumps in d = 9 dimensions where this happens. The
true integral is very close to 1 and Vegas gives an answer near 0.5 with a tiny
standard error.

The split Vegas algorithm (Zhou, 1998) combines recursive splitting of [0, 1)d

with Vegas fits inside each of the resulting subcubes. We can think of it as a
‘Vegas within Miser’ algorithm. Within a cubic region it fits Vegas and then
inspects the marginal sampling distributions there. If it detects a strongly
bimodal distribution for one of the factors then it splits the cube on that factor
and applies split Vegas separately to the two resulting subcubes. The bimodality
detection is based on fitting a cubic smoothing spline to the density factor qj .
It then looks for a local minimum in smoothed qj with steep slopes in both
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directions towards the surrounding local maxima. If there are multiple strong
local minima then the strongest one is used to define a split.

Combining stages

Adaptive importance sampling schemes give rise to a sequence of estimates µ̂(k)

at stage k and usually we have estimates V̂ar(µ(k)) of their accuracy. These
estimates are not independent because the sampling scheme used in stage k
depends on the values we saw in stages 1 through k − 1. Here we look at ways
to combine them into an estimate of µ, a way to estimate the variance of that
combination, and a square root rule that provides an advantageous combination.

Let X (k) = (X
(k)
1 , . . . ,X

(k)
nk ) hold the set of values used at stage k. The

standard importance sampling mean and variance estimates satisfy conditional
unbiasedness,

E
(
µ̂(k) | X (1), . . . ,X (k−1)

)
= µ, and

E
(
V̂ar(µ̂(k)) | X (1), . . . ,X (k−1)

)
= Var

(
µ̂(k) | X (1), . . . ,X (k−1)

)
.

We will assume that Var(µ̂(k) | X (1), . . . ,X (k−1)) <∞.
Our combination is a simple weighted average over the stages, defined by

nonrandom values ωk > 0 for k = 1, . . . ,K satisfying
∑K
k=1 ωk = 1. The

estimate is

µ̂ω =

K∑
k=1

ωkµ̂
(k). (10.28)

For instance, the update (10.12) has ωK = 1 and ωk = 0 for k < K in nu-
merator and denominator of the self-normalized estimate. By contrast, the
update (10.13) has ωk ∝ nk. The Vegas pooling method (10.22) does not fit
this pattern because it uses data determined random weights.

Using fixed weights we get

E(µ̂ω) =

K∑
k=1

ωkE(µ̂(k)) =

K∑
k=1

ωkE
(
E(µ̂(k)) | X (1), . . . ,X (k)

)
= µ.

Although the estimates µ̂(k) are statistically dependent, they are uncorrelated.
To see this, suppose that 1 6 k < k′ 6 K. Then

Cov(µ̂(k), µ̂(k′)) = E
(
E((µ̂(k) − µ)(µ̂(k′) − µ) | X (1), . . . ,X (k))

)
= E

(
(µ̂(k) − µ)E(µ̂(k′) − µ | X (1), . . . ,X (k))

)
= 0.

Therefore

Var(µ̂ω) =

K∑
k=1

ω2
k Var(µ̂(k)). (10.29)
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If we plug in estimates of Var(µ̂(k)) we get an unbiased estimate of Var(µ̂ω):

E

(
K∑
k=1

ω2
k V̂ar(µ̂(k))

)
=

K∑
k=1

ω2
k E
(
V̂ar(µ̂(k))

)
=

K∑
k=1

ω2
k E
(
E
(
V̂ar(µ̂(k)) | X (1), . . . ,X (k−1)

))
=

K∑
k=1

ω2
k E
(
Var(µ̂(k)) | X (1), . . . ,X (k−1)

)
= Var(µ̂ω).

The last step follows because

Var(µ̂(k)) = E(Var(µ̂(k) | X (1), . . . ,X (k−1))) + Var(E(µ̂(k) | X (1), . . . ,X (k−1)))

= E(Var(µ̂(k) | X (1), . . . ,X (k−1))).

The optimal weights are ωk ∝ 1/Var(µ̂(k)) but these values are unknown. Ve-

gas uses ωk ∝ 1/V̂ar(µ̂(k)) (equation (10.22)), but such data dependent weights
can bring a severe bias. Consider a function f(x) > 0 that is mostly near 0
but has one very narrow spike. If X (k) misses that spike then both µ̂(k) and
V̂ar(µ̂(k)) are likely to be small. The result would be small estimates µ̂(k) getting
large weight and vice versa, biasing the resulting estimate towards zero.

A rule that takes ωk ∝
√
k when all of the nk are equal is nearly optimal in a

variety of different circumstances. Consider steady progress over the iterations
with

Var(µ̂(k)) =
σ2

nkr0
(10.30)

where σ > 0 and the rate parameter satisfies 0 6 r0 6 1. The lower bound r0 = 0
describes a pessimistic setting where the iterations bring no improvement. The
upper bound r0 = 1 models a setting where adaptive Monte Carlo is essentially
as good as using quasi-Monte Carlo. That is an optimistic upper bound, though
not optimistic enough to include exponential convergence. Suppose that we do
not know the true value r0 and take ωk ∝ kr1 instead. Then if we use r1 = 1/2
we are never far from the optimum as Theorem 10.4 shows.

Theorem 10.4. For k = 1, . . . ,K, let Var(µ̂(k)) = σ2k−r0/n. Let ω = (ω1, . . . , ωK)
with ωk ∝ k−r0 and summing to 1. Let ω̃ = (ω̃1, . . . , ω̃K) with ω̃k ∝ k−r1 and
summing to 1. Then for estimates µ̂ω and µ̂ω̃ given by (10.28),

min
06r161

sup
16K<∞

max
06r061

Var(µ̂ω̃)

Var(µ̂ω)
=

9

8

and this minimum is attained at r1 = 1/2. That is for ω∗ = (ω∗1, . . . , ω∗K) with
ω∗k ∝ k1/2 and summing to one,

sup
16K<∞

max
06r061

Var(µ̂ω∗)

Var(µ̂ω)
=

9

8
.
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Proof. This is Theorem 4 of Owen and Zhou (1999).

From Theorem 10.4 we see that the square root rule has efficiency within
12.5% of the unknown optimal rule for any number K of stages and for any true
rate r0 ∈ [0, 1]. Exercise 10.11 looks at the efficiency which results from using
r1 = 0 when r0 = 1 and vice versa.

10.7 Generalized antithetic sampling

In §8.2 we looked at antithetic sampling as it is usually used with antithetic
(i.e., opposite) values of x. The original formulation of antithetic variables by
Hammersley and co-authors in the 1950s is much more general.

It is not necessary for x̃ to be a reflection of x through the center point of

D. Antithetic sampling works with other mappings. It suffices to have X̃ ∼ p
whenever X ∼ p. For the method to be beneficial, we should have f(x) taking
antithetic (i.e., nearly opposite) values to f(x̃).

If X ∼ U(0, 1)2 then we may take x̃ = (1 − x1, x2), reflecting just one

component. We still find that X̃ has the same distribution asX. More generally
for X ∼ U(0, 1)d we can reflect any subset of the d components. A good subset
is one where changing those components brings an antithetic value in f .

Consider for example X generated from N (0, I2) by the Box-Muller trans-
formation: X1 =

√
− 2 log(U1) cos(2πU2) and X2 =

√
− 2 log(U1) sin(2πU2)

for U ∼ U(0, 1)2. The value U1 determines ‖X‖ while U2 determines the angle
that X makes with the horizontal axis. If we think that large and small ‖X‖
lead to antithetic values of f then we could define X̃ by a Box-Muller trans-

formation of X̃ = (1− U1, U2) instead of the usual choice X̃ = −X. Which of
these choices is better depends on f .

When p is not symmetric but X = ψ(U) for a transformation ψ of U ∈
(0, 1)s from Chapter 5 then we may use X̃ = ψ(Ũ) with Ũ = 1 − U (compo-
nentwise). For acceptance-rejection we may use antithetic sampling to balance
the proposals. Alternatively, we might apply antithetic sampling to balance the
acceptance decisions.

The method extends beyond reflections. For X ∼ U(0, 1) we may take

X̃ = X+1/2 mod 1, a rotation modulo 1. Consider f(x) = |x−1/2|. Ordinary
antithetic sampling is of no use on this function but using the rotation will give
the exact answer with n = 2 function evaluations.

We can generalize further by taking more than two function values at a time.
For x ∈ [0, 1]d it is natural to consider evaluating f at 2d values at a time, each
one corresponding to a reflection of a subset of components of x. This will only
be attractive for small d.

For x ∈ D define k transformations τj(x) such that τj(X) ∼ p whenever
X ∼ p. Typically τ1(x) = x. The generalized antithetic sampling estimate is

µ̂gen-anti =
1

n

n/k∑
i=1

k∑
j=1

f(τj(Xi)), Xi
iid∼ p.
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For example, with d = 1, we could use rotation sampling,

µ̂rot(k) =
1

n

n/k∑
i=1

k∑
j=1

f
(
{Xi + (j − 1)/k}

)
where {z} = z − bzc. In an extreme version, k = n, so that one single point is
rotated through n shifts of size 1/n, modulo 1.

Generalized antithetic sampling will pay off when the random variable g(X) =

(1/k)
∑k
j=1 f(τj(X)) has variance below σ2/k (using the usual cost assump-

tions). For any f with σ2 <∞ we have

0 6 Var(µ̂gen-anti) 6
kσ2

n
. (10.31)

The upper bound arises when we have chosen poorly and find that f(τj(x)) =

f(x) for all x ∈ D. The lower bound arises when
∑k
j=1 f(τj(x)) is constant on

x ∈ D.
These generalizations of antithetic sampling are continuous space versions

of cluster sampling, a method used in survey sampling. In cluster sampling
we define k–tuples of points in D and sample all members from n/k randomly
chosen k–tuples.

The formulation of antithetic sampling in Hammersley’s work was even more
general than cluster sampling, because it allowed for unequal weighting of the
function values. See page 51 of the chapter end notes. The simplest versions of
antithetic sampling with one or two reflections are the most used. Some versions
of randomized quasi-Monte Carlo, the shifted lattice rules of Chapter 16, can
be viewed as cluster sampling.

10.8 Control variates with antithetics and strat-
ification

In §9.10 we combined control variates with importance sampling. We can also
use control variates in conjunction with antithetic sampling, and stratification,
including Latin hypercube sampling. In all of these cases the combination is
likely to change the optimal control variate coefficient vector β. Different con-
trol variates are helpful for these combinations than we would find helpful in
simple Monte Carlo. In general, these combinations make it harder to identify
promising control variates for a given f .

First we consider control variates with antithetic sampling. The goal is to
find µ = E(f(X)) for X ∼ p on D ⊂ Rd. To each x there is an antithetic

counterpart x̃ with X̃ ∼ p. There is also a vector h for which E(h(X)) = θ is
known.

Taking Xi
iid∼ p, the combined estimate of µ is

µ̂anti,β =
1

n

n/2∑
i=1

f(Xi) + f(X̃i)− βT(h(Xi) + h(X̃i)− 2θ)
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=
2

n

n/2∑
i=1

fE(Xi)− βT(hE(Xi)− θ), (10.32)

where fE(x) = (f(x) + f(x̃))/2 and hE(x) = (h(x) + h(x̃))/2. From equa-
tion (10.32), we see that the combination of control variates with antithetic
sampling is equivalent to sampling the even part of f , using a control variate
taken from the even part of h.

Operationally, combining control variates with antithetic sampling is straight-
forward. We simply compute the even parts of f and h, and then use the control
variates method on them. Antithetic sampling generally changes the optimal
value of β, and hence how we should estimate it. In the antithetic sampling
context we should replace (8.33) by

β̂E =

( n/2∑
i=1

(
hE(xi)− H̄

)(
hE(xi)− H̄

)T)−1 n/2∑
i=1

(
hE(xi)− H̄

)
fE(xi). (10.33)

Using the estimate β̂ from (8.33) devised for ordinary sampling instead of (10.33)
will reduce the efficiency of the method.

Using a single control variate h in a regression estimator will reduce the vari-
ance of antithetic sampling by a factor of 1−ρ2

E where ρE = Corr(fE(X), hE(X)).
For multiple control variates the reduction is by 1 − R2

E, where R2
E is the pro-

portion of variance of fE(X) explained by a linear regression on hE(X).
Antithetic sampling can completely change which control variates are effec-

tive. It is only correlation between the even parts of the problem functions that
matters. In particular, if h is an odd function, then hE = 0 and it is of no value
whatsoever in antithetic sampling.

There are two ways to combine control variates with stratification. Both
are well known in the survey sampling literature. We can define control vari-
ates within strata, and replace the ordinary within stratum averages by control
variate estimates. Of course this method requires that we know the within stra-
tum averages of the control variates. Alternatively, we can define global control
variates which span all strata. That is the method we look at here.

Combining the grid-based stratification of §10.1 with control variates pro-
vides another illustration of how the control variate method has to change in
response to changed sampling. Suppose that f is continuously differentiable on
[0, 1]d and that we have continuously differentiable control variates h1, . . . , hJ ,
with

∫
hj(x) dx = θj known. Then we may estimate µ =

∫
[0,1]d

f(x) dx by

µ̂gs,β =
1

md

md∑
i=1

f(Xi)−
J∑
j=1

βj(hj(Xi)− θj)

which has variance asymptotic to σ2
gs,β/(12n1+2/d) where

σ2
gs,β =

∫
‖∇f(x)− βT∇h(x)‖2 dx.
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Here ∇f(x) is the gradient vector of f (a row vector) and ∇h(x) is the J by
d Jacobian matrix whose j’th row is the gradient of hj . The asymptotically
optimal value of β is

βgs =

(∫
∇h(x)(∇h(x))T dx

)−1 ∫
∇h(x)(∇f(x))T dx, (10.34)

which we may estimate by

β̂gs =

(
n∑
i=1

∇h(Xi)(∇h(Xi))
T

)−1 n∑
i=1

∇h(Xi)(∇f(Xi))
T,

assuming we can compute first order partial derivatives of f and hj .
A control variate h that correlates with f is not necessarily very useful. We

need a control variate h whose gradient ∇h is a good linear predictor of ∇f .
Now suppose that we combine Latin hypercube sampling with control vari-

ates. The estimator is

µ̂lhs,β =
1

n

n∑
i=1

f(Xi)− βT(h(Xi)− θ)

where Xi are a Latin hypercube sample. It is unbiased because individually,
Xi ∼ U(0, 1)d. Let us suppose that the additive parts of f and h are smooth
enough that they make negligible contribution to the sampling error. Then

Var(µ̂lhs,β)
.
=

1

n

∫ (
ef (x)− βTeh(x)

)2
dx

where ef = f − fadd and eh = h − hadd are the non-additive parts of f and h
respectively. A good control variate h is one whose non-additive part (a sum
of interactions) correlates with the non-additive part of f . It can be very hard
to identify such a variable. If f is nearly additive then very likely the similar
h that come to mind do so because their additive parts resemble f ’s, but the
non-additive parts may not be strongly related.

With Latin hypercube sampling, it is not easy to estimate β either. The
most straightforward approach is to run R independent replicates with each one
a Latin hypercube sample of size n/R. Then we form R averages f̄r and h̄r
for r = 1, . . . , R of f and h over these Latin hypercube samples. The estimates

µ̂lhs,β and β̂ are then the minimizers of
∑r
r=1

(
f̄r − µlhs,β − βT(h̄r − θ)

)2
.

10.9 Bridge, umbrella and path sampling

Importance sampling and some variations of it, can be used to estimate the
normalizing constants in distributions. In the physical sciences, the free energy
of a system can be expressed in terms of a normalizing constant. Statisticians
compute Bayes factors through normalizing constants.
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The context for Bayes factors is as follows. We have some data D which
could be a simple matrix of numbers, or it could be something more complicated
like a collection of images or genetic sequences. The data has the distribution
pu(D | θ) for a parameter θ ∈ Θ. Usually pu is unnormalized. We may have
two hypotheses about θ. Under H0, θ ∼ p0 and under H1, θ ∼ p1. Our prior
information specifies P(H0) and P(H1) = 1− P(H0). From Bayes’ rule we find
that the posterior odds in favor of H1 are

P(H1 | D)

P(H0 | D)
=

P(H1)

P(H0)
× P(D |H1)

P(D |H0)
. (10.35)

The second factor in (10.35) is the Bayes factor for H1 versus H0, denoted B1,0.
We can rewrite the Bayes factor as

B1,0 =

∫
Θ
pu(D | θ)p1(θ) dθ/

∫
Θ
p1(θ) dθ∫

Θ
pu(D | θ)p0(θ) dθ/

∫
Θ
p0(θ) dθ

.

When we work with normalized prior distributions pj , the Bayes factor simplifies
to

B1,0 =

∫
Θ
pu(D | θ)p1(θ) dθ∫

Θ
pu(D | θ)p0(θ) dθ

.

Now B1,0 is a ratio of normalizing constants for distributions pu(D | ·)pj(·) on Θ.
We will emphasize computing ratios like B1,0. When we want a single nor-

malizing constant, it is often very effective to estimate its ratio to another known
normalizing constant.

Our methods for estimating normalizing constants are based on importance
sampling. We will describe the problem as integration over x (not θ) to match
the notation we used for importance sampling, and because normalizing con-
stants are also used outside of Bayesian applications. The normalizing constant
for a distribution is usually written as either Z or c. We will use Z. The two
densities may be on spaces of different dimension and, in some cases, we can-
not generate samples those distributions either. Such restrictions affect some,
but not all, of the methods we consider. Ways to mitigate these problems are
discussed on page 49.

Suppose that we have two distributions p0(x) = p̃0(x)/Z0 and p1(x) =
p̃1(x)/Z1, where p̃j can be computed at any x and Zj > 0. We may estimate
ρ = Z1/Z0 by applying importance sampling separately in numerator and de-
nominator. For j = 1, 2, let qj be a normalized density with qj(x) > 0 whenever
pj(x) > 0. Then we may use

ρ̂q1,q0 =
(1/n1)

∑n1

i=1 p̃1(Xi,1)/q1(Xi,1)

(1/n0)
∑n0

i=1 p̃0(Xi,0)/q0(Xi,0)
(10.36)

where Xi,1
iid∼ q1 independently of Xi,0

iid∼ q0. The optimal qj are in fact the pj ,
so we might use (10.36) with normalized distributions close to the pj and with
heavier tails than the pj .
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It is advantageous to use (10.36) with q1 = q0. Let q be a density with
q(x) > 0 whenever max(p1(x), p2(x)) > 0. Then we can take

ρ̂q ≡ ρ̂q,q =

∑n
i=1 p̃1(Xi)/q(Xi)∑n
i=1 p̃0(Xi)/q(Xi)

=

∑n
i=1 p̃1(Xi)/q̃(Xi)∑n
i=1 p̃0(Xi)/q̃(Xi)

, (10.37)

for Xi
iid∼ q, where q̃ is an unnormalized version of q. Equation (10.37) brings

two advantages over (10.36). We only need a sample from one distribution, and
that distribution can be unnormalized.

We get a further simplification when we take q = p0 in (10.37). If p0(x) > 0
whenever p1(x) > 0 then we may use

ρ̂p0 =
1

n

n∑
i=1

p̃1(Xi)

p̃0(Xi)
, Xi

iid∼ p0. (10.38)

Of the three estimators (10.36), (10.37) and (10.38), only the third one (i.e.,
ρ̂p0) is unbiased. The other two are ratio estimators in which the law of large
numbers applies to numerator and denominator. The methods we consider for
estimating ρ = Z1/Z0 are generalizations of these estimators.

Bridge sampling

The method of bridge sampling, also known as the acceptance ratio method
works through a density function that bridges the domains of p0 and p1. Let
Ω0 = {x | p0(x) > 0} and Ω1 = {x | p1(x) > 0} and let α(x) be a function
defined on Ω0 ∩ Ω1 such that

B ≡
∫

Ω0∩Ω1

α(x)p̃0(x)p̃1(x) dx

satisfies 0 < |B| <∞. Then

Ep0(p̃1(X)α(X))

Ep1(p̃0(X)α(X))
=

∫
Ω0∩Ω1

p̃1(x)p0(x)α(x) dx∫
Ω0∩Ω1

p̃0(x)p1(x)α(x) dx
=
B/Z0

B/Z1
= ρ, (10.39)

motivating the estimator

ρ̂Bri,α =
1
n0

∑n0

i=1 p̃1(Xi,0)α(Xi,0)
1
n1

∑n1

i=1 p̃0(Xi,1)α(Xi,1)
(10.40)

where Xi,j ∼ pj are independent.
Most or perhaps even all proposed bridge estimators satisfy α(x) > 0. Then

we can define an unnormalized density p̃1/2 = α(x)p̃0(x)p̃1(x) and find that

ρ =
Ep0(p̃1/2(X)/p̃0(X))

Ep1(p̃1/2(X)/p̃1(X))
. (10.41)
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This density p̃1/2 is the bridging density and B is its normalizing constant.
A good choice of p̃1/2 will overlap both p̃0 and p̃1, which might only overlap
each other a little. Bridge sampling generalizes (10.38) because after taking
p̃1/2(x) = p̃1(x), the left side of (10.41) simplifies to Ep0(p̃1(X)/p̃0(X)).

One well-known choice is α(x) = 1/(p̃0(x)p̃1(x)) which leads to a method
called the harmonic rule. It has bridging density p̃1/2 = U(Ω0 ∩ Ω1). It only
defined when Ω0∩Ω1 has finite volume. The harmonic rule is extremely unstable
owing to its use of reciprocal densities when used in (10.40). It commonly has
infinite variance and is mentioned here only to warn against its use.

The choice of α which asymptotically minimizes Var(log(ρ̂)) is known. Let
n = n0 +n1, s0 = n0/n and s1 = n1/n. If n goes to infinity and both sj remain
bounded away from 0 in this limit, then

αopt(x) ∝ 1

s0p0(x) + s1p1(x)
∝ 1

ρ s0p̃0(x) + s1p̃1(x)
(10.42)

is best (Bennett, 1976). This choice is also asymptotically best for the relative
mean square error E((ρ̂Bri,α/ρ− 1)2). The optimal bridging distribution is

p1/2(x) ∝ p̃1/2(x) =
p̃0(x)p̃1(x)

ρ s0p̃0(x) + s1p̃1(x)
. (10.43)

Figure 10.6 illustrates two unnormalized densities together with their opti-
mal bridging density and some suboptimal ones. The densities are p0 = N (0, 1)
and p1 = Gam(9)/2. The optimal bridge density concentrates on the region
where p0 and p1 overlap.

As is often the case, the best method for estimating ρ depends on the un-
known true ρ. A practical approach to bridge estimation is to alternate between
plugging ρ̂ into the formula for optimal α and using that α to estimate ρ. We

start with any ρ̂
(0)
Bri > 0 and then update via

ρ̂
(k+1)
Bri ←

1

n0

n0∑
i=1

p̃1(Xi,0)

ρ̂
(k)
Bri s0p̃0(Xi,0) + s1p̃1(Xi,0)

1

n1

n1∑
i=1

p̃0(Xi,1)

ρ̂
(k)
Bri s0p̃0(Xi,1) + s1p̃1(Xi,1)

. (10.44)

The values p̃j(Xi,j) only need to be computed once, and so the iterations are
very fast. If some of the p̃j(Xi,1−j) overflow numerically, then the update

ρ̂
(k+1)
Bri ←

1
n0

∑n0

i=1

(
ρ̂

(k)
Bri s0r̃01(Xi,0) + s1

)−1

1
n1

∑n1

i=1

(
ρ̂

(k)
Bri s0 + s1r̃10(Xi,1)

)−1 (10.45)

will be more reliable, where r̃01(x) = p̃0(x)/p̃1(x) and r̃10(x) = p̃1(x)/p̃0(x).

Theorem 10.5. Let Xi,j ∼ pj be independent for i = 1, . . . , nj and j = 1, 2 and

suppose that Ω1 = Ω2 = Ω. Then ρ̂
(k)
Bri defined by (10.44) converges to a unique
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Figure 10.6: Unnormalized densities p̃0 and p̃1 are shown as thick lines. The
optimal bridge density p̃1/2 in (10.43) is given as the dark curve in the middle.
This p̃1/2 depends on the true unknown ρ. Suboptimal versions of p̃1/2 using
100ρ and ρ/100 are to the left and right of p̃1/2 (respectively) in thin lines.

limit ρ̂Bri as k → ∞, the progress is governed by |ρ̂(k+1)
Bri − ρ̂Bri| < |ρ̂(k)

Bri − ρ̂Bri|
whenever ρ̂

(k)
Bri 6= ρ̂Bri, and

E
((

ρ̂Bri

ρ
− 1

)2)
.
=

1

n

[∫
Ω

(
1

s0p̃0(x)
+

1

s1p̃1(x)

)
dx

]−1

− 1

n0
− 1

n1
. (10.46)

Proof. If Ω1 = Ω2 then the ratios lji = p̃1(xi,j)/p̃0(xi,j) satisfy 0 < lji < ∞
and Theorem 2 of Meng and Wong (1996) applies.

The significance of the right hand side of (10.46) is that this value is essen-
tially the best possible relative error (Bennett, 1976; Meng and Wong, 1996) for
a bridge estimator. As a result, the performance of ρ̂Bri obtained by (10.44) is,
for large nj , essentially as good as if we had used the unknown optimal α.

Umbrella sampling

An alternative to bridge sampling is the method of umbrella sampling. In
umbrella sampling, we work with (10.37), a ratio of two importance sampling
estimators sampling from a common distribution q. The importance sampling
density q which asymptotically minimizes the relative mean squared error is

qUmb(x) ∝ |p1(x)− p0(x)| ∝ |ρp̃1(x)− p̃0(x)| (10.47)
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Figure 10.7: Unnormalized densities p̃0 and p̃1 are shown as thick lines. The
optimal umbrella density qUmb in (10.47) is given (unnormalized) as a thinner
curve.

(Chen et al., 2000). Here

qUmb(x) =
|ρp̃1(x)− p̃0(x)|∫
|ρp̃1(x)− p̃0(x)|dx

.

Like bridge sampling, the most efficient sampler requires knowledge of the
true ρ. Umbrella sampling with qUmb has a smaller asymptotic relative mean
squared error than does bridge sampling with the optimal p̃1/2 (Chen et al.,
2000).

Figure 10.7 shows the best umbrella density for the same densities shown
in Figure 10.6. While the bridge sampling density concentrates in the region
where p0 and p1 overlap, the umbrella density avoids regions where p0 = p1

which may well be where they overlap. If we use 100ρ or ρ/100 in (10.47) then
qUmb becomes almost identical to p0 or p1, respectively, in that example.

Though umbrella sampling attains a better optimum than bridge sampling,
the form of qUmb in (10.47) is hard to sample from after plugging in a guess for
ρ. Also, to do so would require sampling new Xi whereas the bridge sampling
estimator (10.44) does not need to regenerate points or recompute any p̃j(x).
Umbrella sampling appears to be more sensitive to a bad guess for ρ than
bridge sampling is. As a result, the optimal qUmb is harder to approach than
the optimal p̃1/2 is. In practice, we would use a density q that covers both p0

and p1 (like an umbrella) and not one that vanishes on {x | p0(x) = p1(x)}.
Umbrella sampling has one strong advantage. It will work when there is no

overlap between p0 and p1. Bridge sampling cannot handle that case. Because
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the bridge sampling iteration (10.44) is so effective, it is desirable to extend
bridge sampling to distributions with little or no overlap. Path sampling and
warping do just that.

Path sampling

We can extend bridge sampling to non-overlapping distributions by using some
intermediate overlapping distributions. We form a set of distributions p`(x) =
p̃`(x)/Z` for ` = 0, 1, . . . , L, where p0 is as before but pL is our old p1. We are
interested in ZL/Z0 and we assume that Ω` ∩ Ω`−1 6= ∅ for 1 6 ` 6 L where

Ω` = {x | p`(x) > 0}. Now ZL/Z0 =
∏L
`=1 ρ` where ρ` = ZL/ZL−1. We can

define distributions p̃`+1/2 to bridge p̃` with p̃`+1 and then estimate

ZL
Z0

=

L∏
`=1

Ep`(p̃`−1/2(X)/p̃`(X))

Ep`−1
(p̃`−1/2(X)/p̃`−1(X))

(10.48)

by a corresponding product of L bridge sampling estimates.
This estimate puts L − 1 stepping stones in between the first and last dis-

tribution and uses L bridges. If we let L→∞, we obtain the method of path
sampling, as described next.

We start with a parametric family of distributions p(· ;λ) = p̃(· ;λ)/Zλ where
0 6 λ 6 1 and Zλ > 0 are normalizing constants. Here we connect the dots
informally. For full details consult Gelman and Meng (1998). Now for a large
integer L > 1,

log

(
Z1

Z0

)
=

L∑
`=1

log

(
Z`/L

Z(`−1)/L

)
=

L∑
`=1

log

(
1 +

Z`/L − Z(`−1)/L

Z(`−1)/L

)
.
=

L∑
`=1

Z`/L − Z(`−1)/L

Z(`−1)/L

.
=

1

L

L∑
`=1

d

dλ
log(Zλ)

∣∣∣
λ=(`−1)/L

.
=

∫ 1

0

d

dλ
log(Zλ) dλ.

Now we can sample λ ∼ U(0, 1) and average the derivative of log(Zλ) to ap-
proximate log(Z1/Z0). For technical reasons, these continuous paths require
all distributions in the path to have the same support set. It remains a big
improvement over bridge sampling when p0 and p1 have small overlap, but if p0

and p1 don’t overlap, then it is safter to use (10.48) for finite L.

Warping

Bridge sampling is impossible when p0 and p1 don’t overlap, and is generally
more accurate when the densities p0 and p1 overlap a lot. We will quantify the
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Figure 10.8: This figure shows Voter’s method. The distribution p̃1 from Fig-
ure 10.6 has been shifted left to overlap p̃0. The new optimal bridge density
p̃1/2 in (10.43) is also shown.

benefit of overlap below. Methods to bring p0 and p1 closer together can be
viewed as warping those densities, or even, warping the space between them.

One simple method for obtaining a greater overlap in bridge sampling is
Voter’s method, taking its name from Voter (1985). Let p0 = p̃/Z0 and
p′1 = p̃ ′/Z ′1 be two given distributions of a random vector X ∈ Rd. If we sample
X ∼ p′1 thenX−∆ has a new distribution, call it p1, with the same normalizing
constant Z1 = Z ′1. A judicious choice of ∆ can make p1 overlap p0 more closely.
Then we may apply bridge sampling to p0 and p1. Note that p1(x) = p′1(x+∆).

Figure 10.8 shows an example where ∆ = Ep′1(X) − Ep0(X) which results
in p0 and p1 having the same mean. The original method aligned modes of
the distribution. Modes are easier to find in some applications. Incorporating
Voter’s method into the iteration (10.44) yields

ρ̂
(k+1)
Vot ←

1

n0

n0∑
i=1

p̃ ′1(Xi,0 + ∆)

ρ̂
(k)
Vots0p̃0(Xi,0) + s1p̃ ′1(Xi,0 + ∆)

1

n1

n1∑
i=1

p̃0(Xi,1 −∆)

ρ̂
(k)
Vots0p̃0(Xi,1 −∆) + s1p̃ ′1(Xi,1)

(10.49)

where Xi,1 were drawn from (the original) p′1 and Xi,0 were drawn from p0.

The optimal shift ∆ is not necessarily the difference in means or in modes.
Those simple guesses are frequently close to optimal in simulated settings where
the optimum can be found.
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In addition to shifting the data, there are other operations that may make the
distributions more similar, such as rotation or scaling. We will need to account
for the Jacobians of those transformations. Before describing those methods, we
study the relationship between overlap of p0 and p1, and effectiveness of bridge
sampling.

One way to measure the overlap of two densities is via the Hellinger integral

HI = HI(p0, p1) =

∫ √
p0(x)p1(x) dx.

Large values of the Hellinger integral correspond to small values of the Hellinger
distance

H(p0, p1) =

(∫ (√
p0(x)−

√
p1(x)

)2

dx

)1/2

=
√

2− 2HI(p0, p1).

These integrals are over Ω0 ∪ Ω1 with pj(x) = 0 for x 6∈ Ωj .
We can bound the optimal bridge sampling variance for two densities using

the Hellinger integral. Meng and Schilling (2002) give this formula:

n0 + n1

n0n1

(
2
√
n0n1

(n0 + n1)HI
− 1

)
6 Var

(
log(ρ̂Bri,αopt

)
)
6
n0 + n1

n0n1

(
1

HI2 − 1

)
which for n0 = n1 = n/2 simplifies to

4

n

(
1

HI
− 1

)
6 Var

(
log(ρ̂Bri,αopt

)
)
6

4

n

(
1

HI2 − 1

)
.

The Hellinger integral satisfies 0 6 HI 6 1. It is small values near 0 that
cause us difficulty. If p0 and p1 overlap sufficiently near their peaks, then it does
not matter that one might have tails much lighter than the other.

By applying a transformations to the data from p1 we may be able to increase
the amount of overlap with p0. It turns out to be simpler to transform samples
from both distributions to some common reference. That is also advantageous
when there are more than two distributions to consider.

Let X have a continuous distribution with density p(x) = p̃(x)/Z. Let
Y = T (X) be a smooth and invertible transformation of X. Then the proba-
bility density function of Y is q(y) = p(T−1(y))|J(y)| where J is the Jacobian
determinant of T−1. That is, J is the determinant of the d× d matrix with rs
element ∂xr/∂ys.

If Yi,j = Tj(Xi,j), then Yi,j has density function

qj(y) = pj(T
−1
j (y))|Jj(y)| = q̃j(y)/Zj

where q̃j(y) = pj(T
−1
j (y))|Jj(y)| and Jj is the Jacobian determinant of T−1

j . In
this parametrization, q̃0 and q̃1 have the same normalizing constants as p̃0 and
p̃1, hence the same ratio. We may therefore run bridge sampling on densities q̃j
to estimate ρ = Z1/Z0. The combination is called warp bridge sampling.
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If Xi,j have a discrete distribution, then we do not multiply by |Jj(y)|,
or equivalently, we can simply deem |Jj(y)| to be 1. Scaling transformations
are more likely to be useful for continuous variables than discrete ones, so we
emphasize the continuous case.

We can write the optimal bridge sampling function in terms of the original
unnormalized densities. Any positive multiple of

α(y; ρ) =
1

ρs0p̃0(T−1
0 (y))|J0(y)|+ s1p̃1(T−1

1 (y))|J1(y)|

is optimal. Given a starting ρ̂(0) > 0 the update is

ρ̂(k+1) ←
(1/n0)

∑n0

i=1 p̃1(T−1
1 (Yi,0))|J1(Yi,0)|α(Yi,0; ρ̂(k))

(1/n1)
∑n1

i=1 p̃0(T−1
0 (Yi,1))|J0(Yi,1)|α(Yi,1; ρ̂(k))

, Yi,j = Tj(Xi,j).

The most important transformations take the form Yi,j = S−1
j (Xi,j −∆j)

for non-singular scaling matrices Sj ∈ Rd×d and shift vectors ∆j ∈ Rd. The
Jacobian of T−1

j is |Sj |. We assume that |Sj | > 0 for the Sj we have chosen.
We sample Xi,j ∼ pj independently for i = 1, . . . , nj and j = 0, 1. Then we
transform to Yi,j = S−1

j (Xi,j −∆j), and iterate the following

ρ̂(k+1) ← |S1|
|S0|

(1/n0)
∑n0

i=1 p̃1(S1Yi,0 + ∆1)α(Yi,0; ρ̂(k))

(1/n1)
∑n1

i=1 p̃0(S0Yi,1 + ∆0)α(Yi,1; ρ̂(k))
, where

α(y; ρ) =
1

ρs0p̃0(S0y + ∆0)|S0|+ s1p̃1(S1y + ∆1)|S1|
,

(10.50)

starting from ρ̂(0) > 0. Algorithm (10.50) yields the warp-II estimator. Voter’s
version is then called warp-I.

Candidates for ∆j are the mean of pj as well as the mode. Then Yi,j have
common mean (respectively mode) zero. The matrix Sj could be a matrix square
root of Varpj (X). Or it could be a matrix square root of the Hessian matrix
of − log pj(x) at ∆j . We can construct distributions p0 and p1 where these
transformations actually reduce overlap, but they are designed for unimodal p0

and p1 and will often greatly increase overlap. Figure 10.9 illustrates the warp-II
densities.

Though warp-II transformations give distributions common values of loca-
tion and spread, the transformed distributions may have different skewness. We
can symmetrize the distributions to match the skewness. In this case, the un-
normalized density (p̃j(y) + p̃j(−y))/2 has the same normalizing constant that
p̃j has. That operation yields the Warp-III estimator. Figure 10.10 shows
the warp-III density for our running example. There is now very high overlap
between the distributions.

To implement warp-III with the linear transformation we sample Xi,j ∼ pj
independently, set Yi,j = S−1

j (Xi,j −∆j), define

q̃j(y) =
|Sj |
2

(
p̃j(Sjy + ∆j) + p̃j(−Sjy + ∆j)

)
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Figure 10.9: This figure shows the results of a warp-II transformation. The
distribution p̃1 from Figure 10.6 has been linearly transformed to have mean 0
and variance 1 just like p̃0. The new optimal bridge density p̃1/2 in (10.43) is
also shown.

and then iterate

ρ̂(k+1) ←
(1/n0)

∑n0

i=1 q̃1(Yi,0)α(Yi,0; ρ̂(k))

(1/n1)
∑n1

i=1 q̃0(Yi,1)α(Yi,1; ρ̂(k))
, where

α(y; ρ) =
1

ρs0q̃0(y) + s1q̃1(y)
,

(10.51)

starting from ρ̂(0) > 0.
Table 10.2 shows results from four iterative algorithms to estimate the ra-

tio ρ = Z1/Z0 of normalizing constants Z0 =
∫∞
−∞ exp(−x2/2) dx and Z1 =∫∞

0
x8 exp(−2x) dx. These are unnormalized N (0, 1) and Gam(9)/2 distribu-

tions used in Figures 10.6 through 10.10. The answer is ρ
.
= 31.417. The

methods used n0 = 1000 observations from p0 and n1 = 2000 observations from
p1. Ordinarily one would use n0 = n1 unless the sampling costs were very
different. Here, unequal sample sizes provide a better test for potential errors
involving s0 and s1. The errors presented in Table 10.2 are based on R = 1000
independent replications.

Further issues

In the problems where normalization ratios are most needed, we may not be
able to sample from either p0 or p1. Umbrella sampling does not require samples
from p0 or p1, but bridge sampling does, and bridge sampling has a convenient
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Figure 10.10: This figure shows the results of a warp-III transformation. The
distribution p̃1 from Figure 10.6 has been linearly transformed to have mean
0 and variance 1 and then symmetrized. The new optimal bridge density p̃1/2

in (10.43) is also shown.

Method Equation RMSE/ρ

Bridge (10.45) 0.1400
Voter (10.49) 0.0094
Warp II (10.50) 0.0053
Warp III (10.51) 0.0018

Table 10.2: Relative root mean squared error for four estimates of ρ as described
in the text. The bias contribution was negligible.

iteration. In practice, we may use Markov chain Monte Carlo (Chapter 11) to
get samples that are approximately from p0 and p1. The sample points are not
independent. It is then customary to adjust the values of s0 and s1 to account for
the dependence. That is done by replacing nj by ñj = nj(1−ρj)/(1+ρj) where
ρj is first-order autocorrelation from within chain j and then sj = ñj/(ñ0 + ñ1).
The first-order autocorrelation depends on the quantity being averaged. Meng
and Schilling (2002) used the median of a large set of the estimated first-order
autocorrelations.

A second issue in normalization problems is that Xi,0 and Xi,1 may belong
to spaces of different dimension, d0 and d1, respectively. Suppose that d1 > d0.
One approach is to augment Xi,0 with d1−d0 further components, independent
of the first d0 components, from a distribution with normalizing constant 1.
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Then we estimate the ratio of normalizing constants between augmented p̃0

and the original p̃1. Similar augmentations are used in reversible jump MCMC
(Green, 1995). It can be difficult to construct effective augmenting variables. A
second approach is to use warp bridge sampling to relate normalizing constants
of each p̃j to a standard distribution such as N (0, Idj ). Recall that bridge
sampling is not adversely affected by light-tailed distributions such as N (0, Id).

Chapter end notes

Hammersley and Morton (1956) consider a very general formulation of antithetic
sampling that is now largely overlooked. They pay special attention to possibly
unequal weightings on pairs of values. For x ∈ (0, 1) and 0 < α < 1 the
combinations αf(αU)+(1−α)f(α+(1−α)U) and αf(αU)+(1−α)f(1− (1−
α)U) are both unbiased estimates of µ =

∫ 1

0
f(x) dx when U ∼ U(0, 1). The

optimal α for any arbitrary f is hard to find, but they report that the solution
to f(α) = αf(1) + (1− α)f(1) often works well.

Hammersley and Mauldon (1956) pose the problem of optimal antithetic
sampling, summing n different piecewise linear functions of a single u ∼ U(0, 1)
to estimate µ, but make little headway. For details on rotation sampling,
see (Hammersley and Handscomb, 1964, Chapter 5) and Fishman and Huang
(1983). Both papers find that rotation sampling is very well suited to peri-
odic integrands. Randomized lattice rules, Chapter 16, are multidimensional
generalizations of rotation sampling and they also are well suited to periodic
integrands. In Chapter 16 we look at ways of replacing a given integrand by a
periodic one having the same integral.

Grid-based stratification

Grid-based stratification and its O(n−1/2−1/d) root mean square error were ob-
tained by Dupach (1956), rediscovered by Haber (1966) and then combined with
antithetic sampling by Haber (1967). Haber (1968) defines stochastic quadra-
ture formulas wherein k random (not usually independent) points taken in the
unit cube with possibly random weights give a generally unbiased integral esti-
mate that is also exact for all polynomial integrands of degree r or lower, but
not for all of degree r + 1. Such rules, when applied within cubical strata, to
functions that have continuous mixed partial derivatives of total order r, give
an RMSE of O(n−1/2−(r+1)/d). Ordinary stratification and antithetic sampling
within strata correspond to r = 0 with k = 1 and r = 1 with k = 2, respectively.
Haber (1969) proves that such rules exist, but for degree r > 2 the value of k
required grows with d. He shows that for r = 2 the minimal k is always at least
3d+1. Some constructions for r = 2 and even for r = 3 appear in Haber (1969).
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A D B E C
B E C A D
C A D B E
D B E C A
E C A D B

Table 10.3: A 5 by 5 Latin square.

Latin hypercubes and orthogonal arrays

The term ’Latin hypercube sampling’ arises from a connection with Latin squares
used in experimental design. Table 10.3 shows a 5 by 5 Latin square. Each row
has exactly one of the five letters A, B, C, D and E. So does each column. If
we were to extract the row and column coordinates corresponding to just one of
the letters, such as A, those values suitably centered and scaled would comprise
the points of a (centered) Latin hypercube sample for d = 2, given by (10.8).

The centered version (10.8) of Latin hypercube sampling was analyzed by Pat-
terson (1954) who credits Yates for the scheme, and calls it lattice sampling.
The application was to agricultural field trials.

McKay et al. (1979) is an early and influential paper on computer experi-
ments. They introduced Latin hypercube sampling as a way to explore com-
putationally the input space of a function, pointing out that it automatically
stratifies on the important variables without the user having to know which
those are. They prove that Var(µ̂LHS) 6 Var(µ̂IID) whenever the function being
sampled is monotone in each of its d input variables.

Stein (1987) shows how the near additivity of the integrand plays a crucial
role in the accuracy of LHS.

Shirley (1991) applies Latin hypercube sampling to ray tracing in computer
graphics. He gave it the evocative name ’n-rooks’.

Background on orthogonal arrays may be found in Raghavarao (1971) or He-
dayat et al. (1999). Owen (1992b) proposed randomized orthogonal array sam-
pling for computer experiments and compared the quadrature accuracy to mid-
point rules and Monte Carlo methods. Tang (1993) proposed orthogonal array
based Latin hypercube sampling. Owen (1994) gave expressions for the variance
of randomized orthogonal array sampling. To a good approximation they knock
out the low order ANOVA components leaving an effective variance based on
components of order t+ 1 and larger.

Adaptive importance sampling

Marshall (1956) is an early reference for AIS. Berntsen et al. (1991) present an
adaptive deterministic multidimensional quadrature based on recursive splitting.

For self-normalized AIS, Oh (1991) only considered cases where the update

θ(k) ← Ẽ(1:k)(h) could be used. Oh and Berger (1993) give a stopping rule for
AIS based on the width of the confidence interval for a target integrand. They
also give conditions under which AIS converges. They require a uniform bound
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on the likelihood ratio. Evans (1991a) describes a chaining algorithm to use
when the first AIS problem is too hard to solve. He replaces p by a density
proportional to p1/t(·)q(·; θ1)1/u for (t, u) ∈ (0,∞)2. Starting with u = 1 and
very large t, he solves a series of closely related problems defined by a decreasing
sequence of t values. After t has decreased to 1 he starts raising u towards ∞.
The value θ1 is chosen to make the initial problem (large t and u = 1) easy to
do. This chaining process is similar to some of the temperature-based methods
used in Markov chain Monte Carlo and simulated annealing. Further details on
chaining are in Evans (1991b) which describes adaptive strategies for ordinary
importance sampling.

Cornuet et al. (2012) use a different weighting than either Oh (1991) or
Evans (1991a) used. Their adaptive multiple importance sampling (AMIS) al-
gorithm takes the observations from the first k stages and weights them as if

they had been sampled from the mixture density proportional to q
(1:k)
u (x) ≡∑k

s=1 nkq
(s)(x; θ(k)). They use self-normalized importance sampling estimating

Ep(f(X)) by ∑k
s=1

∑nk

i=1 pu(X
(s)
i )f(X

(s)
i )/qu(X

(s)
i )∑k

s=1

∑nk

i=1 pu(X
(s)
i )/qu(X

(s)
i )

.

The distribution of these estimates is difficult to study, because the data are
not sampled independently from such a mixture. Instead, the later components
are contructed based on data from the earlier ones.

The cross-entropy method is due to Rubinstein (1997). It is the subject of the
book by Rubinstein and Kroese (2004) and there is a tutorial introduction in De
Boer et al. (2005). The cross-entropy method is also used in some optimization
problems.

The exponential convergence of adaptive importance sampling was observed
empirically by Booth (1985) for some particle transport problems. Kollman
(1993) proved exponential convergence under reasonable conditions but required
samples to be run from every point in the state space. His argument has the
nice feature of treating the sequence µ(k) itself as a Markov chain. A sample
path started at X0 = i provides information about µi as well as µj if Xn = j at
any point along the trajectory. Kollman considers how to use that additional
information.

Kollman’s theory was generalized by Kollman et al. (1999) who allowed for
fewer simulations to be done provided that the conditional means µi belong to
a linear model µ = Xβ for some d× k design matrix X and β ∈ Rk. Baggerly
et al. (2000) further relaxed the assumptions to allow continuous state spaces
provided that there is a finite dimensional parametric model relating µ to each
point in the space.

Some adaptive mixtures have been used for importance sampling. The fol-
lowing mixture of products of beta distributions

q(x) =

M∑
m=1

γm

d∏
j=1

x
αmj−1
j (1− xj)βmj−1

Γ(αmj)Γ(βmj)/Γ(αmj + βmj)

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission



54 10. Advanced variance reduction

was used by Zhou (1998). See also Owen and Zhou (1999). The context has
p = U(0, 1)d. That is X describes the random uniforms that get transformed

into the problem inputs. The parameters satisfy γm > 0,
∑M
m=1 γm = 1, αmj >

0 and βmj > 0. This factors in this family can produce modes in the middle
of (0, 1) or singularities at either 0 or 1. For f > 0, the best q is a close
approximation to pf = f . Zhou (1998) updates the parameters by minimizing
an estimate of

∫
(f(x)− q(x))2 dx.

Schürer (2004) develops quasi-Monte Carlo versions of both Vegas and MISER.
He evaluates them using some of the test functions of Genz (1984). Pennanen
and Koivu (2006) modify the partitioning strategy of MISER and attain better
accuracy but also higher computing times in their examples. They avoid the
symmetry problem not by dithering the breakpoint but by considering hyper-
rectangles into L > 2 congruent parts instead of the 2 used in MISER. The
Vegas algorithm has a lot of strategies embedded in it. Chapter 3 in the dis-
sertation Zhou (1998) gives a lengthy discussion of some of those ideas that are
hard to discern from the article or code. The Appendix discusses convergence
of the Vegas update.

Normalization

Bridge and umbrella sampling and related methods are covered thoroughly in
Chen et al. (2000, Chapter 5). They provide proofs for the asymptotic optimality
results quoted here. The primary techniques one needs are the delta method,
the law of large numbers, and for optimality, the Cauchy-Schwarz inequality.
To apply Cauchy-Schwarz we usually need to know what the optimal function
is. In many cases that can be found by the calculus of variations (Gelfand and
Fomin, 2000).

Bridge sampling was developed by Bennett (1976) for problems in physics
and reinvented by Meng and Wong (1996) for uses in statistical inference. (It
appears that the former paper was brought to the latter authors’ attention by
a reviewer.) The latter paper emphasizes applications to Bayes factors, missing
data imputation and computation of likelihood ratios. They contributed the
iterative plug-in estimator (10.44) and some more asymptotic analysis. The
former paper considered using dependent samples from the two distributions,
as one would use in Markov chain Monte Carlo (see Chapter 11). The optimal
α function is usually not known when dependent observations are used. The
problem of estimating ρ by bridge sampling has been studied by relating it to
logistic regression. See Geyer (1994) and Shirts et al. (2003) for details of this
approach.

The harmonic rule is due to Newton and Raftery (1994). The severe numer-
ical instability of this method was pointed out in a discussion by Radford Neal,
but the method still gets used.

Umbrella sampling was developed by Torrie and Valleau (1977). Chen et al.
(2000) call it ratio importance sampling and present a statistical analysis.

Path sampling is described by Gelman and Meng (1998). They work out
the optimal path between two distributions and relate it to a ‘Rao Geodesic’.
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For a toy example, with p0 = N (0, 1) and p1 = N (D, 1), three path sampling
methods attain asymptotic variances that are quadratic, linear and logarithmic
in D, while bridge methods and importance sampling are exponential in D.

Voter’s (1985) method was generalized to warp bridge sampling in Meng
and Schilling (2002). The warp bridge sampling described there is best suited
for unimodal densities. For a multimodal density with a mixture representa-
tion, ideally one component per mode, it becomes possible to warp each mode
separately to become similar to the N (0, Id) distribution. That operation can
greatly increase overlap. See Wang and Meng (2013).

Sinharay and Stern (2005) compare a number of methods for estimating
normalizing constants for Bayesian generalized linear mixed models. They find
particularly good results for warping the bridge estimator and for a method of
that uses warping with plain importance sampling. Warp III was particularly
accurate and the importance sampling version somewhat faster than the bridge
sampling version.

Nonparametric likelihood

Kong et al. (2003) introduce a nonparametric likelihood approach to Monte
Carlo. It unifies several of the importance sampling and normalization constant
estimators. They use a nonparametric maximum likelihood (NPMLE) approach
to combining observations from multiple distributions.

The NPMLE for sampling from multiple biasing distributions is due to Vardi
(1985) with further analysis by Gill et al. (1988). The likelihood equations for es-
timating normalizing constants are also given in Geyer (1994). Tan (2004) gives
several theorems on optimality of the NPMLE approach compared to multiple
importance sampling and stratified importance sampling. The nonparametric
likelihood can also be used in likelihood ratios to construct confidence intervals
and hypothesis tests. The resulting empirical likelihood method is described
in Owen (2001). Qin (1993) shows that empirical likelihood confidence intervals
and tests apply in the multiple sample setting.

Kong et al. (2003) motivate the NPMLE of µ =
∫
f(x)p(x) dx by supposing

that dx is the unknown, unlike a sampling approach in which p may appear to
be the unknown given sample values f(Xi). Diaconis (1988) has an interesting
discussion on what it means for a mathematical quantity to be unknown. He
also shows that some familiar methods from numerical analysis can be viewed
as Bayesian estimates.

Exercises

10.1. For equation (10.3) prove that E(V̂ar(µ̂gs)) = Var(µ̂gs).

10.2. We saw in §10.1 that stratification can achieve a better variance rate than
O(n−1). This could change how we measure efficiency.

Suppose that two stratification methods are being compared. The baseline
method yields variance A0n

−r for r > 1 and costs nc0, when the sample size
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is n. The alternative method yields variance A1n
−r and costs nc1 under these

circumstances. Of course A0, A1, c0, and c1 are all positive numbers.

a) Work out how to measure the relative efficiency of the new method to the
old one. Give an expression to replace equation (8.1) for this setting.

b) Suppose that r = 2, A0 = c0 = 1 and A1 = 0.01. How small must c1 be
in order for the new method to represent an efficiency improvement over
the standard method?

10.3. An alternative variance estimate for grid-based stratification is

Ṽar(µ̂gs) = (µ̂gs,1 − µ̂gs,2)2/4

where in the notation of equation (10.3), µ̂gs,1 = m−d
∑n
i=1 f(Xi) and µ̂gs,2 =

m−d
∑n
i=1 f(X ′i). This estimate is unbiased, but not as good as V̂ar(µgs). It is

tempting to use it, because it may be computed directly from µ̂gs,` for ` = 1, 2.
But as this exercise demonstrates, there is some loss of precision.

a) First prove that E(Ṽar(µ̂gs)) = Var(µ̂gs).

b) Now, for d = 2 and m = 32 and the test function f(x) = x2
1 exp(x1x2) over

x ∈ [0, 1]2 (from Sloan and Joe (1994)) generate 1000 independent repli-

cates of µ̂gs. For each replicate compute V̂ar(µ̂gs) and Ṽar(µ̂gs)). Compare
the histograms of these two variance estimates. Using your sample data,

what do you estimate Var(Ṽar(µ̂gs))/Var(V̂ar(µ̂gs)) to be? (Do not com-
pute a confidence interval for this ratio of variances.)

10.4. For x ∈ [0, 1]1000 let g(x) = 1 +
∏1000
j=1 x

α
j /j

2 and f(x) = 1/g(x).

a) Using n = 1000 and α = 1, report a simple Monte Carlo estimate µ̂ of
µ =

∫
f(x) dx and also the usual estimate of Var(µ̂).

b) Compute independent Latin hypercube sampling estimates µ̂LHS,r of µ for
r = 1, . . . , 10, using n = 100 and α = 1 each time. Report their average
µ̂LHS, along with an unbiased estimate of Var(µ̂LHS).

c) Repeat the two previous parts with α = 1/2.

This is the 1000-dimensional version of a function from Kuo et al. (2011).

10.5. For x ∈ [0, 1] define g(x) = 1 for 1/2 6 x 6 1 and g(x) = −1 for

0 6 x < 1/2. Let f(x) =
∏d
j=1 g(xj). This function is 1 if x has an even

number of components in [1/2, 1] and it is −1 for an odd number. The best
additive approximation to f is the function that is 0 on [0, 1]d. As a result,
Latin hypercube sampling should bring no benefit. A Monte Carlo sample
of size n from f has mean 0 and variance 1/n. Estimate Var(µ̂LHS) for this
function when n = 1000 and d = 10. Base your estimate on 1000 independent
Latin hypercube samples. Form a 99% confidence interval for this variance.
Hint: Var(µ̂LHS) = E(µ̂2

LHS).
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10.6 (Research). Proposition 10.4 states that Var(µ̂LHS) 6 σ2/(n−1) for n > 1.
The proof in Owen (1997) gives the result as a corollary of more general formulas
for scrambled net quadrature.

For this exercise, develop a direct proof of Proposition 10.4 without us-
ing theory of scrambled nets. You may use the result in Example 1 of Owen
(1994). That result shows that Var(µ̂LHS) 6 σ2/(n − 1) holds for functions
f that are constant within cubical cells of side 1/n, that is, functions with
f(x) = f(bnxc/n). Extend this result to functions of finite variance that are
not necessarily constant within cubical cells of side 1/n.

10.7. For x ∈ R2 let f(x) = min(x1, x2). Use the cross-entropy method to
estimate µ = P(f(X) > 6) where X ∼ N (0, I2). We know that µ = Φ(−6)2 .

=
9.734× 10−19. Run 10 iterations with n = 10,000.

a) Report θ(10) and µ̂(10) − µ.

b) What was the first stage k, if any, that had the 99’th quantile of f(X
(k)
i )

above 6?

c) Repeat the computation 49 more times independently. Report the mean
of all 50 estimates µ̂(10) and a 99% confidence interval for µ based on
them.

d) Plot the 50 ending points θ(10).

10.8. Repeat Exercise 10.7, but this time use f(x) = max(x1, x2). We know
that µ = 2Φ(−6)− Φ(−6)2 .

= 1.973× 10−9.

10.9. Let q(X;λ) =
∏d
j=1 e

−λjλ
Xj

j /Xj ! for λ = (λ1, . . . , λd) ∈ (0,∞)d.

a) Show that the natural exponential family parameter for q is θ = log(λ)
componentwise.

b) Show that the cross-entropy update (10.16) for this family is

θ(k+1) ← log

(
nk∑
i=1

H
(k)
i X

(k)
i

/ nk∑
i=1

H
(k)
i

)
.

10.10. Implement the adaptive importance sampling scheme (10.18) using the
safer update (10.19). Run it N = 1000 times with K = 400 steps. Call each
run a success if an absolute error below 10−12 was attained in the first K steps.

a) What fraction of your runs were successes?

b) If you had any successful runs, then report the average value k in those
runs, at which |µ̂(k) − µ| < 10−12 first appeared.

c) What fraction of the N runs had any iteration with µ̂(k) < 1? (Those
runs would have failed without the safer update (10.19).)

10.11. In the setting of Theorem 10.4 let K = 10, r0 = 0 and r1 = 1.

a) What is Var(µ̂ω̃)/Var(µ̂ω)?
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b) If instead, r0 = 1 and r1 = 0, what is Var(µ̂ω̃)/Var(µ̂ω)?

c) Answer both of the previous parts using K = 100 stages.

10.12. Let p̃0(x) = exp(−x2/2) and p̃1(x) = x2(1 − x)3
10<x<1 be two unnor-

malized densities on R. Compare bridge, Voter, warp I and warp II sampling
estimates of ρ = Z1/Z0. Use n0 = 1000 and n1 = 1200 and repeat 1000 times.
Report the RMSE/ρ. First find the true ρ.

10.13 (Research). Suppose that we know the marginal distribution of the first
componentX1 ofX under both p0 and p1. Devise a warp estimator of ρ = Z1/Z0

which takes advantage of this information.
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