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Abstract

This paper introduces Latin supercube sampling (LSS) for very
high dimensional simulations, such as arise in particle transport, fi-
nance and queuing. LSS is developed as a combination of two widely
used methods: Latin hypercube sampling (LHS), and Quasi-Monte
Carlo (QMC). In LSS, the input variables are grouped into subsets,
and a lower dimensional QMC method is used within each subset.
The QMC points are presented in random order within subsets. QMC
methods have been observed to lose effectiveness in high dimensional
problems. This paper shows that LSS can extend the benefits of QMC
to much higher dimensions, when one can make a good grouping of
input variables. Some suggestions for grouping variables are given for
the motivating examples. Even a poor grouping can still be expected
to do as well as LHS. The paper also extends LHS and LSS to infinite
dimensional problems. The paper includes a survey of QMC methods,
randomized versions of them (RQMC) and previous methods for ex-
tending QMC to higher dimensions. Furthermore it shows that LSS
applied with RQMC is more reliable than LSS with QMC.

1 Introduction

The fundamental problem we consider here is to compute the value of

I— /[o,w F(X)dX.

This problem can include, via change of variable, integration over nonrectan-
gular regions, integration with respect to non-uniform probability distribu-
tions, and reformulations designed to improve accuracy, such as importance



sampling or periodization. Some simulations described below can be cast in
this form with d = occ.

For small dimensions d and smooth integrands f, classical techniques
such as those of Davis and Rabinowitz [6] provide an excellent solution. For
moderate dimensions, iterated versions of the classical techniques may work
well. These are justified by Fubini’s theorem and are typically constructed
as tensor products of univariate or low dimensional rules.

A working definition of a “high dimensional” problem, is one in which
such iterated integration methods are computationally infeasible. This can
depend somewhat on f and on the computer at hand, but large changes in
computing power are required to make even small increases in the point at
which dimension becomes large. For high dimensional problems, simulation
methods such as Monte Carlo (MC) and equidistribution or Quasi-Monte
Carlo (QMC) are used.

Theory has it that QMC is more accurate than MC at least for enormous
simulations, and numerical experiments often find the advantage appears
at practical sample sizes. But, the advantages of QMC have often been
observed to diminish as d increases. See Morokoff and Caflisch [25, 26, 27]
for a discussion of this point.

For a large enough dimension d, it becomes difficult or impossible to
even construct a QMC point set, having meaningful equidistribution prop-
erties. A working definition of a “very high dimensional” problem, is one
for which QMC constructions either are not practically computable or are
not especially equidistributed for practical sample sizes.

The purpose of this article is to present LSS as a method, that in fa-
vorable cases restores the effectiveness of QMC for very high dimensional
problems, while performing at least as well as MC in the unfavorable cases.
Throughout this paper, d is the dimension of the original integration prob-
lem and s is the dimension of an integration rule, such as a QMC rule. The
emphasis is on what to do when d > s or even d > s.

Some examples of very high dimensional simulations are given next. This
section then concludes with an outline of the article.

1.1 Examples of very high dimensional problems

1.1.1 Transport Simulations

Particle transport simulations are used in the design of radiation shields
for nuclear reactors (see Spanier [44]). The trajectories of a large number
of particles are simulated as they transit from a source towards a target



possibly undergoing a sequence of collisions. Each collision may take 6 or
7 random numbers to describe changes in the particles’ positions, velocities
and energies and whether they are absorbed. To simulate & collisions thus
takes d = 6k or Tk. Since there is no a priori upper bound on k these
problems can be considered infinite dimensional, even though any given
particle only undergoes a finite number of collisions.

Light transport problems, arising in computer graphics, have a similar
flavor. One can follow a photon from a light source until it splats on the
imaging plane, possibly after a number of reflections. See Keller [21] and
Guibas and Veach [50].

Solving Laplace’s equation with a boundary constraint arises in the de-
sign of semiconductors [40]. One approach due to Kakutani [20] is to simu-
late Brownian paths from a point in the region until they reach the boundary.
The solution is the average of the boundary values reached by the paths.
The simulation proceeds in a series of steps each of which takes a particle to
the edge of a bounding box within the boundary region. There is no a priori
limit on the number of steps one particle might require, so again d = oo.
For more applications to microelectronics, see Kersch and Morokoff [22].

1.1.2 Financial valuation

The value of some financial derivatives depends on a whole time series of
random fluctuations, in a way that cannot be replaced by a closed form
expression. For example, collateralized mortgage obligations [4, 37, 38] de-
pend on the interest rate at 360 future time periods (for monthly payments
on 30 year mortgages) and on the fraction of mortgage holders prepaying in
each of those 360 time periods. Thus d = 360 if the prepayment levels are
modelled as a deterministic function of interest rates and otherwise d > 360.

Similarly, Asian options depend on the average value of a security over a
number of time points and some options involve multiple correlated securities
at a number of future time points. See Boyle, Broadie and Glasserman [2]
and Joy, Boyle and Tan [19] for examples and further references.

1.1.3 Ergodic simulations and transients

Some simulations are conducted by following only a single sample path for
a very long run. For such simulations to work, the problem must have an
ergodic property such that one long run simulation converges to the ensemble
average of many runs. The methods described here are not aimed at this
problem per se, but can be of use in studying transient phenomena.



For example, suppose that a queue starts off empty and we want to know
the average amount of time required to reach half of its capacity for the first
time. It may be better here to simulate a large number of initially empty
queues than to sample a single queue (and wait for the initial conditions to
recur). Once again d = oco. For a discussion of the initial transiet problem,
see Glynn [13].

1.2 Outline of this article
1.2.1 Background

Section 2 reviews MC and QMC integration methods and introduces nota-
tion for them. That section also describes randomized quasi-Monte Carlo
(RQMC) methods. These are hybrids of QMC and MC, with at least the
accuracy of the former, and having the data based error estimation methods
of the latter. Section 3 presents an ANOVA (analysis of variance) decompo-
sition of square integrable functions over [0, 1)? for d < co. This decomposi-
tion may be used to explain for which integration problems QMC might be
expected to improve on MC. Section 4 presents Latin hypercube sampling
for d < .

1.2.2 Survey

The two leading families of QMC methods are lattice methods and (¢, m, s)-
nets. Section 5 describes lattice sampling and RQMC versions of it. Sec-
tion 6 describes the (¢,m, s)-nets and the related (¢, s)-sequences and some
RQMC versions of them. Section 7 surveys some previous methods for ex-
tending (R)QMC to higher dimensions, and gives examples of how to apply
them in some of the motivating problems.

1.2.3 New results

Section 8 proposes a new simulation method in which different sets of in-
put variables are each handled by (R)QMC. The method is called Latin
supercube sampling (L.SS) because it randomizes the run order within sets
of input variables in the way that Latin hypercube sampling randomizes
stratified input variables, one at a time. Section 9 considers the accuracy
of LSS. Theorem 1 gives expressions for the bias and variance of LSS with
QMC points. Theorem 2 gives an expression for the variance of LSS using
RQMC points. This section also shows how to use replications to estimate
the accuracy of LSS, and explains why LSS with RQMC is more reliable



than LSS with QMC. Section 10 considers the case where d = co. Using
martingale truncations, an ANOVA decomposition is developed for square
integrable functions on [0,1)*°. This decomposition is then used to study
LHS and LSS for d = oco. Some conclusions are given in Section 11.

2 Monte Carlo, Quasi-Monte Carlo and hybrids

All of the methods we consider in this paper estimate the integral I by

=i =1y m

for carefully chosen points X; = (X},...,X%) € [0,1)9. That is, we do
not consider here the effects of weighting the observations unequally. Some
importance sampling and periodization techniques appear to weight the ob-
servations, but can be written as in (1) by subsuming the weight into f.

2.1 Monte Carlo

The simplest Monte Carlo method for estimating I takes n points X; inde-
pendently drawn from the uniform distribution on [0,1)%. In practice this
is almost always approximated by deterministic points taken from a pseu-
dorandom number generator, but we will analyze the pseudorandom points
as though they were genuinely random.

Under Monte Carlo sampling, and mild conditions on f, the estimator
I is a random variable with expectation I and variance o2/n where 02 =
J(f(X) — I)?dX. (Here and elsewhere, when no region of integration is
specified, the whole space [0,1)% is understood.) Thus the error in I is of
order n~1/2 in probability. Classical methods can achieve rates much better
than n~'/2, for small d and well behaved f, but the MC rate is remarkable

in that it holds for all dimensions with only weak conditions on f.

2.2 Quasi-Monte Carlo

The accuracy of MC is adversely affected by gaps and clusters that arise
by chance among the X;. Equidistribution, or Quasi-Monte Carlo methods
use deterministic lists of points Xq,..., X, that are constructed to avoid,
to the extent possible, gaps and clusters. For details on QMC methods see
the monograph by Niederreiter [29].



To quantify the uniformity of a list of points, one uses a distance between
the continuous uniform distribution on [0, 1)¢ and the discrete uniform dis-
tribution taking X; with probability 1/n for i = 1,...,n. The most widely
studied distance measure is the star discrepancy

d

. . 10 d
Dn:Dn(X17"'7X”): sup cj__ZH10<Xj<c]- (2)
0<ej <1 1j54 ==

which compares the continuous and discrete uniform distributions on hyper-
rectangles with one corner at the origin. Some other discrepancy measures
appear in [29] and Hickernell [16] has further generalized discrepancy.
Star discrepancy is related to integration accuracy by the Koksma-Hlawka
inequality X
= 1| < Dp(Xy,...,X)Vak(f) (3)

where Vg (f) is the total variation of f in the sense of Hardy and Krause.
See [29] for the definition of Vik, and [16] for analogues of the Koksma-
Hlawka inequality with other notions of discrepancy.

It is possible to construct an infinite sequence of points X, Xs,... along
which D} = O(n~'(logn)?). This proves that one can achieve an asymptotic
rate better than that of MC, at least for integrands with Vik(f) < co. The
error bound (logn)?/n, increases with n until n > exp(d), so clearly for
large d it takes impractically large samples before the asymptote is relevant.
Yet empirical studies suggest that QMC is more accurate than MC on some
real problems with practical sample sizes. Unfortunately, the superiority
of QMC over MC appears to take greater n to set in when d is large. See
Morokoff and Caflisch [26, 27], Sarkar and Prasad [41] and van Rensburg
and Torrie [49] on these issues.

2.3 Randomized quasi-Monte Carlo

A serious drawback with QMC methods is that there is no practical way to
estimate the size of I — I from the function evaluations f(X1),..., f(Xp).
Estimating Vhyk from data appears to be extremely difficult, and in any
event, the inequality (3) can be quite conservative.

By comparison, in the basic MC method above, the estimate

1

n—1
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has expected value 0% and the central limit theorem allows one to construct
approximate confidence intervals for I. For more complicated MC methods,
one can replicate the whole procedure independently a number of times.

Hybrid methods have been developed to combine the best of MC and
QMC. The history of this idea is outlined in [34]. The general approach is
to introduce some randomness into a QMC procedure, while retaining the
equidistribution properties of the QMC method. If the resulting estimate I
is unbiased, then by using several independently randomized estimates one
can use standard statistical methods to combine the estimates and estimate
the variance of the result.

3 Functional ANOVAs

This section describes some ways to decompose the integrand f into a sum
of simpler functions. We begin with notation. The set A = {1,2,...,d}
denotes the coordinate axes of [0,1)?. We assume here that d < oo, treating
the infinite dimensional case in Section 10. The letter v denotes a subset of
A, |u] is the cardinality of u and —wu is the complement of u with respect to A.
We use these subsets as superscripts: [0,1)" denotes the space of values for
those components X7 of X, with j € u. Similarly X“ denotes the coordinate
projection of a point X onto [0,1)" and, in integrals, dX" = [],¢,, dXJ. The
case u = () can require special attention, either by specifying a convention,
or by restricting some operations to |u| > 0.

Under the mild conditions that [ f(X)?dX < oo and f is measurable,
we can write f(X) as a sum of 2¢ orthogonal functions, one for each subset
of the input axes

X)) = Y ), (4)

ug{1a277d}

Here f,, only depends on the components of X in X", though for convenience
we may write it as f,(X), or as f,(X") for v D u, functions that are constant
over values of X7 with j € v — u.

The ANOVA decomposition is orthogonal in that [ f,(X)f,(X)dX =0
whenever u # v. The functions f, are defined recursively by

ey =[ - (12- T ez (5)

vCu

where the sum is over strict subsets v # u. If j € u, then fol fu(X)dXT =0
at any value of X U},



Examples make equation (5) clearer. First of all fy = [ f(Z)dZ = I.
Then f{j}(Xj) = J2.2i-xi (J(Z) = I)Iiy; dZ* and so on. The function
f(j3(X7), called the “main effect of X7” can be thought of as the average
effect of the j’th variable on the response function f(X). The function
f{jyk}(X{j’k}) describes the joint effect, or interaction, of variables X7 and
X% on the response, beyond their individual contributions [y and fiey-
More generally f, is the |u|-factor interaction among variables X*“.

The term ANOVA is an acronym for “analysis of variance”. The decom-
position is completely analogous to the one used in experimental statistics,
for functions over Cartesian products of finite sets. The variance being an-
alyzed is 02 = [(f(X) — I)?dX and one easily finds that

0222022 ZO’Z
u

|u|>0

where o2 is the variance of f,. That is 02 = [ fu(X*)2dX" if u # (), and
0% = 0. This ANOVA decomposition for functions is due to Hoeffding.
Takemura [46] gives a history. Notable contributions were made by Efron
and Stein [8], Stein [45] and Wahba [51]. The notation used here is based
on Owen [32]. Hickernell [16] has proposed a family of generalizations.

The best (in mean square) constant approximation to f is I = fp. Stein
[45] notes that the best additive approximation to f is

d
faaa(X) =T+ fr(X7). (6)

i=1

Furthermore the best approximation to f using sums of functions depending
on m or fewer components is Z\u\<m fu(X*), and the best approximation
to f using variables contained in the set u is }_, ~, fy,- We note for later use
that -

[ F08X" = 5 g0, (7)

uC—v

For the integration rule given by (1) we have I = Y, I,, where

Easily f@ —Tandsol—1= 2 lul>0 1.



3.1 Effective dimension

Caflisch, Morokoff and Owen [4] define two notions of the effective dimension
of an integrand, using the ANOVA decomposition.

Definition 1 The effective dimension of f, in the superposition sense, is
the smallest integer ds such that 3, < 02 >0.9902.

A method with good uniformity in every dg dimensional projection of
X1,..., X, can be expected to work well with functions of effective dimen-
sion dg (or smaller), in the superposition sense.

Definition 2 The effective dimension of f, in the truncation sense, is the
smallest integer dp such that 3,419, a3 02 >0.9902.

A method with good uniformity in the first dr input variables of X1, ..., X,
can be expected to work well with functions of effective dimension dy (or
smaller), in the truncation sense.

To illustrate the difference, a linear function has dg = 1 but can have
dr = d. Clearly the cutoff threshold 0.99 is arbitrary and could be replaced
by another.

4 Latin hypercube sampling

For one dimensional integration, the midpoint rule uses integration points
given by
i—0.5 .
Ai: s z:l,...,n. (8)

n

Here and below we follow the convention that A; denote the points of an
integration rule used in constructing another integration rule. The points
X; denote the integration rule that is used to construct I.
If we view the midpoint rule as a one dimensional quasi-Monte Carlo
sampling scheme, the following stratified sampling method
A=V, 9)

n

where the V; are independent U(0, 1] random variables, can be thought of
as an RQMC method. In (9) each interval [(k —1)/n,k/n) for k=1,...,n
has exactly one uniformly randomly located point in it.



A variant of Latin hypercube sampling can be constructed from d mid-
point rules, by randomizing their run order

m;(i) — 0.5
e

(10)

X = Ay i) =
The 7; are independent uniform random permutations of the integers 1,..., n.
Each of the n! possible permutations has an equal chance of being used.

The original definition of Latin hypercube sampling of McKay, Conover
and Beckman [24], was based on randomizing the run order of d indepen-
dently stratified samples A7

(A I .
i :m(z) (i) :ﬂj(Z)—UiJI (1)
t ;(4) n n
Here Uf, s ,UJ are Vlj, ..., VJ in random order, and so the nd random

variables U/ are also independent with the U (0, 1] distribution. The centered
version in equation (10) was originally due to Patterson [39] in the setting of
agricultural experiments, while the version in equation (11) was motivated
by computer experiments.

In Latin hypercube sampling each coordinate projection of the X; is
nearly uniform. It should therefore be no surprise that when f is nearly a
sum of univariate functions of the coordinates of X, that Latin hypercube
sampling does well.

Under Latin hypercube sampling (11), I is a random variable with

E(I) =1 and

Vs = o [ (00 = fuaa (X)X +0 ()

n

1

- E( 2_20%}) —|—o<%> (12)

where f,4q is the additive function closest to f in mean square. See Stein
[45] for details.

If the integrand is not nearly a sum of univariate functions, then Latin
hypercube sampling cannot be expected to improve upon Monte Carlo. But
it never does much worse than Monte Carlo either. For any f with [ f2dX <
oo, we have

Vins(D) < % Vate (D). (13)

Latin hypercube sampling with n > 1 observations is never worse than

10



Monte Carlo sampling with n — 1 observations. See Owen [35] for details.

5 Lattice Methods and Randomizations

The definitive reference on lattice methods is the book by Sloan and Joe [42].
The simplest form of lattice method is the method of good lattice points,
or the number theoretic method. Another good reference for these points is
Hua and Wang [17] and Fang and Wang [9] discuss applications in statistics.

For the method of good lattice points, in dimension s,

Xﬁ:{%}, i=1,....n, j=1,...,s (14)
where {z} = z — | 2] is the fractional part of z (or “z modulo 1”) and g; are
integers. The points X; belong to a lattice. A judicious choice for n and the
gj can produce a sequence of points with good equidistribution properties
in the unit cube, hence the term “good” in “good lattice points”.

Good lattice points and their generalizations are extremely well suited
to integrating periodic functions with rapidly decaying Fourier coefficients.
Combined with techniques for replacing non-periodic integrands by periodic
ones having the same integral they are one of the leading families of Quasi-
Monte Carlo integration methods.

5.1 Cranley-Patterson Rotations

Cranley and Patterson [5] randomize the good lattice points as follows. Let
Ag be the good lattice points for 1 < ¢ < nand 1 < 57 < s. Let U’ be
independent U0, 1) random variables. Then let

X! = {Al + U} (15)

If one maps the unit interval [0, 1) onto the unit circle by identifying the
endpoints, the result of the Cranley-Patterson randomization is to rotate
the n points A7, ..., AJ to the right by a distance of U/, with wrap-around.
Taking r replicates of these n points and letting r — oo produces errors
at the Monte Carlo error rate O((nr)'/2) but perhaps with a much more
favorable constant than has simple Monte Carlo. Joe [18] uses the same
randomization on more general lattice rules.
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5.2 Orthogonal rotations

The Cranley-Patterson rotations are natural for periodic functions on the
unit cube. However, sometimes points Ag are transformed from indepen-
dent uniform random variables to independent N(0,1) random variables
Z! = &7 1(A]), where ® is the normal distribution function, prior to use.
Applying Cranley-Patterson rotations to the A; does not lead to a natural
randomization of the Z;. One might instead produce a random orthogo-
nal matrix @ (see Devroye [7]) and apply it to the rows of A to produce
row vectors Z; = A;(). This technique gets expensive if s is large because
generating @Q takes O(s3) work.

6 Nets and Randomizations

We begin with more notation. We describe nets as sequences of points in
the cube [0,1)%, where in most applications s = d. When s > d one simply
selects d of the dimensions to use. When s < d one can apply the compromise
methods of Sections 7 and 8.

The integer b > 2 is used throughout as a base for representing points in
[0,1). Thus X/ =32, mijkb’k where z;;, are integers with 0 < x;;, < b.

6.1 (t,m,s)-nets, (¢, s)-sequences and (A, t,m, s)-nets.

Here we describe equidistribution methods known as (¢, m, s)-nets and (¢, s)-
sequences. These have been developed by Sobol’, Faure, and Niederre-
iter and a comprehensive discussion of them appears in the monograph by
Niederreiter [29] on which this subsection is based. Some graphical displays
of these input points appear in [23]. We also make two minor variations on
Niederreiter’s terminology in Definitions 3 and 4.

An elementary interval of [0,1)® in base b is defined as a set of the form

Sorti ti+1
B:yl:[l{bT]f" ]bkj ) (16)

for nonnegative integers k; and ¢; < b¥i. We use Tezuka’s [47] term “b-ary
box” for “elementary interval in base b”.

The b-ary box B in (16) is a hyperrectangle of volume b~ where m =
ijl k;. In addition to the volume of a b-ary box, the “effective dimension”
of the b-ary box is a useful quantity.
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Definition 3 The effective dimension of the b-ary box B defined in (16) is
S
o= 5(B) = Z 1]€j>0'
7=1

For a point X to belong to B requires nontrivial constraints on exactly
§(B) of the coordinates X7. The effective dimension of the b-ary box is the
same as the effective dimension of the function equal to one in that b-ary
box and zero outside of it (in the superposition sense, possibly requiring a
threshold higher than 0.99). The unit cube [0,1)° is the unique b-ary box of
effective dimension 0. No b-ary box of effective dimension ¢ can have volume
larger than 9.

Ideally each b-ary box of volume V should have nV points of the in-
tegration rule. Let ¢ > 0 and m > 0 be integers. A finite sequence
X1,...,Xp € [0,1)* with n = b™ is a (t,m, s)-net in base b if every b-
ary box of volume b*~™ contains exactly b' points of the sequence. The
net property starts to become relevant at n = b**t! where it constrains the
equidistribution over some b-ary boxes of effective dimension 1. It takes at
least n = b'** points before the net property applies to any b-ary boxes of
effective dimension s.

The infinite sequence X1, Xo,... € [0,1)% is a (¢, s)-sequence in base b if
for all m > 0 and all k¥ > 0 the finite sequence Xgpmy1,..., Xgprypm 18 a
(t,m, s)-net in base b. Niederreiter [29] discusses existence and construction
of (t,m, s)-nets and (¢, s)-sequences.

Smaller values of ¢ imply better equidistribution properties for both
(t,m, s)-nets and (¢, s)-sequences. An advantage of using nets taken as the
first n = b™ points of a (¢, s)-sequences is that one can later increase n
through a sequence of values n = Ab™, 1 < A < b, and find that all of the
points used in Iyym are also used in IA()\+1)bm. As n increases through this
sequence of values, any b-ary box of volume V eventually contains nV of the
points, and once such a b-ary box is balanced this way, it remains balanced
as n increases.

The initial Ab™ points of a (¢, s)-sequence are well equidistributed but
are not a (¢, m, s)-net, unless A is a power of b. Owen [35] introduces the
following definition to describe such point sets.

Definition 4 Let m.t, A be integers withm > 0,0 <t <m, and 1 < A < b.
A sequence of Ab™ points in [0,1)° is called a (X, t,m,s)-net in base b if
every b-ary box of volume b*~™ contains \b' points of the sequence and no
b-ary boz of volume b*""~1 contains more than b* points of the sequence.

13



Numerical integration by averaging over the points of a (¢, m, s)-net has
an error that is O(n~'(logn)*~ 1), for functions of bounded variation in the
sense of Hardy and Krause. See Niederreiter [29] for this result and some re-
lated ones. The error attained along a fixed (¢, s)-sequence is O(n ! (logn)?).

6.2 Base b scrambling of the unit cube

The upper bound from the Koksma-Hlawka inequality is very hard to esti-
mate, and is usually quite conservative, since it applies to the worst possible
integrand f for the given points Xi,...,X,. For this reason Owen [34]
suggested randomizing the points of a (¢,m, s)-net or (¢, s)-sequence. By
independently repeating the randomization and noting how the resulting
answers differ, it is possible to judge statistically the accuracy of an answer.

For this to work it is necessary that the randomization preserve the
(t,m, s)-net or (t,s)-sequence structure. Below is a geometric description
of the scrambling method. For an algebraic description see [34, 35]. For a
discussion of computational issues see [34].

Begin by partitioning the unit cube [0,1)* along the X' axis into b par-
allel b-ary boxes of the form [a/b, (a +1)/b) x [0,1)* ! for a = 0,...,b— 1.
Then randomly shuffle those b-ary boxes replacing them in one of the b!
possible orders, each such order having probability 1/b!. Next take each
such b-ary box in turn, partition it into b congruent b-ary boxes of volume
b=2 along the X' axis, and randomly shuffle those boxes. Then repeat this
process on b? b-ary boxes of volume b3, b b-ary boxes of volume b~* and
so, ad infinitum. In practice this can stop when the b-ary boxes are narrow
compared to machine precision. The full scrambling involves applying the
above operations along the other s — 1 axes X?,...,X* as well. All of the
many permutations used are to be statistically independent, and in practice
they are generated through pseudo-random numbers.

If Aor A;is apoint in [0,1)%, let X or X; be that point’s location after
the scrambling. A sequence (X;) thereby inherits certain equidistribution
properties of a sequence (A;) and the individual points in it are uniformly
distributed on [0,1)°. Owen [34, 35] proves the following two propositions.

Proposition 1 If (4;) is a (A, t,m, s)-net in base b then (X;) is a (A, t,m, s)-
net in base b with probability 1.

Proposition 2 Let A be a point in [0,1)° and let X be the scrambled version
of A as described above. Then X has the uniform distribution on [0,1)%.
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A consequence of Proposition 2 is that I is a random variable with ex-
pectation I. This holds even if the underlying A; are not points of a net.
Because of Proposition 1, any theorems describing the accuracy of I based
on a (A, t,m, s)-net with points A; also holds for the scrambled points Xj.

The randomization in scrambled nets can lead to improved accuracy due
to some error cancellation. This appeared to be the case in the simulated
examples in [34] and in [36] it is shown that

Vener () = O(n~3(logn)*™") (17)

under mild smoothness conditions on f. Thus the typical error is of order
n’3/2(log n)(S’l)/Q, an improvement on the rate attained by unrandomized
nets. Hickernell [15] shows that scrambled nets have an £2-star discrepancy
that attains the best possible rate.

The variance in scrambled net simulation satisfies

Vener(I) = > Vener(Ly). (18)
|u|>0

The results in [36] suggest that VeneT(I,) may become appreciably smaller
than VMc(fu) at around n = b1l Moreover VpNET(fu) < 2.7183VMC(fu)
for any scrambled net with ¢ = 0 in any dimension s > 1 with any integrand
f, so least favorable integrands can’t make randomized nets much worse
than simple Monte Carlo.

6.3 Cranley-Patterson Randomization

It is also possible to apply the Cranley-Patterson randomization of Section
5.1 to points from (#,m,s)-nets and (¢, s)-sequences. See Tuffin [48] for
details. This randomization does not preserve equidistribution over b-ary
boxes, but it does produce unbiased estimates I whose variance can be
estimated by replication.

6.4 Nets in very high dimensions

There are limitations to the applicability of nets in very high dimensions.
Consider d = 50. For a (0, s)-sequence to be usable requires s > 50, which in
turn requires b > 50. Niederreiter [28] gives constructions of (0, s)-sequences
for prime powers b > s. The natural choice for d = 50, is the smallest one,
b = 53. Because 53 is a prime, the resulting sequence is a Faure sequence
[10]. Natural sample sizes with such a base are powers of 53. The superior
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asymptotic rate of convergence of these may be expected to set in after
n = 53°0 = 1.64 x 1086, Unless n > 532 = 2809 the net property does not
gaurantee balance for any b-ary box of effective dimension larger than one.

Another approach is to use a (t, s)-sequence with smaller b, and in the
tradeoff take a larger £. The most widely studied version of this strategy
takes b = 2, the smallest possible base. For b = 2 and s = 50, the presently
best possible value of ¢ is 77, by a construction of Niederreiter and Xing
[30]. The superior asymptotic rate of convergence with this sequence may
be expected to set in after n = bts = 227 = 1.70 x 1038, This is the
smallest value of n for which we can partition the unit cube into b-ary boxes
of effective dimension 50 and be sure that each such box has at least one
point in it.

Widely used software for generating nets has a limit on the dimension.
For instance, the code of Bratley, Fox and Niederreiter [3] has by default a
limit of d = 12.

The asymptotic advantage of nets, scrambled or otherwise, in dimension
50 appears to take an impractically large number of observations to set in,
and the matter is worse for d = 1000 or d = co. Yet as described in Section
11 and seen in [4, 37, 38] it is possible for high dimensional functions to be
integrated accurately. This may be because the functions involved have a
low effective dimension.

7 Padding Techniques

The full input sequence for the simulation is a n by d matrix Xg of numbers
between 0 and 1. An (R)QMC method may be used for s of the columns of
this matrix. Some simple techniques below may be used to “pad out” the
maftrix.

7.1 Padding by Monte Carlo

A natural solution is to pad out the input matrix with independent U|0, 1)
random variables. Suppose for example, that A; are the points of an (R)QMC
method in s dimensions. Then one might take Xg = A{ for 1 <7 <sand
XZJ = Ul-j for j > s where Uij are independent U[0, 1) random variables, inde-
pendent of the randomization, if any, used in constructing A. This approach
is taken by Spanier [44] and Okten [31] studies the resulting discrepancy.
The success of this method will depend in part on making a good choice
of which s variables to use (R)QMC on. One might try to identify the most
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important subset u of s variables, perhaps by their ANOVA contribution
S wcu 02. These are not necessarily the first s variables in any natural order,
and it may take subject matter knowledge, guesswork and experimentation
to make a good choice. A more realistic goal may be to pick those variables
with a large value of 3«4+ vcu o2, where d* is the largest dimensionality
in which good equidistribution may be expected of the projected (R)QMC
points.

7.2 Padding by Latin hypercube sampling

It is possible to pad out (R)QMC in a way that is better than simple Monte
Carlo. For any choice n, one can pad with a Latin hypercube sample of n
rows and d—s columns. This is even true if d > n. In simulations with large
enough d (d can be infinite) it may take a “sampling without replacement”
trick to generate only those rows of the column X7 that the simulation really
uses. Owen [33] gives an example in which a randomized orthogonal array
sample is padded out with a Latin hypercube sample.

Padding with Latin hypercube samples instead of independent samples
improves the accuracy of integration for the main effects in the d—s variables
not sampled by a net. In principle, this may make one want to change which
subset u of s variables to apply (R)QMC to. Consider a variable that has an
enormous but purely additive effect on f. That variable is handled poorly
by Monte Carlo but Latin hypercube sampling handles it as well as most
(R)QMC methods do. If one is padding by MC then this variable should be
among the (R)QMC variables, but if one is padding by LHS then it should
not be among the (R)QMC variables. A natural choice would be the subset
u for which 32 o1y wcu o2 or perhaps 2o1<|o|<d*wCu o2 is maximized.

A disadvantage of Latin hypercube padding is that one cannot add more
simulation points to a Latin hypercube sample of size n and still have a Latin
hypercube sample. One remedy, used by Caflisch, Morokoff and Owen [4] is
to use r independent Latin hypercube samples of n’ rows and d — s columns
where n = rn’. Using blocks of Latin hypercube samples allows one to select
sample sizes that are multiples of the block size n'. It makes sense to choose
a block size which is a divisor of the natural sample sizes for the (R)QMC
method being used. For nets, a power of b seems reasonable.

7.3 Padding with (R)QMC

For simplicity suppose that d = ks. It would clearly not work to repeat an
s dimensional (R)QMC method & times taking X; = (4;, A;, ..., A;), where
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Aj; are the s dimensional points of an (R)QMC method. For example, the
points X/ and Xlk where 7 = k£ mod s would then lie on a diagonal in the
XU} plane.

Similarly, using k independent randomizations of a single underlying
QMC point set cannot be expected to work well in practice either. For
randomized nets, suppose X7 and X* are both randomizations of A taken
from a (t,m,s)-net in base b with m > t. There are n/b points with 0 <
Al < 1/b. ¥ 0 < Al < 1/b, then 7;/b < X! < (1; + 1)/b and 7/b <
XF < (74 + 1)/b for some randomly chosen 0 < 7;, 7, < b. This implies
that a box [7;/b, (1; + 1)/b) x [1x/b, (7. + 1) /b) of volume b2 has a fraction
b= of the points in the X1} plane. The “diagonal” referred to in the
previous paragraph is rearranged, but not enough to produce a uniform
distribution in the X{#} plane. Similarly, the randomization of Cranley-
Patterson (Section 5.1) produces points ({A} + U7}, {A} + U*}) so that the
diagonal line is shifted to a new random line with “wraparound”.

Another tempting trick that fails is to apply various nets in relatively
prime bases. One might consider using Faure sequences, (0, p)-sequences in
base p for primes p = 2, 3,5, ... until the sum of primes used is greater than
or equal to d. This does with Faure sequences what the Halton sequence
does with generalized van Der Corput sequences. One naively expects, for
example, that given an input X7 generated in base 2 and an input X* gener-
ated in base 3 that all boxes of the form [7;/2, (1;4+1)/2) x [1},/3, (7, +1)/3)
for integers 7; € {0, 1}, 7, € {0, 1,2} would each have one sixth of the points
Xi{]’k}, when n is a multiple of 6. They don’t. Faure [11] (Section 6) sug-
gests something similar but reports in a personal communication that he
thinks it’s not a good idea. As explained by Niederreiter (personal commu-
nication), there is no reason to expect this method to work, because unlike
the Halton setting, there is no analogue of the Chinese remainder theorem
to apply here.

7.4 Reducing Effective Dimension

When one plans to use (R)QMC points on some inputs and padding for
the others, one may be able to do more than simply choose the important
variables for QMC. In some cases one can rewrite the integrand in a way that
puts a greater amount of the variation into a small number of inputs. For
example, when the inputs are used to construct Brownian paths a Brownian
bridge encoding as in [4] makes the first few input variables more important
than the regular encoding.

Acworth, Broadie and Glasserman [1] use an encoding based on princi-
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pal components for Brownian motion. The first 5 principal components of
Brownian motion explain about 96% of the variation in the Brownian path.
Thus it may pay to use an (R)QMC method on these variables but not on
the others.

Fox [12] describes some additional settings where hybrids may be ap-
plied. For discrete event simulation, with a Poisson arrival process, Fox
suggests first drawing the number of arrivals, then the median arrival time,
then a sequence of intermediate times. Fox recommends using QMC on the
earlier variables and MC for the remainder. Another possibility he consid-
ers is recursively splitting the time interval and using binomial sampling to
determine how many observations to put in each subinterval.

Yet another recommendation is for simulations requiring finite indepen-
dent samples Z1, ..., Zy from some distribution. There Fox suggests using
QMC to generate some or all of the order statistics and then MC to gener-
ate the remaining order statistics, if any, as well as the random allocation
of order statistics to sample values.

8 Latin Supercube Sampling

8.1 Introduction

In Latin supercube sampling (LSS) one takes a list of QMC point sets or
RQMC point sets and randomizes their run order the same way that Latin
hypercube sampling randomizes the run order of the midpoint and stratified
techniques.

Let A = UF_ | A, with A, N A = 0 for r # 7' be a partition of the
simulation variables into k& nonempty subsets. Letting s, = |.A,| we have
sy > 1and Y2F 5, = d. Let X7 € [0,1)* fori = 1,...,n and r =
1,....k. In practice these X" will ordinarily be points of an s, dimensional
(R)QMC method. Forr = 1,... & let m(i) be independent uniform random
permutations of the integers 1,...,n. Then a Latin supercube sample (LSS)
is formed by taking

_ 1 2 k
Xi = (Xr, (iy> Xy X)) - (19)

Equation (19) assumes that the variables in A, come before those in
A, whenever r < r’. This is not at all necessary. The variables can be
interleaved in any order, taking XZ-AT = X;r(i). The ordering assumption is
made solely to simplify notation.

In words, the first s; columns in the LSS are obtained by randomly
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permuting the run order of the QMC points X!, ..., X!, the next sy columns
come from an independent permutation of the run order of X? and so on.

The best results may be expected if one can arrange that variables that
interact most strongly are grouped into a subset A,. In the extreme case,
suppose that 02 = 0 unless u C A, for some 7. For simplicity suppose also
that each s, = s. In this case the error in LSS is the sum of £ (R)QMC
errors, one from each subset of axes. One then has an integration rule for a d
dimensional function, that converges at a rate usually seen in s dimensional
problems. More realistically, one might be able to arrange for most of the
variance in the function f to take place within subsets A, of axes. Then the
residual

k
FO) 1= > fulX)

r=1 0<u|
uCAp

is small, and Section 9 shows that this residual contributes to the integration
error at essentially the Monte Carlo rate.

How could LSS randomization of QMC work when padding with multiple
RQMC randomizations, as in Section 7.3 does not work? Consider again
input variables X7 and X* which are both randomizations of the same QMC
column A'. Suppose that j € A; and k € A,. With RQMC randomization
alone, XZJ and Xlk are both images of the same point A}. By randomizing run
order, LSS breaks the link between XZJ = A}rl(

m1(7) is independent of o (7).

;) and Xk = A}Q(i), because

8.2 Partitions

The best way to partition axes is problem specific and may take skill to
guess. In addition to the variation considerations above, software engineer-
ing complications arise. It may be much more convenient to group together
variables used within a software module than to group together variables
that span several modules.

For example, in particle transport simulations, it may be best for the
variables that determine the r’th collision to be drawn from the same ran-
domization of the (R)QMC points. Or, it might be better to use one
(R)QMC sequence for the change in 2 component direction for s consec-
utive collisions, another for the change in y component direction and so
forth. Which is better depends on which input variables “interact most”
and this can be expected to depend on what response is being measured.

In a financial simulation with & Brownian paths, it may make sense
to select 5 principal components of each path, apply an (R)QMC method
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to each of them with LSS and then pad out the other variables by LHS.
Alternatively, it may be better to group the k first principal components
together then the k second components and so on.

In a discrete event simulation each source of arrivals could receive its
own set of (R)QMC variables. Similarly the variables describing service
times could be bundled within one or more (R)QMC sets.

9 LSS Accuracy

9.1 Finite k, QMC

We begin with Latin supercube sampling of a finite number of finite sets
of variables. Let A" € [0,1)°", where 1 < s, < oo for r = 1,...,k < 0.
Suppose that the points X" for i = 1,...,n are a nonrandom s, dimensional
integration scheme and that d = Zle sr. The motivating case is where one
has an s, dimensional QMC method for each set of points X .

For independent random permutations 7, of 1 through n, let

_ 1 2 k
X; = (Xﬂ—l(i)a XﬂQ(i)’ e 7ka(l))

define an integration point in [0,1)*. We are interested in the error I-1
where I =n 'Y | f(X;) as always.
The integration error may be decomposed as

I—-T=(I-1Ig)+ g1 (20)
where

1
_k

HM:

n n
Z Z lela‘)(zia' aXz]Z) (21)

is the average of f over a perhaps very large grid containing all n* integration
points that could possibly be sampled by LSS. Define

Ué:ik‘z ZZ (f(X2117X2227' '7Xii)_IG)2 (22)
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Lemma 1 Under LSS with deterministic QMC point sets,
E(i - Ig) =0, (23)
and forn >1

PO 1

m— <Ué - éaéw)) (24)
V(I-1Ig) % (1 - ﬁ) <ag — éaé(r)) (25)

Proof: Consider the function h defined on [0, 1)* through

v

h(z1,. .., 2k) = f(X11+|_z1nJ’ M) Xlk+|_zknj)7

where as usual |z denotes the smallest integer less than or equal to z.
Now for any permutations 7q,..., 7 of 1,...,n the Latin hypercube sample
with Zij = (m;(i) — Uij)/n, the centered version of Latin hypercube sampling
with Zij = (mj(i) — 1/2)/n, and the Latin supercube sample with X; =
(‘X;l(i)’ e ka(i)) all yield the same function values Y; = f(X;) = h(Z;).

That randomly centered Latin hypercube sampling of A is unbiased es-
tablishes (23). The other two results follow from equation (3.2) of [33] which
treats the variance of centered Latin hypercube samples, as a special case
of randomized orthogonal arrays. The quantity a?; is the variance of h and
Ué(r) is the discrete version U%r} forh. nm

The performance of LSS sampling depends on the quantities I, a?; and

oé(r), which involve approximate integrals of f and related quantities, based
on the QMC point sets &". Let

En=6E,(f)= sup
Xex—A"

1 n
Z)dZ" — = Xt xk
G W] )

denote the worst error obtained by the integration rule A7,..., &) in inte-
grating f over X" with the other components of X held fixed. If the QMC
point sets are really superior to MC, then we should have & = o(n’l/Q).

It is well known that the integration error in a product of one dimensional
rules is essentially the sum of the one dimensional integration rule errors.
See Davis and Rabinowitz [6], Chapter 5.6, who cite Haber [14]. Here we

present a version for I, a product of multidimensional rules.
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Proposition 3 |Ig — 1| < YF_, &

Proof: By definition of £,
Ig < Ly 3 XL i aRyaxt |+ gf
o< (X [ e ) 1 el

1 & B
B _/[0 1)4r (nkl Z Z f(Xilla"',Xii},Xk)dX’“> +57’f_

Making k£ — 1 more comparisons between integrals with respect to X" and
integration rules & gives I < I + Z,’le Er. A similar argument gives
Ig>T-YF & n

Theorem 1 In Latin supercube sampling, if EX(f) = o(n=1/?), then
Erss(I) =T +o(n '/?) (26)

If also EX(fufs) = o(n=?) for all u,v C A, then

2 :l 2 . 2 ~1/2
Viss (D) n(a > Y oito(n )) (27)

r=1uCA,

Proof: Equation (26) follows from equation (20), Proposition 3 and Lemma
1. If also £ (fufs) = o(n~/2) for all u,v C A, then £!(f?) = o(n~'/?) and

SO

0% = o+ o(n"1?).

Similarly, assuming each &£ (f,f,) = o(n~'/?), and making use of equation
(7) with v = — A4, we find

n 2
Z(/ f(Xla"'aXia"'an)dXArIG> +0(n71/2)
[0,1)—Ar "

=1

IS (Y @) s

ir=1 " 0<|ul,uCA,

= Y oo+ o(n=1?).

U??(T) -

Substituting into the variance results of Lemma 1 establishes equation (27). =
Comparing LSS through (27) with LHS through (37) we see that both
methods remove all components o2 with |u| = 1 from the variance of I. The
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latter method also removes those higher order components corresponding to
u C A,.

As for the case of padding we can obtain a more realistic finite sample
approximation

VLSS(IA)£%<02—i > o). (28)

r=1 u|<d* uC A,

Here d* is the largest dimension in which one can expect the superiority of
QMC to have set in. The results in [36] suggest that d* could be as large as
m — t for a (t,m, s)-net in base b.

9.2 Finite k&, RQMC

Suppose that the RQMC points X" are used instead of QMC points. We
assume that as a result of their randomization, RQMC points satisfy X ~
U[0,1)%. This implies that X; ~ U[0,1)?. We also assume that the random-
ization preserves (or enhances) the accuracy of the underlying points. This
is easiest to establish when the randomization applied preserves the equidis-

tribution properties of the QMC method used. Thus £”(f) = o(n~'/?).

Theorem 2 In Latin supercube sampling, with RQMC point sets, if each
X; ~ U[0,1)¢, then
Errss(I) = 1. (29)

If also E7(f) = o(n~'?) and E(fufs) = o(n~'?) for all u,v C A, then

Varss() = %(0’2 — Ek: > ol +o (n1/2)> +o(n™h). (30)

r=1uCA,

Proof: Equation (29) follows because each X; ~ U[0,1)%. There are
two sources of randomization in RLSS, the RQMC randomization of the
underlying QMC points, and the LSS randomizations of their run orders.
Let Q denote all the random variables used in construction of the RQMC
points &". Given Q, we may apply conclusions of Theorem 1,

Viwss(I) Erquic (VLss(f \ Q)) + Vrqumc (ELss(f | Q))

1 K 3
ERQMC (E <02 _ Z Z 0121 4+ o0 (n1/2)>) =+ VRQMc(Ig)

r=1uCA,
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- %(gQEk: > 02+0(n1/2)> +o(n!). =

r=1uCA,

The asymptotic variance formula in Theorems 1 and 2 are essentially the
same. In Theorem 1 there is an asymptotically negligible bias whereas in
Theorem 2 there is no bias, though randomness in I; may add an (asymp-
totically negligible) amount to the variance.

9.3 RQMC versus QMC in LSS

In LSS with QMC points the difference I — I; makes an asymptotically
negligible contribution to bias, whereas with RQMC points the effect of
I—1Igis an asymptotically negligible increase in variance. This section
explains why RQMUC is preferred in practice.

While I — I is asymptotically negligible in LSS, a given value of n may
not be large enough that |I — I| < |I — Ig|. In this case the QMC version
of LSS may be misleading, in a way that the RQMC version is not.

The accuracy of LSS can be estimated using multiple independent es-
timates fl, e ,fr of I. Standard statistical methods may then be used to
estimate the variance in equation (27) or (30), and estimate the variance of
the pooled estimate I* = 1/r >} _; I, by

1 e
mz(fh—f )2. (31)

h=1

In the case of QMC, the value of I¢; — I is constant in each replicate and
E(I* —I) = E(I, — I) = I — I. Increasing the number r of replicates will
not decrease this source of error. Furthermore the variance estimate (31)
will not reflect the error I; — I, and hence will be misleadingly small.

By contrast, in the case of RQMC, each independent replication of the
LSS permutations can be done with independently generated QMC points.
Then I — I has mean zero and varies independently from replicate to repli-
cate. The variance contribution of fG — I thus decreases with r. Furthermore
the fluctuations in I — I are captured in (31).

In some cases we might be interested in comparing the magnitude of
= fG with that of fG — I. With the RQMC version of LSS both errors
contribute to variance. Standard statistical experimental designs can be
used to compare these variance components. One can vary the RQMC
points 71 times and for each of them vary the LSS randomization ry times.
Then an analysis of the ryry replicates would allow us to infer whether n is
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large enough that [I — I < |1 — I¢|.

10 Infinite Dimensional versions

10.1 Issues when d = oc

The infinite dimensional case needs to be treated with some extra care. For
example, in finite dimensional Latin hypercube sampling, one may proceed
by showing that

Veass(1) = V(7 (X0)) + "= Covias (£ (X1), [ (Xa),

Then Covius(F(X1), f(X2)) = B((F(X1) — DEius(F(Xs) — 11X1)), and
given X the location of X5 is uniformly distributed over a set of volume
(1 —1/n)?. But if d = oo this set has volume zero, calling into question
averages over it.

An ANOVA on infinitely many dimensions also requires some care, be-
cause there are uncountably many subsets of {1,2,...} among which to
partition the variance. Also if |u| = oo then the definition of f, in equation
(5) involves an uncountable sum over all proper subsets of u. What would
we make of an ANOVA effect f, for |u| = oo, such as an interaction among
all components X7 for which j is prime? Fortunately, we only need to use
finite subsets u, and there are only countably many of these.

10.2 Martingale truncation

In the infinite dimensional examples of Section 1.1, one expects that f should
be “almost finite dimensional”, in that the first s dimensions for some possi-
bly large s should capture virtually all of the important variation in f. This
expectation is borne out, whenever [;; 115 f(X)2dX < oc.

Let 1:s denote the set {1,2,...,s} of leading variables. There are a
number of ways to approximate an infinite dimensional f by a function of
X", One could simply replace each X**! X*+2 . by a convenient value
such as 0.5 or 0.0, effectively turning f into a function of s variables. Or one
can replace f(X) by its minimum (or maximum) value over X*+! X2
with X% held fixed. Or one can replace f(X) by its expectation over
X5t Xs+2 . with X"* held fixed. This latter approximation is most
convenient theoretically because it allows the use of martingale methods.
See Williams [53]. We do not give a rigorous treatment of martingales here.
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Now define
Frlat, ) = BUX)IX =l X0 = a), (32)

where expectation is taken over independent X7,j > s+ 1 having a U[0, 1)
distribution. When 1:s C u the function f*(X*) is taken to mean f%(X'*)
ignoring any coordinates in 1:5 — u. For s = 0 we take fO(X%) = I for any
u. The sequence f*(X),s > 0 is a martingale, by Levy’s upward theorem
(Chapter 14.2 of [53]), when the X7 are independent U[0,1) random vari-
ables. The key martingale property is that E(f**!(X)|X ") = f*(X). In
this paper f2 always means the square of f and never means f* with s = 2.

Because we assume E(f(X)?) < oo the martingale is bounded in L2
Thus as s — oo, we have f*(X) — f(X) in L? and pointwise. The L?
convergence means that

lim B ((f(X) - f*(X))?) = 0. (33)

The pointwise convergence is “almost sure”. That is lims_, o f*(X) = f(X)
holds on a subset of [0, 1)*° having probability one.

10.3 ANOVA with d = c©

To study functions over infinite dimensional domains we first truncate the
dimension, replacing f by some f* and then apply a finite dimensional
ANOVA to f°. We begin by defining ANOVA terms for f and for the
truncated functions f*°. Then Proposition 4 shows that the two definitions
are compatible.

The infinite dimensional ANOVA enjoys two key properties of the fi-
nite dimensional ANOVA: Proposition 5 shows that the infinite dimensional
function is still a sum of its ANOVA components, and Proposition 6 shows
that the variance decomposes into a sum of terms for each component.

Definition 5 For d = oo and |u| < oo define f, by equation (5). For
lu| = oo take fu,(X) =0 for all X.

Definition 6 For u C 1:s let f} be the ANOVA term for u obtained by
replacing f by f* in d = s dimensional ANOVA definition (5). Foru € 1:s,
take f7 = 0.

Proposition 4 If s < oo and u C1:s, then f) = f,.
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Proof: Consider first v = (). For s > 1,
fi= [ FOaX = BX0) = f

by the definition (32) of f*. Now suppose that f; = f, whenever |u| < k,
for k > 0. Then from the definition (32) of f* and by (5), we get f5 = f,
for u C 1:s, for |u| < k. By induction on |ul, it now follows that s < oo and
u C1:simplies fi = f, N

In the finite dimensional case, the identity f = ), f, holds everywhere
simply by the definition of the highest order interaction fy; 4. For d = oc
the decomposition is more subtle. Definition 5 asserts that infinite order
terms vanish. But it remains to prove that

FX)= > fulX). (34)

0<|u|<o0

Proposition 5 If E(f?) < oo then equation (34) holds almost surely and
in L2.

Proof: In the chain

FOX) = lim f(X)

5—00

= dim Y fi(X)
see uCl:s

= Jim 2 fu(X)

uCl:s

|u|<oo

the first inequality holds almost surely and in L? because the martingale is
bounded in L2, the second is exact from the finite dimensional ANOVA, the
third follows from Proposition 4, and the fourth follows from two different
ways of listing all finite subsets of the positive integers. ®

Proposition 6 If E(f?) < oo then

o= [0 Dfax = ¥ [ f(x)ax. (35)

1<|ul<o0
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Proof: For any s > 1 we may write
ot = [0 = P00 + £(X) - D dx
= U - reoax [ - nfx @)
> /fu(X)QdX.

|u|>0
uCl:s

v

Taking the limit as s — 00, we find 0% > 32 <, <00 J fu(X)?dX.

For € > 0 choose sy so that [(f*(X) — f(X))?dX < e whenever s >
s9. The decomposition (36) now leads to Z1g\u\<ooffu(X)2dX > 0?2 — e
Letting € — 0 establishes (35). =

10.4 LHS with d =00

Because each X is individually U[0, 1)*° it follows that Erus(I) = Evmc(I) =
1. Where it makes no difference, the subscript LHS or MC may be dropped
from the expectation symbol. Because they are both unbiased, LHS and MC
can be compared through their variances. We show below that the variance
under LHS is a sum of contributions from each ANOVA term.

The main point of this subsection is to extend two results from finite
dimensional LHS to the infinite dimensional case: Lemma 2 shows that LHS
never has a much larger variance than MC, and an informal description of
the results of Lemma 3 below is that

1 o0

Vins(l) = (o7 = 3" % ). (37)

J=1

So Latin hypercube sampling of the infinite dimensional cube also removes
the variance contribution of an additive approximation to the integrand.
Using the ANOVA decomposition of Section 10.3 we write

. 1 & -
Ir=-% Y ax)= Y L
iz 1<]u|<oc0 1<|ul< oo

The integration error in infinite dimensions is a sum of contributions from
different ANOVA terms. Because the ANOVA terms are orthogonal, these
contributions are uncorrelated under MC. This also holds under LHS.
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Proposition 7 If f[o,l)oo f(X)2dX < oo then

Vius(D) = Y. Vins(Lw).

1< ul<oo

Proof: First we give the steps in the proof, then we justify them.

n

X > Y Blhu(X)fu(Xi)

1=14'=11<]u|<oo 1<|u!|[< oo

n

Vins(I) =

§M| —_

i=14'=11<|u|<oc

= E( 1§%:<oo<% i fu(Xi)>2>

§M| —_

i=1

= Y Vius(lw).

1<]u|<oo

The first, third and fourth equalities above follow from expanding and
collecting terms. To demonstrate the second equality, we need to show that
E(fu(X3) fu (X)) = 0 whenever u # u'.

Let u # v be finite subsets. Without loss of generality there is some
jo € u with jo & u'. The desired result follows because f, integrates to zero
over X70. Formally

E(fu(X)fu (Xe) = B (B (fu(X)fu(Xy) | X} € 0. X] . j € u—{jo}))
= B (fu(Xo) B (fu(X0) | X].j € u={jo}))
=0

regardless of whether i =i'. =

Lemma 2 Forn >1 and 1 <d < oo,
Vins(F) < —Vare(d)
Las(l) < ——Vmeld).
Proof: If [ f(X)2dX = oo then Vi (I) = 0o and the inequality is trivial,
though worthless. Suppose that [ f(X)?dX < oc. If d < co the inequal-

ity holds by (13). If d = oo, the inequality follows by the expansion in
Proposition 7 followed by a term by term application of (13). ®
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Lemma 3 If f[o,l)oo f(X)2dX < oo then for any e >0

. 1 Z"O 1
Vins(I) < - <a 2 oy te)to — (38)
and

Vius(f) > < Z Ty ) ( : ) : (39)

Proof: It follows from Proposition 7 that

Vins(1 ZVIHS I+ Y Vans(l). (40)
Jj=1 1< |u|<oo
By Lemma 2, the second term in (40) may be bounded by

n 1 s
Y Vel = (o Yoy,

1< |ul<oc j=1

We split the first term of (40) into two pieces. For any fixed s, we find
that >27_; Vims(lyj;) = o(1/n) by applying equation (12) to the additive
integrand 377 fr;;. Given € > 0, choose s so that E((f — %) < e
whenever s > sg. For such s, making another comparison to V¢ gives

> Vimstip) € = 3 [ gax < Lom - gy <

Jj=s+1 y s+1

n—1

Putting the pieces together, and using 1/(n — 1) = 1/n + o(1/n) establishes
equation (38). Similar techniques establish equation (39). =

10.5 Infinite LSS

Suppose that &k = co. The martingale construction used in Section 10 applies
to LSS by taking f* = E(f(X)|&X',...,&X"),r = 0,1,...,00. Here the
truncation is from an infinite to a finite number of QMC rules covering
input variables that capture virtually all of the variation in f. Thus we can
expect good results from LSS even with £ = oo

In Theorems 1 and 2, no special use was made of the fact that all the
(R)QMC rules had finite dimension s,. The only problem with having some
sy = oo is that it may be impossible to find an (R)QMC method in infinite
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dimensions with £ = o(n~/?). Some recent work by Wasilkowski and
Wozniakowski [52] shows that the error rate O(n=0-577) is attainable for any
dimension d < oc. If this can be extended to d = oo then LSS with s, = oo
would work well. There would remain interesting issues in deciding how to
partition the input variables to good effect with finite n, when one or more
subsets in the partition can have infinitely many inputs.

11 Conclusions

In view of results like Bahvalov’s theorem (given in [6]) numerical integra-
tion in high dimensions is known to be intractable. This means that what-
ever method we’re using, there are integrands, perhaps even smooth ones,
on which we’ll get bad results. Sloan and Wozniakowski [43] give another
intractability result for high dimensions, where smoothness means rapidly
decaying Fourier coefficients. Of course, intractability does not mean that
we’ll always get bad results in practice.

When good results are obtained in integrating a high dimensional func-
tion, we should conclude first of all that an especially tractable integrand
was tried and not that a generally successful method has been found. A
secondary conclusion is that we might have made a very good choice in
selecting an integration method to exploit whatever features of f made it
tractable. For example, even if f is virtually linear, simple Monte Carlo will
get a bad result if f has a large variance, while some other methods will do
very well.

In this paper we’ve considered methods that can exploit integrands of
low effective dimension. Latin hypercube sampling works well on integrands
that are largely one dimensional in the superposition sense. Methods based
on (R)QMC with padding work well on integrands with low dimensional
structure among the variables treated by (R)QMC and, if padded by Latin
hypercube sampling, one dimensional structure among the other variables.

Latin supercube sampling allows the practitioner to exploit still more
structure in the integrand. If much of the variation is concentrated within
groups of a few variables, especially if it is concentrated within low dimen-
sional subsets of those variables, then LSS allows us to exploit that structure
by grouping those variables within (R)QMC groups.

It is not reasonable to expect that these methods will be able to turn
high dimensional integration, in general, into a tractable problem. But it
may turn out that some broad classes of integration problems have their
variation concentrated among several small subsets of input variables. And
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it may often be possible for practitioners to engineer their integrands in
order to concentrate the variation in such subsets.
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