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Abstract

In the paper an algorithm for design reliability improverhenproposed. Its key part consists
in the computation of the correlations between constraintfions and design variables which are
subsequently used to find the new design iteration. It is shibhat the optimal Latin hypercube
(OLH) sampling provides an extremely efficient techniquedssessing the values of correlation
coefficients. Since finding the large OLH designs is not aariask, a study on the OLH generation
algorithms was performed. Two algorithms were found to beiqdarly effective, namely, the
columnwise-pairwise algorithm and the genetic algorithm.

The presented strategy proves to be especially useful wihenmative gradient-based methods
cannot be used, which is often the case for computationgfigmsive problems involving noisy and
highly nonlinear responses. The method is best suited fuslems where the probability of failure
for the initial design is large and the main interest is to finchore reliable design rather than the
optimal one in the sense of reliability-based optimization

The method is illustrated with two numerical examples. Omelehexample and one concerning
the problem of thin-walled beam crash.

Keywords: optimal Latin hypercube sampling, reliability-basedioptation, genetic algorithms, crash-
worthiness reliability

1 Introduction

Due to the continuous development of computational tecgyolve are now able to build and analyze
more and more refined models of complex nonlinear physicahpimena, e.g. simulate the crash of
a car. Finite element models can now include hundreds ofsdrmds or even millions of elements and
powerful parallel machines are used for simulations. Hagewhat is becoming commonly shared
opinion, by not investigating the influence of unavoidald@domness of model parameters we loose
important information concerning the underlying problerhis may lead in effect to potentially failure
prone design. Designs that perform well for nominal valuetheir parameters sometimes turn out to
be completely unreliable when the imperfections of the rhpdeameters and operating conditions are
taken into account.

Such a behavior manifests itself particularly for desigrsitting from deterministic optimization and es-
pecially in the optimization for crashworthiness. Howewdere to limitations of technology and computer
resources researchers do not address these problems tesry ©he papers dedicated to optimizations
in crashworthiness related problems that were publishdéderast years, deal almost exclusively with
deterministic, response surface based optimization, 53| 18, 4, 21].

A remedy for the high probability of failure of the deternstic optimal design can be reliability-based
optimization (RBO). The RBO problem may be formulated inesal’ways [10, 8]. One way is to
minimize the initial structural cost under the constraintposed on the values of probabilities of failure



corresponding to various limit states, another way is toimee the system reliability under design con-
straints. RBO algorithms that usually employ first ordeiatglity method (FORM) concepts, see [13],
proved to be efficient in many structural optimization pesbt but their direct application to crashwor-
thiness optimization problems seems to be rather unnealistst attempts of RBO for crashworthiness
were almost always based on some response-surface apptmxinof the structural response (see eg.
[6]).

The method that is proposed in the current paper is aimedtinfgrovement of the design reliability
using a random sampling technique and is especially effigien only a moderate number of sample
points can be afforded. Though formulated as a method te $sloé/RBO problem, the solution technique
and the scope of potential applications make the term “desgability improvement method” more
appropriate than “RBO method”.

The response surface method (RSM) which, when cleverly, usegh excellent tool in solving many
optimization problems may be less reliable for extremelisyalesigns, or if there is a high degree
of nonlinearity, especially instability. Since the crashalysis was meant as the main application of
the method presented in this paper, however being far fram steong opinions that question the very
idea of RSM-based crashworthiness optimization [11], it @aliberately decided not to use the RSM
concept. In the paper [23], Stander et al. compared vari@M Bnd random search techniques for the
deterministic optimization. The random search was baseldatin Hypercube (LH) sampling. It was
shown that for some examples, even using small samples thmed results may be surprisingly good
when compared to RSM-based optimization.

The sampling technique which is the key part of the proposethad is the so-called optimal Latin
hypercube (OLH) sampling. As it will be described in detailsection 3, the rearrangement of LH
points which minimizes an appropriate criterion can predihe design of experiments that is particularly
efficient in predicting statistical properties of a modedgense. It was proposed to use linear correlation
coefficients as a measure of dependency between model sespf@ptimization constraints) and design
variables. They are then used to determine the changeidmeanid to select the new design iteration.
The OLH sampling allows to assess the values of correlat@fficient with acceptable accuracy even
for small samples. In the sections 3.1 and 3.2 are presentedfficient algorithms to create large and
medium size OLHs.

Up to now there have been few attempts to use LHs and OLHsiabilly analysis. For example, in
[16] Olsson et al. used LH in the framework of importance slamgpmethod to improve the efficiency
of FORM results, and in [25] optimal symmetric Latin hypdrseuwas used as the plan of experiments
to generate response surfaces that were subsequentlynugedmost-probable-point search algorithm.
However, both these techniques are much too expensive fquosposes.

The two examples (sections 4 and 5), which illustrate thénotktwere solved with the M-Xplore module
of the Radioss software [3], co-developed by the author.

2 Presentation of the method

2.1 Problem formulation

LetX = { X3, Xy, ..., Xn} be the vector of independent random variables represemticgrtainties of
selected system parameters like: material parametersyaggg loads, initial and boundary conditions.
Each random variabl&;,i = 1, ..., N, is described by its probability density function (PDF)hhe
corresponding mean valyey, and standard deviationy,. Let us then denote by the vector of mean



values of the random variables
= {px1 HXgs - X ) @)
Assume now that out of N mean values are the design variables in our design optimizé&tesign

improvement) problem. To facilitate the formulation it ssamed that the random variables are ordered
in such a way that the first elements inu correspond to the design variableslt is then

y={v1 = ux,,v2 = txs, - Un = px,}, n<N. (2)

Depending on the nature of a random variaklg: = 1, ..., n, its standard deviation may be kept fixed
during the optimization/improvement process or changexbraling to a fixed coefficient of variation
Vx; = O-Xi/MXi'

The optimization problem can now be stated as follows:

find y e R", (3)
that minimizes f(y), 4)
subject to: P[¢;(X) > 0] > py, i=1,...,m, )

wheref (y) is the objective functiong;(x) are the constraint functionB( - ) is the probability function,
pi are the admissible probabilities aiy;i, “y; are the lower and upper bounds, respectively, imposed on
the design variables.

The equations (5) set up the so-called reliability constsai They state that the constraini$x) > 0,

i = 1,...,m, have to be fulfilled with a certain probabiliy} or that the respective probabilities of
failure, Py,, have to be smaller thah — p{. However, it must be stressed that using a Monte Carlo
type simulation, when only small samples can be affordedfangdroblems where high reliabilities are
required, will result in very poor approximations of thewas of reliability constraints. For example,
deciding to use less then 100 sample points (which will uguzd the case in ‘real life’ applications)
and setting® = 0.99 the constraints (5) should rather be readaik) > 0 for all the points (lowercase
x stands for samples dX). In fact, to guarantee a good estimation (say, coefficiéntagation of
the estimator smaller than 0.1) of the probability of faglursing crude Monte Carlo sampling, for the
expectedP, value of about 0.01, 10000 sample points should be generdted will be shown later

in the text the OLH sampling allows to reduce the sample sigestill, the accurate approximation of
the reliability constraints is not possible if we samplenfirthe original distributions of random variables
(contrary to importance sampling technique, see [16]). &l@x, since our aim in this paper is rather to
find a more reliable design than to find the optimal one we @ekttd accept the limited accuracy of the
adopted approach.

2.2 Solution algorithm

The solution method can be classified as a probabilistickesgorithm. To find the starting point and
subsequent points in the iteration process the samplitgitggee, based on the OLH design is employed,
(see section 3 for details). The principal idea of the metisdoased on the assumption that the next
design point is chosen from among the points for which theeslof objective function and the con-
straintsc;(x), ¢ = 1,..., m, were already computed. By doing this, as opposed to theadsthased on
the concept of response surface, we deliberately avoid ssynaptions concerning the type of function
approximating the objective and constraints. This apgraasimilar to the one proposed by Marczyk
[11] and implemented in STORM [22] software.
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2.2.1 Choice of the starting point

Depending on having some prior knowledge of the problem,stheting point can be either directly
specified or it can be chosen by examining the results fortpaenerated using OLH sampling. In
the latter case the PDF’s of random variables correspontdinifpe design variables are temporarily
changed to uniform PDF’s with the bounds defined4y®y;, i = 1,...,n. Next, a sample oX is
generated and the feasible sample point that minimizeshjeetive function is chosen as the starting
point. This means that the mean values of variablgs: = 1, ..., n, are shifted to the starting point.
Next, the modified PDF’s are changed back to the original arigsthe new mean values and the original
standard deviations. In the case of constant coefficientaridition the standard deviations should also
be recomputed.

A reason for the initial PDF’s modification is to be able to enthe entire design space with the samples

in order to find a good starting point. As will be describecetan the text (section 3.3) the special,
modified OLH design is used at this stage.

2.2.2 Improvement strategy

At each iteration step of the algorithid sample points are generated using the OLH design. Now, the
problem to be solved is to choose from among these pointsekiedesign. The selection strategy can
be summarized as follows:

First, the values of reliability constraints (5) are estieth and those which are violated are identified.
Let I be the set of indices corresponding to these constraints

I={i:1<i<m, Pl;(X)>0] <p}}. (7)
Next, taking into account only the last sample’s resultsaheelation coefficients between the random
variablesX;, i = 1, ..., n, and the constraint functions(x), j € I, are computed. They are given by
= k
>l - aile; () — ¢
Pij = = ) 1217"'777" ]Ela (8)
K K
S - 2, | Yl (x) - ]2
k=1 k=1

wherep;; = p(X;, ¢j), T; andc; are the sample means amﬁ‘) denotes the-th component of thé-th
realization §-th sample point) of the random vect&r. The computed correlation coefficients play the
key role in selecting the change ‘direction’ or, more prelgisselecting the subset of sample points from
which the new design will be chosen. Some poit®, & = 1,..., K, can be immediately eliminated
if they violate simple bounds (6) or if;(x(*)) < 0,7 = 1,...,m. To facilitate the presentation let us
denote byl the set of indices corresponding to the points fulfillingsiaeriteria, that is

f:{k: 1<k<K, ci(x(k)) >0, 1=1,...,m and lyj §x§-k> <Y;, j=1,...,n} 9
Now, from the set of point(, i € I we want to choose the points which are the most likely to
‘improve’ the reliability constraints. In order to do thisrfeach design variable the following expression
is computed

d; :Zp(xi,cj)@m[cj()() <0]), i=1,....n (10)
jel



If d; is positive then only the sample points which have the valuiei-th variable greater then the
corresponding mean valyey, are considered, and similarlydf < 0 only points for Whicmgk) < px;

are taken into account. i; = 0 then all the pointx(?, i € I, can be considered. The idea behind the
expression (10) is based on the information carried by tairoa coefficients. With the values changing
from -1 to 1 they provide a measure of linear dependence legttte random variables and the constraint
functions. The weight factor in parenthesis accounts feretktent of violation of a particular reliability
constraint.

Due to the nonlinear character of the constraint functibnan happen that the described procedure will
exclude some points that might also be considered as paitesandidates’ for the next design iteration.
To avoid this, in addition to the points already chosen fromdample, we select (if they exist) those for
which the values of constraints, ¢ € I, are greater than the corresponding ones for the pointtsdlec
in the previous step as the current design.

To illustrate the above procedure let us consider an examipte3 design variables where at a typical
iteration step 50 sample points are generated. The valuadnoissible probabilitieg®(cf. (5)) are the

same for all the constraints and equal 0.99. Assume nexfdbatonstraints¢;(x), i = 1,...,4, are
violated by 20, 10, 3 and 15 samples, respectively. Comgtitist the correlation coefficients (values in
the table below), the correspondidg i = 1, ..., 3, values are subsequently computed.

C1 Co C3 Cq4

X;|-06|—-01| 0.8 | -0.2
X5]001] 05 [-09|-03
X3 065 02 | =03 0.1

dy = —O.6<1+ %) —0.1(1+ %) +O.8<1 + %) —0.2(1+ g) — 037,
dy = 0.01(1 + %) +0.5(1 + %) . 0.9(1 + 5%) - 0.3(1 + %) — _0.73,
ds = 0.65(1 + %) +0.2(1 + %) . 0.3(1 n 5%) +0.1(1 + %) — 0.96.

According to the adopted strategy one will choose the nesigdepoint from among points®, i € T,
for which xg“ < HXy, x;“ < px, and a::(f) > px, and from the additional points selected as it was
described above.

For a big number of design variables it is likely to happert thare will be no sample points satisfying
all the criteria. In such a case additional points (at leasf) should be generated in the region defined
by thed; values. Of course, a newly generated point can be acceptbeé agw design if it satisfies all
the constraints (see (9)).

After determining the set of candidate sample points ar@itemust be employed to choose the ‘best’
one. In the examples presented later in the text the follgiimction was used as a criterion

hi(x) = wy f(x) =Y wii(x), (12)
=1

wheref(x) andé;(x),i = 1,...,m, are the normalized values of the objective function andtraimts,
respectively, andv; andw; are the weight factors. The sample painthat minimizes the function is
taken as the next design, or more precisgly= 2;,¢i = 1,...,n.
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There is some freedom in selecting the weight factors. Famgte, defininguv, as
(12)

wherek is the index of the most violated reliability constraintefarences points more likely to fulfill
reliability constraints. The same is achieved by the follmpdefinition of thew; factors:

Neglecting 1 in the above formula leads in practice to takimg account only violated reliability con-
straints. The choice of weight factors may also be deterdliyghe computational cost of the underlying
analysis. If one cannot afford to many sample points and @smaim is to make the initial design more
reliable thenw  factor should be set to zero and the process stopped afterditiee first design satisfy-
ing reliability constraints.

3 Efficient sampling techniques

A good samples generation technique is a crucial comporfeheqresented optimization algorithm.
It is especially important for computationally expensivelgems. In order to avoid clustering of the
sample points and to assure good estimation of the statistioments of response functions the OLH
sampling technique has been selected. Later in this settt®two methods for building large OLH

are presented, the columnwise-pairwise (CP) algorithrerited by Park [17] (with the modification

described in [24]) and the genetic algorithm, inspired by ditigorithm proposed in [20]. They were
implemented in the M-Xplore module of the Radioss softwaieahd explained in details in [9]. Below,

only the most important information on the OLH design andalgerithms is given.

OLH is a viable sampling technique when one considers staiptimality and projection properties.
There are many criteria of the statistical optimality of aida of experiments. Most of them are based
on fitting a (stochastic) model to experiments/computed,dsde eg. [14] and [17]. Another criterion,
which is of interest in the current paper, measures how \elktatistical properties of some model are
predicted. By good projection properties we mean here Hesample points are well spread out when
projected onto a subspace spanned by a number of coordixege @his is very often desired in the
applications when one does not know a priori if some randorabkes have a negligible effect on the
response of the system.

A Latin hypercube is represented By x N-matrix (i.e. a matrix withK” rows andN columns)L where
each column oL consists of a permutation of the integers 10 We will refer to each row oL as a
(discrete) sample point and use the notation

X1 11 ot XN
L= : = : : , (14)

wherex; is thei-th sample point.

The LH design obtained by simply generating random permutations of the numberdo K and
placing them as columns in the matrix, without any subsegcleanges, will be referred later in the text
as random Latin hypercube (RLH).



The matrixL. can now be used to generate ‘real’ samples of the randomn&ctaking into account
the distribution of each variable. To find the realizatien); of the random variable(;, 1 < j < N,
corresponding to the number < i < K, in thej-th column of the matridL,, the cumulative distribution
function (CDF) ofX; is used

(xi); = F)Ejl(@i% (15)
where ) .

- 1
In other words, the range of variability of each random \@gas divided intoK intervals of equal
probability and the valuegx;);, ¢ = 1,..., K correspond to the medians df; in these intervals.

Another choice, instead of (15), is to choose tkg); randomly in thei-th interval.

It is important to mention that in general the random vagabtan be arbitrarily distributed and cor-
related. However, to use the sample design generated wittheHMariables must be first numerically
transformed to a set of uncorrelated random variables. drcése when the joint probability density
function is known the Rosenblatt transformation [19] carubed and when only marginal CDFs of the
variables and the correlation matrix are known one may eyngile Nataf transformation [15]. Both
transform the original variables to the space of independ@mdardized Gaussian variables. The val-
ues of the random variables found in the transformed spang (5) are next transformed back to the
original random variableX.

The criterion that is used in the current paper to optimizedddign was proposed by Audze and Eglais
in [1]. Itis based on the functio& which, in a physical analogy, is the sum of the norms of thelsige
forces if the samples are considered as electrically chgrggticles

GIL)=Y 3 m (17)

From the point of view of the physical analogy, it would haeeb natural with the power 1 (instead of
2) in the denominator of the terms of the sum. However, withgbwer 2 a computation of a square root
for each term is avoided. This has a noticeable effect onxeewgion speed since the functichwill be
evaluated many times in the inner loop during optimizatiosing the functions the criterion that will
allow to compare two LH designs can be stated as

L; is better thanL, if G(L;) < G(Lg). (18)

As it was shown in [9] this criterion is a reasonable compsmbetween good statistical properties and
efficiency.

Although for small Latin hypercubes the computational addinding OLH is negligible compared to
the expensive computer simulation of a physical phenomeahgrows very fast with the sample size and
the number of variables. For large LH (hundreds of sampletp@nd tens of variables) it may even take
hours and days with fast computers. The computational agstrtls of course on the algorithms used
for OLH optimization and the adopted optimality criteridn.the next two sections the main features of
the CP algorithm and the genetic algorithm are presented.

3.1 Columnwise-pairwise (CP) algorithm

The CP algorithm can be described in pseudo-code as follows:



Generate a random Latin hypercube: Ly,
stop = FALSE
while( not stop )
Loia = Lyew
Do a CP-sweep to generate Lye, from L,y
if stopping criterion fulfilled
then stop = TRUE
end of while-loop

The so-called ‘CP-sweep’ operation is given as follows:

for ¢ = 1 to N
Find the best first order nodification of colum ¢ and replace colum i
with it
end of for-loop

where the first order modification of a column of a LH matrix efided as an interchange of two of
its elements. Of course, ‘best’ first order modification neetiie modification which gives the best LH
according to the chosen criterion. The name CP-sweep itedithat it is a systematic procedure going
through (sweeping) all columns of the LH-matrix testingenchanges.

The stopping criterion in thg-th step is given by the inequality
AGy < eAGH, (29)

whereAG] is the improvement in the first step ant a chosen parameter.
It can be shown [9] that the computational complexity of tliedlgorithm is estimated by the expression

Tiot ~ NEK3(c1 KN + o K?), (20)

where T, stands for the total complexity of the algorithm arnidand ¢2 are constants. It must be
emphasized that the execution time is very sensitive tatraris inK. A number of tests have been
performed to estimate the speed of the computations. Thehale the casek = 50, 60, ..., 100 for

N = 3 which indicate an execution tiniE ~ K% with ¢ between 4.5 and 5.5. To illustrate the order
of magnitude of the growth one can extrapolate from the di@ttime of approximately 3 minutes for
the 100 x 3 OLH on an SGI Octane2 workstation, assumifig- N°. This gives an execution time for
1000 x 3 OLH of eight months.

3.2 Genetic algorithm

The genetic algorithm is a very general optimization teghaiand can be applied to a large class of
optimization problems. In the general form it can be desttiin pseudo-code as follows

Generate initial popul ation

Calculate fitness for individuals in the initial population
stop = FALSE

while( not stop )



Sel ect ‘survivors’
Cross-over the ‘survivors’
Mutate the resulting popul ation
Cal cul ate the fitness of the new popul ation
if stopping criterion fulfilled
then stop = TRUE
end of while-loop

The step of producing one new generation in the genetic ithgoiis cheap compared to the CP-sweep.
Also there is the possibility that the best LH in the new gatien is not an improvement even if further
iterations gives important improvements. For these reagwoithe stopping criterion the accumulated
improvement in the first (says = 50 or 100) generations is saved (not only the first improvement like
in (19))

Aés = G(Ls) - G(LO)7 (21)

whereL; is the best LH in the-th generation. Then in generatiénif k is a multiple ofs the following
inequality is checked .
G(Lg) — G(Lg—s) < eAGs. (22)

There are many variations of the genetic algorithm accgrtiirhow one chooses to define the steps of
selection, cross-over and mutation, also the initial patoth can be chosen in various ways. We now
turn to the description of these steps for the problem ofhaigtng Latin hypercubes.

Initial population. We start by generating/,,,,, of random LHs which constitute the initial population.
The numberV,, is required to be even because of the selection step.

Selection.The N, /2 best LH are chosen as ‘survivors’ and the rest is thrown away.

After selection (parents)
[? L Ly L L,
000 GH4%
i i
L Lo Ls ls l Le LS\

W78z i
: //// B3
2%/ &
V. #

After crossover (children)

Figure 1: lllustration of the cross-over step. Observe dfi@r cross-oveL; andL; will be identical to
L, before cross-over, the best LH. Later, in the mutation digfs allowed to change but ndt;, so at
least one copy of the best LH is always kept.



Cross-over. In this step/V,,, children of the/N,,,/2 survivors are generated. This step is illustrated
in Fig. 1. First, the best LH is put as number 1 aNig,,,/2 + 1 among the total set of children. Then
for k € [2, Npop/2] the best LH is mated with thé-th in the following way. The best and thieth
will generate two children. The first child is obtained byitkthe best LH and replacing a random
column with the corresponding column in theh LH. The resulting child is given the numbkiamong
the children. The second child is obtained by taking &kt LH and replacing a random column with
the corresponding column of the best LH. The resulting cisilgiven numbetV,,,/2 + k among the
children.

Mutation. Mutation is done on all except the best LH from the earlieragation in the following way:
for each column a random number[in 1] is generated (according to the uniform distribution), istis
lower than a thresholg,,.., then two randomly chosen elements in the column are swapped

As it was shown in [9] depending on the size of LH the CP algamior the genetic algorithm are found

to be most competitive. Numerical experiments suggestsbafiCP fork less than 150 and the genetic
algorithm for larger problems. For the genetic algorithra dptimal values for the population size and
the probability of mutation depend, of course, on the sizthefproblem. However, as a robust choice,
Npop = 50 andpy,s = 0.1 can be recommended.

3.3 Modified OLH design

Latin hypercube ensures good stratification of the desigiwespvhen projected into 1-dimension. In
addition, the OLH design avoids clustering of the samplafsoiHowever, it is not possible to eliminate
clustering when projecting sample points of thiedimensional OLH into less dimensions. In Fig. 2 two
Latin hypercubes are presented. The left one is the OLH ofditpin 2 dimensions. It can be seen
that the points are uniformly scattered in the square. Tdiet tiH is the projection of the 50 points 4
dimensional OLH into 2D. In this case the clustering of sag@ints is clearly visible.

@ H o @

Figure 2: Left: 5«2 OLH. Right: Projection of the 594 OLH into 2 dimensions.

This feature of the OLH design is particularly unwanted wisbnosing the starting point for our al-
gorithm (see section 2.2.1). Since the final designh depeagsmuch on the appropriate choice of the
starting point, it is important to ‘cover’ the space of thesige variable as good as possible. On the
other hand the idea of the presented optimization/impre@rgrapproach is to account all the time for the
uncertainties of the other parameters (not corresponditiget design variables). In order to find a com-
promise, the modified optimal Latin hypercube design (reftas MOLH) was proposed. It is optimal

10



in the subspace of design variables, and the coordinateangble points corresponding to remaining
N — n random variables are selected using either the CP or thdigergorithm with the additional
constraint that the optimality of the LH projection on theside space must be preserved.

From the implementation point of view this modification isitgustraightforward. First, the ‘design’
OLH is generated, i.e x n matrix L, is found. Next, in thel x N matrix L, being the starting RLH

for CP algorithm (or in initial population of RLHs for genetalgorithm), the columns corresponding to
design variables are replaced by those fibyn Then, the algorithms described in the previous sections
are employed with the following modifications: in the CP-sywéhe columns ‘pasted’ from, are not
considered, while in the genetic algorithm the cross-owerrautation operations do not affect columns
from L, their position in the matribL, and their contents remain unchanged.

3.4 Example: Efficiency of the OLH sampling

In order to compare the efficiency of different sampling téghes for the estimation of statistical prop-
erties let us consider the so-called Rosenbrock fundétidefined as

b(X1, Xo) = 100(Xy — X3)? + (1 — X1)% (23)

It is assumed that the two variablés, and X5 are random and uniformly distributed in the interval
[0,2]. The goal is to estimate the mean vali¢] of the functionb as well as the correlation coefficients
p(b, X1) andp(b, X2). The exact values of these statistics can be easily compntagtically

2 2
1
= b(x1,x2)- dx1dere = 187,
|| bt g desdas o4
oy = \// / (El,xg — 187] —dxldxg = 255. 55
(25)
00X, =0X, = —7
— 1 7
p(b, X1) = // (o 22) 8T @ = 1) 1y = 058, (26)
oyep'e]
-1 _
p(b, X2) = / / (w1, 22) = 187] ( )dwldxg = —0.15 (27)
ObOX, 4

To evaluate the different sampling methods we now set oultutate these values with the OLH, RLH
and the ‘standard’ Monte Carlo (MC) method.

The results of the computations are shown in Tab. 1, wher@avbheage of the error percentage in the
estimates is shown. To explain how these numbers were ebtéhus take the example of the estimator
of the mean valud[b]. First, M designs of experiment&X*)}M  with the method in question are
determined (in the computatiods = 100 was selected). The elements of the matriké® are denoted
by "), wherei = 1,..., K andj = 1,2. Next, based on thesg/ estimatesn*) of the mearE[b] are

ij !
computed,

mk) = Zb 21, 22 . (28)
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Sample size E[b]: % error p(b, X1): % error p(b, X2): % error

K OLH | RLH | MC || OLH | RLH | MC || OLH | RLH | MC
10 7.42 | 19.34| 28.98 || 10.84| 13.75| 50.74 | 64.38| 188.6| 346.9
20 3.89 | 13.02| 26.31| 5.18 | 9.27 | 23.00| 31.33| 94.30| 117.2
50 1.88 | 9.30 | 15.01| 2.92 | 5.85 | 13.60| 14.59| 67.62| 79.92
100 1.02 | 545 |10.68| 1.77 | 3.82 | 8.34 || 8.83 | 43.36| 39.33
200 0.73| 388 | 753 | 1.31 | 281 | 591 | 549 | 30.17| 33.94
500 - 2.48 | 4.43 - 1.77 | 4.04 - 17.73| 21.47
1000 - 1.94 | 3.52 - 1.40 | 2.46 - 14.72| 15.02
2000 - 1.29 | 255 - 0.87 | 1.97 - 9.84 | 11.11
5000 - 0.83 | 1.48 - 0.56 | 1.19 - 5.76 | 7.33

Table 1: The average of the error percentage for the diffes@mpling methods and sample sizes. OLH
with more than 200 points have not been computed because @it computational time.

The value given in Tab. 1 is then the average of the error @tlestimates, given as a percentage of the
exact mean value,

187M Z im*) — 187]. (29)

By examining the results in the table it is easy to rank thehodd. The OLH with 50 samples points
gives equally good results as Monte Carlo with 1000 points @hH with only 20 points provides the
better estimations than 200 points MC simulation. On themtiand, sampling based on the RLH design
does not seem to be that much advantageous when compared. tbhds; it can be seen that the OLH
sampling is of the fundamental importance for the efficiencthe presented optimization algorithm. It
provides a cheap and accurate estimation of the values iiflabon coefficients between the constraints
functions and the random variables, which are subsequesty in the algorithm to find the change
‘direction’.

4 Example: Constrained minimization of the Rosenbrock funtion

Before applying the algorithm to a more complex realistiplagation problem let us first consider a
simpler case of constrained minimization of the Rosenbfaoktion (23). The problem is formulated
as follows:

find: y1 = px,, Y2 = px,, (30)

that minimizes f(y) = 100(y2 — 32)% + (1 — y1)?, (31)
subject to: P[cy(X)] > 0.99, (32)
Plea(X)] > 0.99, (33)

Ples(X)] > 0.99, (34)

0<y <3, (35)

0<y2 <3, (36)
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where

Cl(X) = X7(X3X1 -+ X2 -+ X4), (37)
c2(X) = X7(X5X1 — Xz + Xo), (38)
Cg(X) = X7(—2X1 — X9+ 7), (39)

and Xy, ..., X7 are random variables with the probability distributiongegi in Tab. 2.

Distribution | Mean | Std. dev.
X normal Y1 0.2

X9 normal Yo 0.2

X3 uniform -0.5 0.029
Xy uniform 0.0 0.058
X5 uniform 2.0 0.058
X uniform -0.8 0.058
X7 normal 1.0 0.02

Table 2: Random variables in the Rosenbrock function miretndn problem

Thus, we are looking for the mean values of random varialileand X5 in the rangd0, 3] that would
minimize the Rosenbrock function and satisfy the religpitionstraints (32)—(34).

The contours of the objective function and the feasible doreaclosed by the constraints lines(x) =

0, c2(x) = 0 andes(x) = 0 are shown in Fig. 3. VariableXs, ..., X are the random parameters of the
first two constraint functions resulting in the uncertaiofythe feasible domain definition. The random
factor X7 could be interpreted as an additional ‘noise’ effect in thenputation of constraints values.

Analyzing Fig. 3, it is quite evident that the minimum poitX), from the deterministic optimization, is

very sensitive to parameter variations and thus does netgyreliable design.

To illustrate the method, an example of design history issshim Fig. 4. The initial design was found
using MOLH sampling (see section 3.3) with 60 points and m&sg uniform distribution ofX; and

X, in the interval[0, 3] (so, projecting into 1D, the distance between adjacent wtp equals 0.05).

At the subsequent iteration steps, 40 points OLH sampling wged to assess the values of reliability
constraints and to evaluate correlation coefficients betweg, co, ¢c3 and variablesX; and X,. The
scatter of points around the initial and optimal/improvessigns presented in Fig. 4 demonstrates that
in the presence of uncertainties the initial design is noeptable. However, as was stressed in section
2.1 the optimal design obtained with the presented apprdapknds on the size of the sample used to
check the reliability constraints. Since the admissiblbpbilitiesp® in (32)—(34) were equal 0.99 and
only 40 sample points were used, one can only claim that hdtieg design is more reliable than the
initial one but not that the reliability constraints areisi@td.

The results of the optimization process very much dependh@mrhoice of the starting point, which on
the other hand depends on the sample size. In order to arthlyzseatter of the results 30 optimization
processes were performed, first, using 40 points OLH sagalind next, 100 points OLH. In the first
case 60 points MOLH was used to find the starting point, in #uoed case it was 100 points MOLH.

It was decided that the optimization process is stopped tiéefirst feasible design (i.e. ‘satisfying’ all
reliability constraints) is found. To speed up the compatet the weight factow in criterion (11) was
set to zero (this strategy was mentioned in section 2.2.2).
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3.01

2.5

2.0

1.0

0.5

Figure 3: Rosenbrock function contours and the constrairttse optimization problem. The uncertainty
of the parameters defining constrain{$X) andce(X) results in the feasible domain uncertainty.

3.01
2.5
2.0

X, 1.5

1.04

0.5

Figure 4: lterations history for the case with 40 sample tsoiit he scatters of possible designs around
the initial and final points are shown.

In Tab. 3, the mean values and the standard deviations okigrdvariables and the objective function
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Y1 Y2 f
Mean Std.deviMean Std.deviMean Std.dev.

OLH40 |1.71| 0.13 | 1.50| 0.17 |213.9 104.2
OLH 100 | 1.69| 0.10 |1.47| 0.12 |200.2 73.2
RLH 15000 1.68| 0.03 |1.47| 0.07 |186.9 14.7

Table 3: Results of the Rosenbrock function minimizatioobbem for different sampling methods.

are presented. These results are compared with the congiagovalues obtained using RLH sampling
technique with 15000 sample points. Because of the larg@leasive and the small scatter of results,
these values could be treated as a reference. It is integestiobserve comparing the OLH 40 and the
OLH 100 results that the mean valuesyef y» and f do not differ significantly. However, the scatter
of results is smaller in the case of the optimization with188 points OLH sampling. This can also be
seen in Fig. 5 where the optimal design points are shown. @melops’ enclose points resulting from
the same sampling method, shaded region corresponds td theeRults. Of course, such a comparison
can only be performed in a simple case when the objectivetenddnstraints are explicitly given.

3.01
2.5

2.0

1.0+

0.5

Figure 5: Scatter of the optimal points for various sampteghniques.

5 Example: A crash of the thin-walled s-beam with uncertain @mrameters
Here we consider a problem of the thin-walled steel s-beaows in Fig. 6, clamped at one end and hit

at the other end by the 100kg mass moving with the initial sigfovy = 15m/s in the z-axis direction.
The beam consists of 3 omega-shaped parts and the cover pladeomega parts are attached to the
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m= 100 kg

Figure 6: S-beam crash problem. The finite element model anhgtry. Dimensions are in millimeters.
The arrows indicate the locations of the parts.

cover with 64 spotwelds. The finite element models consisid 60 MITC4 type shell elements [5] and
64 spring elements to model the spotwelds. The finite eleaaaysis was performed using the explicit
finite element software [12], particularly developed foe tinalysis of highly dynamic and nonlinear
problems, in particular crash.

L

{T/“X KZ

Time= 20.00 ModAnim Time= 20.00 ModAnim
OPTS OPTS

Figure 7: left: buckling type deformation, little absorbedergy; right: regular folding, good energy
management

The beam acts here as an energy absorbing device. The majmrnan its design is to ensure that
it guarantees a good energy management by collapsing iharefpiding rather than buckling mode
(see Fig. 7). However, very often a design that performsfsatiorily in the ideal (nominal) operating
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Description Distribution Mean Std. dev./c.0.v.
X4 t1 - thickness of the part 1 lognormal | 1w [mm] vy, = 5%
X5 to - thickness of the part 2 lognormal | gy [mm] vx, = 5%
X3 t3 - thickness of the part 3 lognormal | w3 [mm] vx, = 5%
Xy t4 - thickness of the part 4 lognormal | w4 [mm] vx, = 5%
X5 oy - Yield stress lognormal | 180 [MPa]| ox, = 15 [MPa]
X5 Omax - Maximum stress lognormal | 350 [MPa] | ox, = 15 [MPa]
X7 | v§ - y component of the mass initial velocity normal 0 [m/s] ox, =1.5[m/s]
Xg | v§ - z component of the mass initial velocity normal 0 [m/s] oxs = 1.5 [m/g]

Table 4: Random variables in the s-beam crash problem

conditions is not reliable due to unavoidable uncertaéntésome parameters. In reality it is hard to
guarantee that the mass will impact the beam precisely im¢samed direction, that all the spotwelds
are well made and the thicknesses of the metal parts do riet flibm their nominal values. For this
reasons it seems essential that a design is verified for nistséty to parameter uncertainties and, if
necessary, improved to satisfy certain reliability lev8ince the presented optimization/improvement
method is based on the scatter analysis of system’s respdrniseimportant to carefully check if the
finite element model is good enough to represent the phygi@omenon and is not the source of the
scatter of the results. If a slight change in the FE mesh dereéifit choice of contact algorithm have
similar influence as uncertainties of physical parametiies,model should not be used for stochastic
analysis.

In our problem 8 random variables were identified. Their dpon is presented in Tab. 4. Variables
X5 and Xg are the parameters of the Johnson Cook elastic plastitebmitterial law [7] while the
variables X; and Xg account for variations of the initial conditions. To accbfor uncertain quality

of the spotweld connections 32(5%) randomly selected spring elements are being deleted fnem t
model. The mean values of the first four random variablesKtt@sses of the parts) are chosen as design
variables. Since their values change in the optimizati@tess the corresponding standard deviations
will also change in order to keep the coefficient of variattmmstant and equal to 5%.

We formulate the optimization problem as follows:

findy ={y1=px,,y2=1xz, Y3 =11X5, Y4 = p1x, }, (40)
that minimizes volume of materidf (y), (42)
subject to: for all the sample points:
1) absorbed energy is greater th&s0 J, (42)
2) deformation of the part 1 is greater
than 50% of the total deformation (43)
0.8mm < y; < 2.0mm, i=1,...,4. (44)

The crash duration is taken as 20ms. The minimal admiss#bdle\of absorbed energy in the constraint
(42) corresponds to the design= t, = t3 = 1.5mm, t, = 1mm and the mean values of the variables
X5 ... Xs. The constraint (43) was introduced to favor the designslwldad to deformation localized
in part 1.
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The initial design was selected using MOLH technique (set®@®s 2.2.1 and 3.3) with 50 sample points.
In Fig. 8, where the design history is shown, the startingipodrresponds to iteration 0. It can be seen
in Fig. 9 that this initial design is not reliable. 28 out of &mple points do not satisfy the first constraint
and 1 does not satisfy the second one. Similarly to the firmtgpe, the adopted strategy was to find the
first acceptable design using 50 points OLH sampling. Suatsad was found in 4 iterations. As seen
in Fig. 8, the volume of the beam must be increased with trektigisses of parts 2 and 3 being almost
equal and close to the upper bound and the thickness of th& pansiderably smaller.

2.00 gl99
1.90
1.80
1.70
1.60
1.50

1.40

thickness in mm

1.30

1.20

1.10

1.00 + T T T ]
0 1 2 3 4

iteration

Figure 8: Design history

T 960

T 940

T 920

- 900

T 880

Econstraint 1

Oconstraint 2
- 860

. I
820

0 1 2 3 4

number of sample points violating constraints
objective function - volume [cm?3]

iteration

Figure 9: Objective function and constraints history

6 Conclusions
It is often the case that the design that performs satigificfor nominal values of its parameters is not

reliable. This means that the unavoidable imperfectiorgeoimetrical or material parameters as well as
loading and initial conditions may lead to an unwanted bethay
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The reliability improvement method that was proposed is thaper is based on stochastic simulations
with the samples generated according to the OLH designs. ast shown that OLH sampling is an
efficient method to assess the statistical moments of theiturs of random variables. The proposed
algorithm for improvement makes use of correlations betwthe design constraint functions and the
random system parameters. Thanks to the adopted samplimgidee moderate size samples are able
to produce accurate estimations of correlation coeffisieBince for a large number of random variables
and many sample points the OLH generation may take a long twee OLH generation algorithms
were tested. It was concluded that the CP algorithm is mdigesft for small and medium size Latin
hypercubes while the genetic algorithm is better suiteddigre OLH designs.

For computationally expensive problems, like e.g. crasdlysis, when only limited number of simu-
lations can be afforded and when the design sensitivities#her not available or very inaccurate the
presented method seems to be an acceptable solution. dbithel case when the response surface mod-
els of the phenomenon oversimplify the real responses aid tke together with the standard RBO
methods is likely to produce substantial errors. Howevemust be realized that the method is best
suited for problems where the probability of failure for thitial design is large and the main interest is
to find more reliable design rather than the optimal one irsttese of RBO.
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