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Abstract

A crucial component in the statistical simulation of a computationally expensive model is a good
design of experiments. In this paper we compare the efficiency of the columnwise-pairwise (CP)
and genetic algorithms for the optimization of Latin hypercubes (LH) for the purpose of sampling in
statistical investigations. The performed experiments indicate, among other results, that CP methods
are most efficient for small and medium size LH while an adopted genetic algorithm performs better
for large LH.

Two optimality criteria suggested in the literature are evaluated with respect to statistical proper-
ties and efficiency. The obtained results lead us to favor a criterion based on the physical analogy of
minimization of forces between charged particles suggested in [1] over a ‘maximin distance’ criterion
from [9].
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1 Introduction

In this article, concerning design of experiments (DOE), wetake the point of view of computer simulation
of stochastic phenomena. By this we mean that we have a (deterministic) computer model of a physical
phenomenon and some model parameters are given as random variables (as opposed to fixed numbers).
We thus want to first sample the random variables, then, for each sample point, run a computer simulation
and finally analyze the stochastic properties of the solution.

Some of the algorithms evaluated in this paper have been implemented in the M-XPLORE module of the
RADIOSS software [3]. This module is primarily aimed at stochastic simulations of car crash simulation.
The results of this paper are, of course, of interest in a muchwider spectrum of applications, the important
feature being only that the simulation is computationally expensive so that only few (say in the range 20
to 500) samples are affordable.

The paper is focused on sampling using optimized Latin hypercubes (OLH). In section 2, the definition
of an LH and the optimality criteria for OLH are presented. Itis well-known that OLH is a viable choice
for design of experiments when one considers the following aspects.

Statistical optimality
There are many measures of statistical optimality of a design of experiments. Most of them are based on
fitting a (stochastic) model to experiments/computed data.This point of view is taken in e.g. [12] and
[16] and leads to optimality criteria often referred to as entropy criteria. The important theoretical paper
[9] also takes this point of view, but in addition introduces‘minimax’ and ‘maximin’ distance criteria.
It is then proved that asymptotically the introduced criteria (which are simpler to compute than entropy
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criterion) give similar designs for large problems as the entropy based optimal DOE. A second point
of view concerning optimality criteria is to study how well the statistical properties of some model are
predicted/computed. This is used in the present paper and also in the pioneering article [11] where LH
where first introduced and (experimentally) shown to be competitive. In the current paper a convenient
optimality criterion introduced in [1] as well as the maximin criterion are used to evaluate the quality of
the resulting DOE.

Projection properties
By good projection properties we mean that the sample pointsshould be well spread out when projected
onto a subspace spanned by a number of coordinate axes. This is often desired in the applications when
one does not know a priori if some random variables have a negligible effect on the response of the
system.

Once generated, an OLH forp variables andN points is independent of the considered application. It is
stored in a matrix and does not need to be computed again.

Although for small Latin hypercubes the computational costof finding OLH is negligible comparing
to the expensive computer simulation of a physical phenomenon it grows very fast with the number
of samples and variables. For large LH (hundreds of samples and tens of variables) it may even take
hours and days with fast computers. The computational cost depends, of course, on the algorithms used
for OLH optimization and the adopted optimality criterion.In this paper the CP algorithm invented
in [16] (with the modification described in [19]) and a genetic algorithm, inspired by the algorithm
proposed in [18], are compared. There are more methods for LHoptimization in the literature which
seem competitive. In [19] the CP algorithm was proposed for symmetric OLH and in [13], the simulated
annealing algorithm was used for LH optimization.

There are two main purposes of the current paper. First, to compare optimality criteria for the optimiza-
tion of LH with respect to the prediction accuracy of statistical moments of the output. This is done in
the computational experiments of section 4 where we, for twoexamples, evaluate the accuracy of the
mean estimates, for different methods, criteria and samplesizes. The second main purpose is to compare
the efficiency of the CP and the genetic algorithms for LH optimization. Some indications for the choice
of optimality criterion and optimization algorithm will bebased on the study of two numerical examples.

The fundamental problem which is addressed in this paper is to distribute points as uniformly as possi-
ble in a hypercube (taking into account statistical optimality and projection properties). This problem
also arises for quasi-Monte Carlo methods for multi-dimensional integration. In this area the research
has focused on so called low discrepancy sequences, see e.g.[15], [5] for an overview of this line of
research. We perform comparative tests for OLH and Sobol sequences (which are of the low discrep-
ancy type) generated by the free software which is discribedin [4] and which is available from Netlib
(www.netlib.org). These tests are presented in section 4.1 and 4.4.

2 Description of algorithms

A Latin hypercube is given by aN × p-matrix (i.e. a matrix withN rows andp columns)L where
each column ofL consists of a permutation of the integers 1 toN . We will refer to each row ofL as a
(discrete) sample point and use the notation

L =







x1
...

xN






=







x11 · · · x1p

...
...

xN1 · · · xNp






, (1)

2



wherexj is thej-th sample point.

Our ultimate goal is to obtainN points in the parameter spaceR
p. The sample must, of course, be gener-

ated taking into account the probability distributions of the parameters. The most difficult task, however,
turns out to be the construction of an optimized LH. In section 2.2 the CP method for LH optimization
is presented and in section 2.3 the genetic algorithm is described. Before these, in sections 2.1 we state
a number of optimality criteria and formulate the optimization problem. Section 2.4 describes the con-
vergence criteria used in the computations and in section 2.5 it is shown how to use LH for generating
samples of continuous random variables.

For the generation of Sobol sequences, which are based on completely different ideas, we refer to [4]
and the references therein. In section 2.6 we collect some remarks on the algorithm we use for the tests.

2.1 Optimality criteria

We will now introduce three functions from the set of Latin hypercubes toR. These functions will
subsequently be used in the criteria with respect to which LHwill be optimized.

The first functiond is defined to be the square of the minimum (Euclidean) distance between sample
points

d(L) := min
1≤i,j≤N, i6=j

‖xi − xj‖2. (2)

We define another functionn to be the number of occurrences of the minimum distance. For agiven LH
this number is thus denoted byn(L).

Next we introduce a functionG which, in a physical analogy, is the sum of the norm of the repulsive
forces if the sample points are considered as electrically charged particles (see [1] and [2])

G(L) :=
N
∑

i=1

N
∑

j=i+1

1

‖xi − xj‖2
. (3)

From the point of view of the physical analogy, it would have been natural with the power 1 (instead of
2) in the denominator of the terms of the sum. However, with the power 2 a computation of a square root
for each term is avoided. This has a noticeable effect on the execution speed since the functionG will be
evaluated many times in the inner loop during optimization.

The above three functions will now be used to formulate the criteria we use for LH optimization.

Minimum distance:

According to this criterion a LHL1 is considered better than an LHL2 if d(L1) > d(L2). If d(L1) =
d(L2) thenL1 is better thanL2 if n(L1) < n(L2).

Force:

L1 is better thanL2 if G(L1) < G(L2).

We remark that, for the minimum distance criterion, it is possible to check for equality even in floating
point arithmetic. This is so, because one can compare the square of the minimum distances which is an
integer (since all points have integer coordinates).

2.2 The columnwise-pairwise algorithm

A first order modification of a column of a LH matrix is defined asan interchange of two of its elements.
Now, in pseudo-code, we describe the idea of the so-called ‘CP-sweep’.
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for i = 1..p
Find the best first order modification of column i and
replace column i with it

end of for-loop

Where ‘best’ above and ‘better’ below, of course, means the modification which gives the best LH
according to the chosen criterion. The name CP-sweep indicates that it is a systematic procedure going
through (sweeping) all columns of the LH-matrix testing interchanges.
The complete CP algorithm can now be described in pseudo-code as follows.

Generate a random Latin hypercube: Lnew_
stop_ = FALSE
While( not stop_ )

Lold_ = Lnew_
Do a CP-sweep to generate Lnew_ from Lold_
If stopping criterion fulfilled then stop_ = TRUE

End of while-loop

Concerning the stopping criteria in the while-loop, see section 2.4.

Often in the text we write that we use a (random) LH, sometimesreferred to as a RLH design of exper-
iments. This is simply done by generatingp random permutations of the numbers 1 toN and placing
them as columns in the matrix. This procedure is much cheaperthan, for example, a CP-sweep.

2.3 The genetic algorithm

The genetic algorithm is a very general optimization technique and can be applied to a large class of
optimization problems. In the general form it can be described in pseudo-code as follows

Generate initial population
Calculate fitness for individuals in the initial population
stop_ = FALSE
While( not stop_ )
Select ‘survivors’
Cross-over the ‘survivors’
Mutate the resulting population
Calculate the fitness of the new population
If stopping criterion fulfilled then stop_ = TRUE

End of while-loop

The stopping criteria in the while-loop is discussed in section 2.4.

There are many variations of the algorithm according to how one chooses to define the steps of selection,
cross-over and mutation, also the initial population can bechosen in various ways. For example, in [2]
a basic off-the-shelf genetic algorithm was employed for optimizing LHs with respect to criterion (3).
However, this approach requires a special encoding of the design variable (which are points coordinates)
and in order to enforce that the optimal design produces LH the objective function must include term
penalizing designs violating the concept of LH.

All the genetic operators that are used in this paper operatedirectly onL matrices (1) preserving the LH
properties. They were designed particularly for the purpose of the LH optimization. The major steps
shown in the pseudo-code can be described for our problem as follows:
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Initial population. We start by generatingNpop of random LHs which constitute the initial population.
The numberNpop is required to be even because of the selection step.

Selection.TheNpop/2 best LH are chosen as ‘survivors’ and the rest is thrown away. 

    

        

L1             L2             L3                    L4              L5                 L6               L7             L8 

L1             L2             L3                    L4         
~               ~               ~              ~         

After selection (parents) 

After crossover (children) 

    

L1             L2             L3                    L4         
~               ~               ~              ~         

Figure 1: Illustration of the cross-over step. Observe thatafter cross-overL1 andL5 will be identical to
L̃1 before cross-over, the best LH. Later, in the mutation step,L5 is allowed to change but notL1, so at
least one copy of the best LH is always kept.

Cross-over.In this stepNpop children of theNpop/2 survivors are generated. This step is also illustrated
in Fig. 1. First the best LH is put as number 1 andNpop/2 + 1 among the total set of children. Then
the best LH is mated with thek-th (for k ∈ [2,Npop/2]) in the following way. The best and thek-th
will generate two children. The first child is obtained by taking the best LH and replacing a random
column with the corresponding column in thek-th LH. The resulting child is given the numberk among
the children. The second child is obtained by taking thek-th LH and replacing a random column with
the corresponding column in the best LH. The resulting childis given numberNpop/2 + k among the
children.

Mutation. Mutation is done on all except the best LH (the first child) from the earlier generation. The
mutation of an LH is done in the following way. For each columna random number in[0, 1] is generated
(according to the uniform distribution) if this is lower than a thresholdpmut, then two randomly chosen
elements in the column are swapped.

2.4 Stopping criteria

Here only the case of the LH optimization with respect to the force criterion is considered. It will be
shown in section 4.1 that this criterion is a reasonable compromise between good statistical properties
and efficiency. The stopping criteria for both the CP and the genetic algorithm are based on comparing
the current improvement of the optimality criterion with the initial improvement. There are however
some practical differences and we start by describing the stopping criteria for the CP algorithm.
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CP algorithm
The improvement in the first step,∆G1, is saved. Then in thek-th step the following inequality is
checked

∆Gk < ǫ∆G1. (4)

Hereǫ is a chosen parameter. In the computations presented in thispaper the valueǫ = 10−6 was used.
If the inequality is satisfied the while-loop is ended. For example, to obtain an OLH withN = 30
andp = 6, required 31 iterations in a test run. The value of the criterion for the resulting LH equals
G(L) = 0.5331.

Genetic algorithm
The step of producing one new generation in the genetic algorithm is cheap compared to the CP-sweep.
Also there is the possibility that the best LH in the new generation is not an improvement even if further
iterations gives important improvements. For these reasons the accumulated improvement in the firstn
(sayn = 50 or 100) generations is saved (not only the first improvement)

∆G̃n = G(Ln) − G(L0), (5)

whereLk is the best LH in thek-th generation. Then in generationk, if k is a multiple ofn the following
inequality is checked

G(Lk) − G(Lk−n) < ǫ∆G̃n. (6)

In the computationsǫ = 10−7 was used. Applying this algorithm to compute an OLH withN = 30 and
p = 6 OLH, required approximately3300 generations. The resulting LH haveG(L) = 0.5326.

2.5 Descriptive sampling

Here we describe how to go from the discrete sampling matrixL determined by the OLH algorithm to
the design of experiment matrixX where the distribution of each variable is taken into account.

We recall that each column in these matrices corresponds to one variable which thus has a given probabil-
ity distribution. In the matrixL a column is a permutation of the numbers 1 toN . To find the realization
xk(m) of the random variableXk, 1 ≤ k ≤ p, corresponding to the numberm, 1 ≤ m ≤ N , in thek-th
column of the matrixL the cumulative distribution function (CDF) ofXk is used

xk(m) = F−1(x̃m), (7)

where

x̃m =
m

N
− 1

2N
. (8)

In other words, the range of variability of each random variable is divided intoN intervals of equal
probability and the valuesxk(i), i = 1, . . . ,N correspond to probabilistic midpoints (medians) ofXk in
these intervals. Another choice, instead of (8), is to choosexk(i) randomly in thei-th interval. However,
in [10] and [7] it was shown that the choice of medians or mean values (here a numerical integration is
often required) of random variables in the intervals results in more precise estimators (smaller estimation
variance).

It is important to mention that in general the random variables can be arbitrarily distributed and cor-
related. However, to use the sample design generated with LHthe variables must be first numerically
transformed to a set of uncorrelated random variables. In the case when the joint probability density func-
tion is known the Rosenblatt transformation [17] can be usedand when only marginal CDFs of variables
and the correlation matrix are known one may use the Nataf transformation [14]. Both transform the
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original variables to the space of independent standardized Gaussian variables. The values of the random
variables found in the transformed space using (7) are next transformed back to the original random vari-
ablesX. Another approach of imposing correlation between input variables through reordering columns
of L matrices was presented in [8] and [7]. However, in the present authors opinion the transformation
approach gives more flexibility since it does not require generation of a LH for each correlation structure
of the input data. Instead, the pre-generated, data base OLHcan be used for whichever correlations.

2.6 Sobol sequences

For all aspects of the generation of Sobol sequences we referto [4]. That article describes the implemen-
tation of Algorithm 659 of ACM which we have used to produce the results presented in sections 4.1 and
4.4. Here we only note that, when the parameters of the methodare fixed, as in the downloadable version
(from Netlib) of Algorithm 659. Then, givenN , the method produces an infinite “fixed” sequence of
samples in theN -dimensional hypercube[0, 1]p. To getN samples, we take the firstN of these. Each
coordinate of these can then be transformed according to thecorresponding distribution as described in
section 2.5. The generation of Sobol sequences is less computational expensive than OLH.

3 Analysis of the CP algorithm

Both the CP and the genetic algorithm seem impossible to analyze completely from the complexity point
of view. However, for the CP, quite informative estimates for the execution time can be obtained. Below
some expressions on how the computational time depends onN , the number of samples andp the number
of variables is presented.

Here, the term complexity is used to denote the asymptotic growth of execution time whenN andp
grows. For a functionT (N), the notationT = O(N q) means that there are constantsc̃1 andc̃2 such that

c̃1N
q < T < c̃2N

q, (9)

for sufficiently largeN . This fact will also be expressed by the formulaT ∼ N q.

To determine the complexity of one CP-sweep the following features of the algorithm must be taken into
account:

• The outer loop is over thep columns.

• In each column all first order modifications are checked. There areO(N2) such modifications.

• For each modification the changed distances between the points must be updated. This requires
O(Np) operations, see section 5. When the distances have been computed the criterion must be
evaluated, this requiresO(N2) operations. For the execution timeTcrit of this step we thus have

Tcrit(N, p) ∼ c1Np + c2N
2. (10)

Summarizing the above information the following complexity for the CP-sweep is obtained

TCP ∼ pN2(c1Np + c2N
2). (11)

The only remaining step in the analysis of the complexity of the CP-method is to determine how many
times the (outer) while-loop is executed. We denote this (unknown) number byγ(N, p). From our
experimental tests, the following is a reasonable guess forthe complexity ofγ.

γ(N, p) ∼ N (12)
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Equations (11) and (12) together lead to the following expression for the execution time of the CP-
algorithm.

Ttot ∼ pN3(c1Np + c2N
2) (13)

It must be emphasized that the execution time is very sensitive to variations inN . As mentioned above
a number of tests have been performed to estimate the speed ofthe computations. These include the
casesN = 50, 60, . . . , 100 for p = 3 which indicate an execution timeT ∼ N q with q between 4.5
and 5.5. To illustrate the order of magnitude of the growth weextrapolate from the execution time of
approximately 3 minutes for the100× 3 OLH on an SGI Octane2 workstation, assumingT ∼ N5. This
gives an execution time for1000 × 3 OLH of eight months.

4 Computational experiments

4.1 Comparison of criteria

In this section two examples are investigated. In the first westudy a function of two random variables
and in the second a mechanical model problem with six random variables.

The first test caseconsists of the so-called Rosenbrock functionb defined as

b(X1,X2) = 100(X2 − X2
1 )2 + (1 − X1)

2. (14)

It is assumed that the two variablesX1 andX2 are random and uniformly distributed in the interval[0, 2].
The goal is to obtain the mean value of the variable

Z = b(X1,X2), (15)

which can be easily calculated analytically

E(Z) =

∫ 2

0

∫ 2

0
b(x1, x2)

1

4
dx1dx2 = 187. (16)

To evaluate the different sampling methods we now set out to calculate this value with the following
methods:

• OLH with the force criterion.

• OLH with the minimum distance criterion.

• A random Latin hypercube (i.e. without subsequent optimization), referred to as RLH.

• The ‘standard’ Monte Carlo (MC) method.

• Sobol sequences.

The results of the computations are shown in Tab. 1, where theaverage of the error percentage in the
mean estimates is shown. To obtain these numbers, first,M designs of experiments{X(k)}M

k=1 with

the method in question are determined. The elements of thesematrices are denoted byx(k)
ij . Next, from

these,M estimatesm(k) of the meanE(Z) are computed,

m(k) =
1

N

N
∑

i=1

b(x
(k)
i1 , x

(k)
i2 ). (17)
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The value given in Tab. 1 is then the average of the error of these estimates, given as a percentage of the
exact mean value,

1

187M

M
∑

k=1

|m(k) − 187|. (18)

For the Sobol sequences, the error using a single sequence, i.e. a single sampling, is shown in the table.
This sequence is deterministic once several ’initial data’have been chosen, there is no natural way to
chose these initial data randomly.

N OLH OLH RLH MC Sobol
Force Min.dist.

10 9.1 12.5 20.7 37.8 21.9
20 3.5 7.9 14.3 17.8 3.6
50 1.5 3.9 10.2 12.5 8.8
100 1.1 2.7 6.6 9.4 1.7
200 0.6 1.8 5.6 6.0 2.0
500 0.3 0.8 2.4 4.8 0.31
1000 - - 1.5 3.2 0.01
2000 - - 1.1 2.2 0.06
5000 - - 0.7 1.2 0.03

Table 1: The average of the error percentage for the different sampling methods for different sample
sizes. OLH withN greater then 200 have not been computed because of the long computational time.
The last column shows the error when the mean is computed withthe Sobol sequence generator.

By examining the results in the table it is easy to rank the four first methods. The best is the OLH
optimized with the force criterion then comes the OLH with the minimum distance criterion, the RLH
and last Monte Carlo which gives the largest average error inthe mean estimation.

Concerning Sobol, we note that, on the average, it is inferior to OLH with the force criterion for this
example. We also observe its less regular convergence, withvery good values for N=20, 100, 500 and
1000, and rather poor values for N=50, 200 and 2000.

The cost of generating large OLHs (withN > 500) grows fast. However, for the application we have in
mind which is stochastic simulation of car crash phenomenonit is hardly imaginable one could afford
1000 or more sample points. The power of the OLH design is thatit provides sufficiently good quality
of results with limited number of points.

The second test case, illustrated in Fig. 2, is a non-linear mechanical problem taken from [6] pp.2. The
non-linearity results from the geometry, the constitutiverelation for the bar and the spring are taken to be
linear elastic. The unknown of the problem isw, the vertical displacement of the right node of the bar.
The data are

• E: The Young modulus of the bar material.

• A: The cross-sectional area of the bar.

• l: The length of the unloaded bar.

• z > 0: The vertical coordinate of the right node of the bar when it is unloaded.
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S

Initial Configuration (S=0)

z

w

Ks

θ

Figure 2: The single bar structure prone to ’snap-through’ type instability. The forceS shown on the
picture has negative sign.

• Ks: The stiffness of the spring.

• S: The vertical force applied to the right node of the bar.

The displacementw can be determined from the following equation (cf. [6]):

S =
EA

l3

(

z2w +
3

2
zw2 +

1

2
w3

)

+ Ksw. (19)

In the derivation of this equation, it is assumed that the angle θ (see Fig. 2) is small which implies
z,w ≪ l. Equation (19) is a third degree polynomial equation forw. For some values of the parameters
there is one (unique) real root, for other values of the parameters there are three roots. In the case of
three roots we choose the one corresponding to the smallest magnitude of displacement. This situation
occurs when the applied force is smaller than the critical force that cause the bar to snap-through to the
other equilibrium position. The case with one root of the equation (19) corresponds to the state of the
bar after snap-through or when the stiffness of the spring isso big that it prevents this kind of instability.

Now we turn to the stochastic description of the problem. Thesix variables are chosen to be uniformly
distributed around the following mean values.

E = 5 · 105 N/mm2

A = 100 mm2

l = 2500 mm

z = 25 mm

Ks = 0.9 N/mm

S = −22.5 N

The interval of variation of the first five variables is taken to be 1% of the mean value. For the force we
take the interval [-23,-22] N.

With the above distributions for the variables there is about 10% probability of snap-through behavior.

For this problem we also approximate the meanE(w) by the different sampling methods to compare
their efficiency. Since the exact mean value is not known, here it is not possible to give the tables
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N OLH RLH MC
10 0.691 0.942 1.333
20 0.387 0.568 0.859
30 0.303 0.481 0.862
40 0.234 0.395 0.620
50 0.180 0.386 0.514
100 0.095 0.276 0.417
300 - 0.152 0.237
1000 - 0.087 0.151
3000 - 0.051 0.092

Table 2: The standard deviation for the mean estimates usingdifferent sample sizesN .

corresponding to those for the Rosenbrock function. From Monte Carlo simulations we conclude that
the mean is−17.923 ± 0.001. The results presented in Tab. 2 are instead the standard deviations of the
mean estimates. Having computedM mean estimatesmk, k = 1, . . . ,M with a method, the standard
deviation given in Tab. 2 is obtained by the following expression

√

√

√

√

1

M − 1

M
∑

k=1

(

mk − 1

M

M
∑

i=1

mi

)2

(20)

4.2 Determination of parameters in the genetic algorithm

Below we describe computational experiments to determine the values of the following parameters in-
volved in the genetic algorithm

• The population sizeNpop.

• The probability of mutationpmut.

The optimal values of these parameters will depend on the number of sample pointsN and the number
of parametersp of the Latin hypercube.

We have done many investigation of the type illustrated in Figs. 3 and 4 for different sizes of LH (N =
50, 100, . . . , 300, p = 5, 10, . . . , 30). As was mentioned above the optimal parameter values depend on
the size of the problem. However, as a robust choice, we recommendNpop = 50 andpmut = 0.1 which
has led to near optimal convergence in all the tests.

Concerning the comparison between the genetic algorithm and the CP algorithm we advocate the use of
CP forN < 150 and the genetic algorithm for larger problems. The boundaryhere is, of course, rather
fuzzy and also depends slightly onp. The general trend, however, is clearly that the genetic algorithm
gains compared to CP for larger problems. In particular its initial improvements are much bigger.

Another positive result is the robustness of the genetic algorithm. The convergence curves are always
quite similar to those shown in Figs. 3 and 4. Furthermore, wehave never experienced the potential
pitfall of converging to a local minimum while CP finds a considerably better design.

11



� �� ��� � ��

� �� 	 	� �� 	 
� �� 	 �� �� 	 �� �� �� �� �	

0 50 100 150 200 250 300 350 400 450 500

CPU time
[ s ]

cr
it

er
io

n


� �� � � 	 � � �� � � �� �
� �� � � �� � �� � � �� �
 � �� � � 	 � � �� � � �� �
 � �� � � 	 � � �� � � ��
� �� � � � � � � � � �� �
 � �� � � �� � � � � � �� �
 � �� � � �� � � � � � ��

� �� � � � � � � � � ��


� �� � � � � � � � � �� �
� �

Figure 3: Convergence curves for the CP algorithm and the genetic algorithm with various values ofNpop

(denoted GA pop on the graph) andpmut (denoted Pm) for an OLH with100 points in 10 dimensions.� �� � � � � ��

0.334

0.335

0.336

0.337

0.338

0.339

0.34

0.341

0.342

0.343

0.344

0.345

0.346

0.347

0.348

0.349

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
[ s ]� �  ! "# $

cr
it

er
io

n

% &' ( ) * + * , - . &/ , . 01

Figure 4: Comparison of the convergence rate of the CP algorithm with the genetic algorithm for the
near optimal choice of parametersNpop = 50 andpmut = 0.1. The size of the OLH isN = 300 and
p = 10. The force criterion was used. It can be seen that for such a large problem the genetic algorithm
is more effective.
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4.3 Example OLH

In Fig. 5 we give some examples of LH withN = 15 and, the case that can be easily illustrated graph-
ically, p = 2. It is difficult to identify ‘visually’ the superiority of the force criterion which was shown
in section 4.1. The samples of the RLH, however, are clearly more clustered and, consequently, leave
certain areas ‘unexplored’.

Figure 5: Left: OLH with force criterion, center: OLH with minimum distance criterion, right: RLH. In
the figures the minimum distance between samples have been indicated with a line connecting the points
in question. For the two OLH the minimum distance is

√
10 and for theRLH it is

√
2. Observe also that,

by chance, the OLH optimized with the force criterion turn out to be better than the minimum distance
OLH with respect to theminimum distancecriterion (smallern(L)). This is however a purely random
phenomenon and depends on with which RLH the optimization starts.

4.4 The force criterion applied to Sobol sequences

In this section we present computations of the force criterion G(L), from equation (3), for Sobol se-
quences in a rather wide range ofN - andp-values. Let{xi}N

i=1 ⊂ [0, 1]p denote the samples generated
by Algorithm 659. To make the proper comparison with the OLH of the same size we then calculate

G(NL),

i.e. we scale the matrixLik = xik with N , the number of sample points, before evaluating the optimality
criterionG. This is done forp ∈ {2, 5, 10, 20} andN in the interval[10, 100], the results are presented
in Fig. 6. There it is seen that the OLH consistently gives a significantly better (lower) value of the
optimality criterion, than the Sobol sequence.

5 Remarks on the implementation

Especially concerning the CP method there is a variety of implementation issues which strongly affects
the efficiency of the program. Some are details concerning data structures, for example, the distance
matrix, introduced below. In this section however, we will only make a few remarks concerning the
following issues in the organization of the computation:

• No square root in the criterion calculation

• Update only needed elements when interchanging
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Figure 6: Comparison of the force criterion for OLH and Sobolsequences. The dotted line represents
the Sobol sequence and the full line OLH. On the abcissae we have N and the ordinate shows the value
of G(L). The upper left corresponds top = 2, upper rightp = 5, lower leftp = 10, lower rightp = 20.

Square root. When evaluating the functiond(L), see equation (2), one must first calculate all the
distances. We denote the distance between pointxi and pointxj by dij . Then all these numbers are
searched for the minimum. It is however more efficient to compute and compared2

ij since this does not
require the square root computation. This may not seem important, but the criterion is evaluated in the
innermost loop of the CP method and many (see next point) distance calculations must be done.

Update. Except in the first iteration, we do not need to update the entire distance matrix between the
evaluations of the criteria. In between two evaluations only two elements of theL matrix are inter-
changed, thus it is necessary only to update two columns and two rows in the distance matrix. Of course,
since the distance matrix is symmetric only the half of it (without diagonal) must be stored. Thus,2N −1
elements in the distance matrix are updated between each first order modification of the CP method.

6 Conclusions

The design of experiment is a crucial component of stochastic simulation of complex, computationally
expensive problems.

For problems where one can afford a medium number of samples (say 20-1000) the use of optimized
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Latin Hypercubes is recommended.

Basing on the computations presented in section 4.1 the use of the force optimality criterion for LH
optimization is recommended over the minimum distance criterion.

Depending on the size of the Latin hypercube the CP algorithmor a genetic algorithm are found to be
most competitive. Our experiments, as described in section4.2 suggest the use of CP forN less than
150 and the genetic algorithm for larger problems. We furthermore give a complete description of some
new modifications of the genetic algorithm for this problem.The description includes optimal values for
the parameters in the algorithm.

The results in sections 4.1 and 4.4, indicate that OLH can be an alternative to Sobol sequences for mean
prediction (and thereby for integration). This statement must, of course, be seen in the context of this
paper: computationally expensive problems with a medium number of samples affordable.

Acknowledgments
The work has been supported by Marie Curie Fellowship of the European Community programme

GROW under contract number G3TR-CT-2000-00038. This support is gratefully acknowledged. The
author R. Stocki would also like to gratefully acknowledge the partial support from The Foundation of
Polish Science (FNP nr 4/2001).

References

[1] P. Audze and V. Eglais. New approach to planning out of experiments. InProblems of dynamics
and strength, volume 35, pages 104–107, 1977. (in Russian).

[2] S.J. Bates, J. Sienz, and D.S. Langley. Formulation of the Audze-Eglais uniform Latin hypercube
design of experiments.Adv.Eng.Software, 34:493–506, 2003.

[3] V. Braibant, M. Bulik, M. Liefvendahl, S. Molinier, R. Stocki, and C. Wauquiez. Stochastic sim-
ulation of highly nonlinear dynamic systems using the M-XPLORE extension of the RADIOSS
software. InWorkshop on optimal design of materials and structures.Ecole Polytechnique, 2002.
On CD.

[4] P. Bratley and B.L. Fox. Algorithm 659. implementing Sobol’s quasirandom sequence generator.
ACM Trans.Math.Software, 14(1):88–100, March 1988.

[5] R.E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7:1–49, 1998.

[6] M.A. Crisfield. Non-linear finite element analysis of solids and structures, volume 1. Wiley, 1991.

[7] D.E. Huntington and C.S. Lyrintzis. Improvements to andlimitations of Latin hypercube sampling.
Prob. Engng. Mech., 13:245–253, 1998.

[8] R.L. Iman and W.J. Conover. A distribution-free approach to inducing rank correlation among input
variables.Communications in Statistics, 11:311–334, 1982.

[9] M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin distance designs.Journal of
statistical planning and inference, 26:131–148, 1990.

[10] M. Kermat and R. Kielbasa. Modified Latin hypercube sampling Monte Carlo (MLHSMC) esti-
mation for average quality index.Analog Integrated Circuits and Signal Processing, 19:87–98,
1999.

15



[11] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for selecting values
of input variables from a computer code.Technometrics, 21:239–245, 1979.

[12] T.J. Mitchell. Computer construction of d-optimal first-order designs.Technometrics, 16:211–220,
1974.

[13] M.D. Morris and T.J. Mitchell. Exploratory designs forcomputer experiments.Journal of statistical
planning and inference, 43:381–402, 1995.

[14] A. Nataf. Determination des distribution dont les marges sont donnees.Comptes Rendus de
l’Academie des Sciences, 225:42–43, 1962.

[15] H. Niederreiter. Random number generation and quasi-Monte Carlo methods. Number 63 in
CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1992.

[16] J.-S. Park. Optimal latin-hypercube designs for computer experiments.Journal of statistical plan-
ning and inference, 39:95–111, 1994.

[17] M. Rosenblatt. Remarks on a multivariate transformation. The Annals of Mathematical Statistics,
23:470–472, 1952.

[18] T.W. Simpson.A concept exploration method for product family design. PhD thesis, Georgia Inst.
of Tech., 1998.

[19] K.Q. Ye, W. Li, and A. Sudjianto. Algorithmic construction of optimal symmetric Latin hypercubes.
Journal of statistical planning and inference, 90:145–159, 2000.

16


