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Latin hypercube designs are often used in computer experiments as they ensure that
few design points are redundant when there is effect sparsity. In this paper, designs suitable
for factor screening are presented and they are shown to be efficient in terms of runs
required per factor as well as having optimal and orthogonal properties. Designs ortho-
gonal under full second-order models are also constructed.
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1. I

Computer simulation experiments are used in a wide range of applications to learn about
the effect of input variables x on a response of interest y. The simulation programs are usually
deterministic, so the response of each simulation is observed without error and is unchanged if
a design point is replicated. This presents different challenges to traditional design of experiments
problems where replication is often recommended in the presence of experimental errors.

The design of computer experiments has received much recent interest and this is likely
to grow as more and more simulation models are used to carry out research; see Sacks,
Welch et al. (1989), Sacks, Schiller & Welch (1989), Welch et al. (1992), Morris et al.
(1993) and Bates et al. (1996). The designs proposed for computer experiments have
almost exclusively been Latin hypercube designs; see McKay et al. (1979). The main
attraction of these designs is that they have good one-dimensional projective properties
which ensure that there is little redundancy of design points when some of the factors
have a relatively negligible effect, called effect sparsity.

An n×m discrete Latin hypercube is a design for m factors in n runs, where each factor
occurs exactly once at each of n equally spaced levels x=1, 2, . . . , n. Thus, the columns
of the n×m design matrix X are required to be permutations of (1, 2, . . . , n). An example
of an 11×5 Latin hypercube design has design matrix

X=A4 2 1 3 5 7 9 11 10 8 6

2 3 7 11 8 4 1 5 9 10 6

1 7 10 4 3 9 8 2 5 11 6

3 11 4 5 10 2 7 8 1 9 6

5 8 3 10 1 11 2 9 4 7 6B∞. (1)

This design will be considered later in §§ 3 and 5.
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Various methods have been proposed for constructing Latin hypercube designs. Initially,
randomised Latin hypercube designs were considered and they were shown by McKay
et al. (1979), Stein (1987) and Owen (1992) to perform much better than completely
randomised designs. More recently, algorithms have been used to construct systematic
Latin hypercube designs under various optimality criteria. Sacks, Welch et al. (1989),
Sacks, Schiller & Welch (1989) and Park (1994) use the integrated mean squared error
criterion under a spatial model. Currin et al. (1991) and Bates et al. (1996) consider an
entropy-based design criterion. Johnson et al. (1990) and Morris & Mitchell (1995) develop
a maximin distance criterion which maximises the minimum distance between design
points. Iman & Conover (1982) and Owen (1994) find designs by minimising a linear
correlation criterion for pairwise factors. This is modified into a polynomial canonical
correlation criterion by Tang (1998).

Morris (1991) and Kleijnen (1997) make it clear that many simulation models involve
several hundred factors or even more. Consequently, factor screening is vital in computer
experiments for reducing the dimension of the factor space before carrying out more
detailed experimentation. Methods for constructing factor screening designs have pre-
viously been considered by Welch et al. (1992) and Morris (1991). An alternative approach
is to use system partitioning, as described in Bates et al. (1996).

In this paper, three types of Latin hypercube design are constructed. By analogy with
two-level factorial experiments and because of their orthogonality properties, the types of
design are called near-resolution III, resolution IV and resolution V Latin hypercube
designs. The resolution IV and near-resolution III designs are very competitive in terms
of the number of runs required per factor and consequently are highly suitable for factor
screening. The resolution V designs require more runs per factor but are orthogonal under
a full second-order model.

2. M

Latin hypercube designs will be constructed under three different models, namely a full
second-order model, a first-order model and a second-order main effects model. The full
second-order model usually considered is the second-order polynomial model
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where e~N(0, s2 ). Note that, although observations in computer experiments are usually
observed without error, the error term e is required in order to model higher-order system-
atic effects. The polynomial model (2) appears to be more difficult to use in the context
of Latin hypercube designs than the closely related second-order model
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For reasons given below, this model will be referred to as a second-order Fourier-
polynomial model. Note that the first-order terms in (3) with parameters a

i
complete only

half a cycle from x=0 to x=n. Consequently, the terms are different from the trigono-
metric functions usually included in Fourier models such as in Riccomagno et al. (1997).
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Model (3) also provides a link with spatial processes, which have often been considered
in the context of computer experiments. The link is that the Fourier terms in (3) correspond
to the eigenvectors with the lowest frequencies in the discrete cosine transform; see for
example Buckley (1994) and Butler (1998). Note that the discrete cosine transform is
based on reflective boundary assumptions which lead to far more realistic boundary
properties than do the periodic boundary assumptions under the discrete Fourier trans-
form. The lowest frequencies in the discrete cosine transform have the highest variances
or spectral densities under positively correlated spatial models. Consequently, (3) is able
to model the larger-scale spatial trends and so may be interpreted as an approximation
to spatial models. This approximation may be a good one when there are very few runs
per factor as in this case there will be little information about small-scale spatial trends.

The Fourier-polynomial model (3) is so called as it is also closely related to polynomial
models. To see this, define p1 (x)=x−n/2 as the polynomial linear function of x orthogonal
to a constant on [0, n] and p2 (x)=(x−n/2)2−n2/12=x2−nx+n2/6 as the polynomial
quadratic function of x orthogonal on [0, n] to both a constant and p1(x). Then the
relationship between (3) and polynomial models is highlighted by the inner products

P n
0
−p1(x) cosApx

n B dx=0·993 qP n
0

p1(x)2 dxrDqP n
0

cos2Apx

n B dxrD,
P n
0

p2 (x) cosA2px

n B dx=0·961 qP n
0

p2(x)2 dxrDqP n
0

cos2A2px

n B dxrD.
The above equations show that the inner products of the linear and quadratic polynomials
with the corresponding Fourier terms are close to one under normalisation. In addition,
the inner product of the interactions equals (0·993)2=0·986 under normalisation and so
is also close to one. This indicates that the second-order Fourier-polynomial model (3) is
a good approximation to the polynomial model (2). The close relationship between linear
and Fourier-linear terms is further illustrated in § 3 on a specific design.

The full second-order Fourier-polynomial model (3) may also be expressed in the linear-
model form as

Y=Zh+e, e~N(0, s2I
n
), (4)

where Y is the n-vector of observations and

h=(m, a1 , . . . , a
m
, c1 , . . . , c

m
, b11 , b12 , . . . , b

m−1,m
)
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n
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I
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design matrix with
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for t=1, 2, . . . , n, 1∏ i, j∏m and (i, j )=j+m(i−1)− i(i+1)/2 for i< j. Note that Z

L
is

the design matrix of the Fourier-linear effects, Z
Q

is the design matrix of the Fourier-
quadratic effects and Z

I
is the design matrix of the interactions between the Fourier-linear

effects. Note that for a Latin hypercube design Z
L

and Z
Q

satisfy the constraints
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1∞
n
Z
L
=0∞

m
and 1∞

n
Z
Q
=0∞

m
. Hence all Fourier-linear effects and Fourier-quadratic effects

are orthogonal to the overall mean effect.
A first-order Fourier-polynomial model is similarly defined by (4) with h=

(m, a1 , . . . , a
m
) and Z= (1

n
, Z

L
). This model is closely related to a first-order polynomial

model because of the high inner product between the Fourier-linear terms and the ortho-
gonal linear functions p1 (xi). The third and final type of model considered in this paper
is the second-order main effects model (4) with h= (m, a1 , . . . , a

m
, c1 , . . . , c

m
) and

Z=(1
n
, Z

L
, Z

Q
). This model is likely to be particularly appropriate when the assumption

of effect sparsity is valid as there will then be relatively few active interactions compared
with the main effects.

3. C  

Latin hypercube designs will be constructed using what will be called the Williams
transformation (Williams, 1949), which is a one-one transformation between n one-dimen-
sional locations x=1, 2, . . . , n and n codes w=0, 1, . . . , n−1 used to construct designs.
In the case when n=11, the one-one transformation is given by

x 1 2 3 4 5 6 7 8 9 10 11

w 0 10 1 9 2 8 3 7 4 6 5
.

More generally, the Williams transformation determines the locations x from the codes
w using the formulae

x(w)=q2w+1 (w<n/2),

2(n−w) (w
n/2).

Williams (1949) used the transformation to construct Latin square designs that are bal-
anced for nearest neighbours. These designs are useful in a variety of applications including
field trials, cross-over trials and multilevel factorial experiments. Bailey (1984) provides
other transformations that can be used to construct neighbour-balanced designs. Bailey
(1982) and Edmondson (1993) provide designs orthogonal to polynomial trends which
can be based on the Williams transformation.

The Williams transformation will be used to construct two types of design, denoted by
D
n
(g1 , g2 , . . . , gm) and E

n
(g1 , g2 , . . . , gr). The designs D

n
(g1 , g2 , . . . , gm) have m∏n0 ,

where n0=(n−1)/2, and the designs E
n
(g1 , g2 , . . . , gr) have m=n0+r for some 1∏r∏n0 .

The n×m design matrix X of the design D
n
(g1 , g2 , . . . , gm) has elements X

ti
=x(w

ti
) for

t=1, 2, . . . , n and i=1, 2, . . . , m, where w
ti
µ{0, 1, . . . , n−1} and

w
ti
¬qtgi+(n−1)/4 mod n, for n¬1 mod 4,

tg
i
+(3n−1)/4 mod n, for n¬3 mod 4.

To ensure that the factors x
i
are not completely confounded, the generators g

i
are required

to be distinct elements in the set {1, 2, . . . , n0}. The constants in the above equations of
(n−1)/4 for n¬1 mod 4 and (3n−1)/4 for n¬3 mod 4 ensure that the designs include
the centre point of the design space.

The above designs could, in theory, be constructed for any odd number of runs n and
any m∏n0 factors. However, it will be assumed here that n is prime as this guarantees,
amongst other things, that the resulting design is a Latin hypercube. Note that the above
method of applying cyclic generators to the Williams code w should not be confused with
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the more established method of applying the generators to the locations x; see for example
Fang & Wang (1994).

For n=11 and m=5, the Williams codes of the design D
11

(1, 2, 3, 4, 5) are given by
the matrix

W=A 9 10 0 1 2 3 4 5 6 7 8

10 1 3 5 7 9 0 2 4 6 8

0 3 6 9 1 4 7 10 2 5 8

1 5 9 2 6 10 3 7 0 4 8

2 7 1 6 0 5 10 4 9 3 8B∞ .
On applying the Williams transformation to the elements of W, we find that
D11 (1, 2, 3, 4, 5) is the same as the design X in (1).

The other type of design E
n
(g1 , g2 , . . . , gr) has n×m design matrix X= (X0 , X1), where

X0 is the n×n0 design matrix of the design D
n
(1, 2, . . . , n0), and X1 is an n×r design

matrix with elements

(X1)ti=x(w
ii
),

where

w
ti
¬tg

i
mod n, w

ti
µ{0, 1, . . . , n−1},

for t=1, 2, . . . , n and i=1, 2, . . . , r. It is again assumed that n is prime and that the
generators g1 , g2 , . . . , gr of X1 are distinct elements in {1, 2, . . . , n0}.

Note that the design E
n
(1, 2, . . . , n0 ) is a saturated design for n−1 factors and n runs

under the first-order model. The saturated design E7(1, 2, 3), for n=7 and m=6, has
design matrix

X=A2 1 3 3 5 7

1 5 6 5 6 2

3 6 1 7 2 5

5 2 7 6 3 4

7 3 2 4 7 3

6 7 5 2 4 6

4 4 4 1 1 1
B .

For this design, the correlations R
X

between the columns of X and the correlations R
Z
Lbetween the columns of Z

L
are

R
X
=A 1 0·07 −0·07 −0·21 0·07 0

0·07 1 −0·07 0 −0·21 −0·07

−0·07 −0·07 1 −0·07 0 −0·21

−0·21 0 −0·07 1 0·07 0·11

0·07 −0·21 0 0·07 1 0·11

0 −0·07 −0·21 0·11 0·11 1 B ,
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R
Z
L

=A 1 0 0 −0·22 0 0

0 1 0 0 −0·22 0

0 0 1 0 0 −0·22

−0·22 0 0 1 0 0

0 −0·22 0 0 1 0

0 0 −0·22 0 0 1 B .
Note the similarity in the column correlations for X and Z

L
. This illustrates the close

relationship between linear effects and Fourier-linear effects. The correlations are small in
both cases as the design E7 (1, 2, 3) will be shown in § 4 to have near-orthogonal and near-
optimal properties.

4. R

The Latin hypercube designs constructed in § 3 are now shown to have various optimal
and orthogonal properties. By analogy with two-level factorial designs, the orthogonal
properties of Latin hypercubes will be expressed in terms of the resolution of the design.

A Latin hypercube design will be said to have resolution III if the Fourier-linear effects
are mutually orthogonal. This requires Z∞

L
Z
L
=nI

m
as the diagonal elements are fixed for

Latin hypercube designs. Similarly, a Latin hypercube design will be said to have resolution
IV if the Fourier-linear effects are mutually orthogonal and orthogonal to all second-
order effects, and if the overall mean effect is orthogonal to all second-order interactions.
Note, as mentioned above, that the overall mean effect is automatically orthogonal to all
Fourier-linear and Fourier-quadratic effects for a Latin hypercube design. Thus, a reso-
lution IV Latin hypercube design requires that Z∞

L
Z
L
=nI

m
and that all the elements of

Z∞
L
Z
Q
, Z∞

L
Z
I

and 1∞
n
Z
I

equal zero. Finally, a Latin hypercube design will be said to have
resolution V if all the effects in a full second-order model are orthogonal. This requires
Z∞Z to be a diagonal matrix for Z=(1

n
, Z

L
, Z

Q
, Z

I
). The proofs of all the results below

are given in the Appendix.

L 1. For the design D
n
(1, 2, . . . , n0),

(Z
L
)
ti
= (−1)d√2 sinA2pti

n B , (Z
Q
)
ti
=−√2 cosA4pti

n B ,
(Z
I
)
t,(i,j)
=cosq2pt( j− i)

n r−cosq2pt(i+ j )

n r (i< j ),

t=1, 2, . . . , n and 1∏i, j∏n0 , where d=0 for n¬1 mod 4, and d=1 for n¬3 mod 4.

T 1. For n prime, D
n
(1, 2, . . . , n0) is a resolution IV L atin hypercube design, and

is orthogonal and saturated under the second-order main eVects model.

C 1. W ithin the class of L atin hypercube designs for m∏n0 and n prime,
D
n
(g1 , g2 , . . . , gm) is
(i) I-optimal and D-optimal under the first-order model,
(ii ) I-optimal and D-optimal under the second-order main eVects model,
(iii ) D

s
-optimal for the subset of first-order parameters under the full second-order model.

As a result of the close link between polynomial and Fourier-polynomial effects, the
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designs D
n
(g1 , g2 , . . . , gm) also perform extremely well under the linear correlation criterion

of Iman & Conover (1982) and the quadratic canonical correlation criterion of Tang
(1998).

T 2. For the design E
n
(1, 2, . . . , n0),

(Z
L
)
ti
= (−1)d√2 sinA2pti

n B , (Z
L
)
t,n
0
+i
=−√2 cosA2pti

n
+

p

2nB ,
for t=1, 2, . . . , n and 1∏ i∏n0 , where d=0 for n¬1 mod 4, and d=1 for n¬3 mod 4.
Consequently, n−1Z∞

L
Z
L
=I

n−1
+P, where P is an (n−1)× (n−1) matrix with nonzero

elements

P
i,n
0
+i
=P

n
0
+i,i
= (−1)d sin p/(2n) (1∏ i∏n0).

Note that the design E
n
(1, 2, . . . , n0) would be optimal under various criteria and ortho-

gonal under the first-order model if all the elements of P were zero. As this is close to
being achieved, particularly when n is large, the design is both near-optimal and near-
orthogonal. Hence, E

n
(1, 2, . . . , n0) will be referred to as a near-resolution III Latin hyper-

cube design.

T 3. For n prime, D
n
(g1 , g2 , . . . , gm ) is a resolution V L atin hypercube design if

all the elements

min (2g
i
, n−2g

i
) (1∏i∏m),

|g
j
−g

i
|, min(g

i
+g

j
, n−g

i
−g

j
) (1∏i< j∏m)

are distinct.

The conditions in Theorem 3 bear a resemblance to those in Theorem 2 of Riccomagno
et al. (1997). However, a different model is being considered, as mentioned in § 2.

Note that the above resolution V Latin hypercube designs are not necessarily optimal
under the second-order model (3) as there could be other designs which provide more
information about the interactions. However, these other designs would require more
design points near the corners of the grid and this is likely to result in poorer projective
properties.

The conditions in Theorem 3 can only hold if n
2m2+1, otherwise there will be
confounding between the second-order effects. The lower bound of n=2m2+1 is attain-
able for m=2 and m=3 factors but not it appears for m>3. For m=2, the design D9(1, 2)
is an orthogonal Latin hypercube design requiring the minimum number of 9 runs. For
m=3, D19(2, 3, 5) and D19 (1, 7, 8) are examples of orthogonal Latin hypercube designs
attaining the lower bound of n=19 runs. Note that the two-factor projections of
D19 (1, 7, 8) for factors 1 and 7 and factors 1 and 8 may be observed in Fig. 1.

For m=4, the lowest number of runs for an orthogonal Latin hypercube designs is 37,
which exceeds the lower bound of 33. A suitable orthogonal design in this case is
D37 (3, 5, 6, 10). For m=5, the orthogonal Latin hypercube design D59 (6, 8, 11, 12, 19)
requires the minimum number of runs for orthogonality under the second-order model.
Suitable designs for m
6 are not provided as they are relatively inefficient in terms of
the number of runs required per factor.
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Fig. 1. Two-factor projections of the Latin hypercube design D
n
(1, 2, . . . , n0 ) for 11 and 19 runs. Points

i represent the projection of factor 1 and factor i (i=2, 3, . . . , n0 ).

5. D

The resolution IV and near-resolution III designs resulting from Theorems 1 and 2
respectively are appropriate for factor screening as they require very few experimental
runs per factor. In particular, the resolution IV designs D

n
(1, 2, . . . , n0) are half-saturated

under a first-order model and are saturated under a second-order main effects model.
Moreover, the near-resolution III designs E

n
(1, 2, . . . , n0) are saturated under a first-order

model. These designs are thus a Latin hypercube equivalent of Plackett–Burman designs
(Plackett & Burman, 1946).

In addition to their optimal and orthogonal properties, the suitability of the resolution
IV designs is further confirmed by their projective properties. Figure 1 provides the two-
factor projections involving factor 1 for the Latin hypercube designs D

n
(1, 2, . . . , n0 )

for n=11 and n=19. In every case, the projection includes the centrepoint
((n+1)/2, (n+1)/2). Note that the projections of D11 (1, 2, 3, 4, 5) may be confirmed from
the design matrix (1).

Although Fig. 1 provides the projections only involving factor 1, it follows from the
cyclical nature of the designs that each factor has exactly the same projections for some
permutation of the factors and with some of the factors reflected about the middle level
(n+1)/2. The important features in Fig. 1 are the relative positions of the points under
the same projection, i.e. the points with the same number. Note that, for each projection,
approximately a quarter of the points are in each quadrant.

The worst projections between pairs of factors x
i
and x

j
in terms of the distribution of

design points occur when g
j
¬±3g

i
mod n or g

i
¬±3g

j
mod n. Note that it can be shown

that none of these projections occurs for the resolution V designs as a result of the
conditions in Theorem 3. For values of m<n0 but where m is too large for a resolution
V design, it would be reasonable to select the generators g1 , g2 , . . . , gm to avoid as many
of these projections as possible. This is a topic for further research.

The resolution V designs in this paper are suitable for more detailed experimentation
of the response surface once the factors having the most substantial effect on the response
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have been identified. These are called the active factors. The active factors may be identified
during factor screening using a combination of graphical methods, estimation under first-
order models and forward subset selection methods (Welch et al., 1992).

In some computer experiments, the number of factors m may be larger than the number
of available runs n (Morris, 1991; Kleijnen, 1997). In such cases, the designs constructed
in this paper could not be used. Instead, factor screening could be performed using super-
saturated designs. Supersaturated designs have mainly been studied in the context of two-
level factorial experiments; see Butler et al. (2001) and the references therein. However,
research is currently being carried out on developing supersaturated Latin hypercube
designs.

A
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A

Proofs

Proof of L emma 1. First note that under the Williams transformation

x(w)−0·5=q2w+0·5 (w<n/2),

2n− (2w+0·5) (w
n/2).

Consequently,

(Z
L
)
ti
=−√2 cosqp(X

ti
−0·5)

n r=−√2 cosqp(2w
ti
+0·5)

n r= (−1)d√2 sinA2pti

n B ,
where d=0 for n¬1 mod 4, and d=1 for n¬3 mod 4. Also

(Z
Q
)
ti
=√2 cosq2p(X

ti
−0·5)

n r=√2 cosq2p(2w
ti
+0·5)

n r=−√2 cosA4pti

n B ,
(Z
I
)
t,(i,j)
=2 cosqp(X

ti
−0·5)

n r cosqp(X
tj
−0·5)

n r
=2 sinA2pti

n B sinA2ptj

n B=cosq2pt( j− i)

n r−cosq2pt(i+ j )

n r .
This completes the proof. %

Proof of T heorem 1. The elements of Z∞
L
Z
L
, Z∞

L
Z
Q
, Z∞

L
Z
I
and 1∞

n
Z
I
depend on sums of the form

S1= ∑
n

t=1
sinA2ppt

n B sinA2pqt

n B , S2= ∑
n

t=1
cosA2ppt

n B cosA2pqt

n B,
S3= ∑

n

t=1
sinA2ppt

n B cosA2pqt

n B ,
where p and q are integers. Standard trigonometric results show the following: S3=0 for any
integers p, q; S1=0 and S2=n for ( p, q)¬ (0, 0) mod n; S1=n/2 and S2=n/2 for p−q¬0 mod n,
and ( p, q)N (0, 0) mod n; S1=−n/2 and S2=n/2 for p+q¬0 mod n, and ( p, q)N (0, 0) mod n;
S1=0 and S2=0 for any other values of ( p, q).
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It follows from these results that Z∞
L
Z
L
=nI

n
0

and that all the elements of Z∞
L
Z
Q
, Z∞

L
Z
I

and 1∞
n
Z
I

equal zero. Therefore, D
n
(1, 2, . . . , n0 ) satisfies the conditions required of a resolution

IV Latin hypercube design. Also, for n prime, it can be shown that Z∞
Q
Z
Q
=nI

n
0

and hence
Z∞Z=nI

2n
0
+1
=nI

n
, where Z= (1

n
, Z

L
, Z

Q
) is the design matrix under the second-order main effects

model. Consequently, the design is both orthogonal and saturated under this model. %

Proof of Corollary 1. Now D-optimality selects designs which maximise the determinant
det(Z∞Z), whilst I-optimality minimises

P
[0,n]m

U(x) dx=tr{W (Z∞Z)−1},

where U(x) is the variance function at xµ[0, n]m, z(x) is the vector of covariates at x, and
W=∆

x
z(x)z(x)∞ dx. Under each of the models considered in this paper W=nmI

m+1
. Hence, in these

cases, I-optimality turns out to be equivalent to A-optimality.
For any Latin hypercube design, it has been noted that all the diagonal elements of Z∞Z equal

n under the first-order and second-order main effects model. Therefore, any design for which Z∞Z=
nI
n

is D-optimal and A-optimal, and hence I-optimal. This proves points (1) and (2) in the
Corollary. Point (3) is a consequence of the design being of resolution IV. %

Proof of T heorem 2. For the factors in X1 ,

(Z
L
)
t,n
0
+i
=−√2 cosqp(X

ti
−0·5)

n r=−√2 cosqp(2w
ti
+0·5)

n r=−√2 cosq2pti

n
+

p

2nr .
Therefore, by the above standard trigonometric results, all the off-diagonal elements of Z∞

L
Z
L

equal
zero except for

(Z∞
L
Z
L
)
i,n
0
+i
=−2(−1)d ∑

n

t=1
sinA2pti

n B cosA2pti

n
+

p

2nB=n(−1)d sinA p2nB
and similarly for (Z∞

L
Z
L
)
n
0
+i,i

. The result then follows. %

Proof of T heorem 3. For the design to be of resolution V, all columns of the design matrix Z=
(1
n
, Z

L
, Z

Q
, Z

I
) are required to be orthogonal. If we use the formulae for the columns of the design

matrix given by Lemma 1, the above standard trigonometric results can be used to show that the
columns of Z are orthogonal if the conditions on the generators in the Theorem hold. %
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