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Abstract

We propose symmetric Latin hypercubes for designs of computer exepriment.
The goal is to offer a compromise between computing effort and design opti-
mality. The proposed class of designs has some advantages over the regular
Latin hypercube design with respect to criteria such as entropy and the min-
imum intersite distance. An exchange algorithm is proposed for constructing

optimal symmetric Latin hypercube designs. This algorithm is compared



with two existing algorithms by Park (1994) and Morris and Mitchell (1995).
Some examples, including a real case study in the automotive industry, are
used to illustrate the performance of the new designs and the algorithms.
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1 Introduction

One of our recent projects is concerned with the thermal analysis of multi-
layer electrical traces at a major automotive company. As more and more
electronic devices are installed in vehicles, the peak temperature of electrical
traces becomes a major concern in designing the instrument panels. The
temperature of an electrical trace is largely determined by its width, its
passing current strength, and its position in a stack of traces. The goal of
this project is to provide guidelines for design engineers for width and passing
current strength of multi-layer electrical traces. Physical experiments are
inevitably very expensive and time consuming since a set of electrical traces
has to be assembled in certain configurations for each test and measuring

the temperature of each trace is difficult. Therefore, finite element analysis



(FEA) models have been developed to simulate the thermal dynamics of
electrical traces.

Using the computer model, the study starts from a simple case, in which
there are two layers with three traces on each layer. One primary interest
is the interaction between a center trace and an edge trace on two different
layers since the heat coming off the center trace spreads out and affects the
temperature at the edge. A center trace on layer 1 and an edge trace on layer
2 are selected in the study. The goal is to predict their peak temperatures
(y1 and yy) based on four predictors: the width of the center trace (x;), the
applied current of the center trace (x9), the width of the edge trace (x3),
and the applied current of the edge trace (z4). Given a set of z;-values, the
computer model generates a deterministic peak temperature for each trace.

Though computer experiments are much cheaper and faster than physical
experiments, each run is still time consuming and expensive. Thus, only a
small number of combinations of the x; can be tested. In this case, the exper-
iment is to be conducted by another company which specializes in thermal
dynamic computer models, and the budget only allows for 25 runs. A feasible
approach is to establish a statistical model from the results of the 25 runs

and then use it to predict peak temperatures for any given combinations of



the x;. An optimal Latin hypercube design was chosen for this experiment.

A Latin hypercube design (LHD) is an n x [ matrix in which each col-
umn is a random permutation of {1,...,n} which can be mapped onto the
actual range of the variables. It has good projection properties on any single
dimension. Latin hypercube designs have been applied in many computer
experiments since they were proposed by McKay et al. (1979). In practice,
a LHD can be randomly generated, but a randomly selected LHD may have
bad properties and act poorly in estimation and prediction. Another ap-
proach is to use optimal designs according to some criteria such as entropy
(Shewry and Wynn 1987), Integrated Mean Squared Error (IMSE) (Sacks
et al. 1989), and minimum intersite distance (Johnson et al. 1990). These
designs have been shown to be efficient for certain models. However, the
computational cost of obtaining these designs is high. In an attempt to offer
a compromise between good projective properties of LHDs and a criterion,
Park (1994) and Morris and Mitchell (1995) proposed optimal Latin hyper-
cube designs. For an excellent review of design and analysis of computer
experiments, see Koehler and Owen (1996).

One of the criteria considered in this paper is the entropy criterion,

first proposed by Shewry and Wynn (1987) and then adopted by Currin



et al. (1991). The response of a computer model is modeled by Y (x) =
1 B;fi(x) + Z(x), in which Z(x) is a Gaussian process with mean zero

and covariance

I
R(S,t):UQQXp{QZS]‘tj|q}, 0<qg<2 (1)
j=1

between two [-dimensional inputs s and t. The entropy criterion is equiva-
lent to the minimization of —log|R|, where R is the covariance matrix of the
design. The parameters 6 and ¢ determine the properties of Z(z). Through-
out this paper, we set ¢ = 2 so that the correlation between two sites is a
function of their L, distance.

The construction of an optimal LHD can still be time consuming. For
example, to generate a maximum entropy 25 x 4 LHD using a columnwise-
pairwise (CP) algorithm (discussed in Section 3), the whole procedure takes
3.3 hours on a Sun SPARC 20 workstation, which appears to be quite long
as the size of the design is moderate. The search for a larger design would
take even longer, and may be computationally prohibitive. This situation
motivated us to look for alternatives that require less computing time. The
easiest method is to generate a large number of random LHDs and then
choose the best one according to the criterion. For example, the generation

of 1000 random LHDs takes only 14.7 seconds on the same machine. However,



the best design obtained from these random designs is usually significantly
inferior to that produced by the algorithmic search. In our example, the
entropy value at # = 2 of the former is 25.26, compared with the latter’s
20.48. To reduce the searching time and still generate competitive designs,
our approach is to restrict the search within a subset of the general LHD. If
this subset of designs has some desirable properties with respect to a criterion,
then selecting a design from this group of designs may be more efficient.

In Section 2, we introduce a new class of LHD, the symmetric Latin hyper-
cube design, whose geometric property enables us to find optimal LHDs more
efficiently. Section 3 considers a simple exchange algorithm for constructing
optimal symmetric LHDs. Its performance is compared with the existing
algorithmic approaches of Park (1994), and Morris and Mitchell (1995). Sec-
tion 4 demonstrates the performance of the new design with an example. A

summary is given in Section 5.

2 Symmetric Latin hypercubes

Our goal is to find a special type of LHD that has some good “built-in”

properties with respect to the optimality of a design. In our definition, a



LHD is called a Symmetric Latin hypercube design (SLHD) if it has the
following property: in an n x [ LHD with levels from 1 to n, if (a1, a9, -+, @)
is one of the rows, then the vector (n +1—a;,n+1—ag,---,n+1—q)
must be another row in the design matrix. In other words, if t; is a design
point in a SLHD, then there exists another point t; in the design that is the
reflection of t; through the center. An example of a 10 x 5 SLHD is given in

Table 1, in which the i row is the symmetric point of the (n +1— )" row.

1 2 3 4 5
1 6 6 5 9
2 2 3 2 4
31 9 7 5
4 3 4 10 3
5> 7 1 8 10
6 4 10 3 1
7T 8 7 1 8
§ 10 2 4 6
9 9 8 9 71
10 5 5 6 2

Table 1: A 10 x 5 symmetric Latin hypercube design

The symmetry of a SLHD provides some orthogonal properties. That
is, the estimation of the linear effect of each variable in a SLHD is uncorre-
lated with all quadratic effects and bi-linear interactions. The proof of such

properties can be found in Ye (1998), in which Orthogonal Latin Hypercube



Designs (OLHD) are constructed and proposed. OLHDs have the same sym-
metric properties but also process additional orthogonality which insures the
zero correlation among estimation of linear effects. Therefore, one can view
the SLHD as a generalization of the OLHD. However, the number of runs
in an OLHD has to be a power of two, which increases dramatically as the
number of factors increases. In the cases that an appropriate OLHD can
not be found under the constraint of run size, one can consider using SLHDs
which have the flexibility of the run size, yet retain some of the orthogonality
of an OLHD.

Are SLHDs better than regular LHDs with respect to design criteria?
Many optimal LHDs reported by Park (1994) and Morris and Mitchell (1995)
have some symmetric properties. In particular, Morris and Mitchell (1995)
noticed that a large number of the optimal LHDs they obtained are SLHDs
and referred them as “foldover designs”. This is the first time the SLHD
is mentioned in the literature. They called for a thorough investigation on
this phenomenon. Intuitively, the optimal designs are considered to have
good space filling properties, and a good space filling design probably has
some degree of symmetry. To verify this, we undertook a simulation study to

compare random SLHDs to random LHDs with respect to both entropy and



minimum intersite distance criteria. Table 2 compares the best design among
the 1000 random SLHDs of size 25 with that of the 1000 random regular
LHDs. The former has a smaller entropy criterion value of 23.60 at 6 = 2,
compared with the latter’s 25.26. In the table, we also list the minimum
distances of three designs, a criterion first proposed by Johnson et al. (1990)
and then used by Morris and Mitchell (1995) in constructing optimal LHDs.
For a design S, the minimum distance d*(S) = ming¢egd(s,t), where s
and t are two design points (i.e., two rows in the design). Both the L
(rectangular) distance L(s,t) = §:1 's; — t;| and Ly (Euclidean) distance
Ly(s,t) = [Xh_4(s; — tj)Q]% of three designs are listed in Table 2. A design
Sy is said to be better than design Sy if d*(S;) > d*(S2). The number
of pairs separated by this distance, denoted .J, is shown in parentheses in
the table. If two designs have the same d* values, then the design with
smaller J value is better. Throughout this paper, entropy and distances are
computed after LHDs are scaled into [0, 1]'. The levels of scaled LHDs are
{0, ﬁ, %, -+, 1}, which are the same used by Morris and Mitchell (1995).
Note that Park (1994) used a different scale, %, %, -, 1}

Tables 3 and 4 provide more comparisons between regular LHDs and

SLHDs. We study Latin hypercubes with six different sizes, 25 x 4, 20 x 6,



design entropy min. [ distance min. L, distance

best random LHD 25.26 0.50 (1) 0.29 (1)
best random SLHD  23.60 0.63 (2) 0.35 (2)
optimal LHD 20.48 0.75(1) 0.50(1)

Table 2: Comparison of three 25 x4 LHDs by (i) entropy criterion(f = 2); (ii)
smallest L; distance and the number of pairs separated by that distance (in
parentheses); and (iii) smallest Ly distance and the number of pairs separated
by that distance. The “best” is in terms of the entropy criterion.

LHD SLHD

Size Mean Max  Mean Max
25 x 4 0.3478 0.5417 0.3944 0.625
20 x 6 0.8205 1.211 0.8968 1.316
50 x 10 1.316 1.735  1.407 1.816
200 x 20 2.9457 3.4925 3.0884  3.5678
500 x 30 4.8737 5.3567 5.0240 5.4188
1000 x 50 9.4014 9.9339 9.6016 10.2002

Table 3: Minimum L; distances of random SLHDs and random LHDs

50 x 10, 200 x 20, 500 x 30, 1000 x 50. The sample sizes are 1000 for the
first three designs and 100 for the last two designs. SLHDs are consistently
superior to the corresponding LHDs with respect to both L; and L, distances.
We also compare the means of minimum distance of LHDs and SLHDs using
t-tests. The p-values are all smaller than 0.0001. Therefore, SLHDs are
statistically significantly better than LHDs with respect to the minimum

distance criteria.
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LHD SLHD

Size Mean Max  Mean Max
25 x 4 0.1943 0.3200 0.2230 0.3727
20 X 6 0.3875 0.5642 0.4270 0.6316
50 x 10 0.5163 0.7061 0.5492 0.7210
200 x 20  0.8492 1.0568 0.8879 1.0281
500 x 30 1.1383 1.2812 1.1812 1.2960
1000 x 50 1.7327 1.8328 1.7658 1.8689

Table 4: Minimum L, distances of random SLHDs and random LHDs

These simulation studies have shown the advantages of “picking the win-
ner” from SLHDs instead of regular LHDs. However, the best SLHD obtained
by the “picking the winner” approach is usually inferior to the corresponding
optimal design obtained by a searching algorithm, as shown in Table 2. In

the next section, a simple exchange algorithm is presented to search optimal

SLHDs.

3 An algorithm and examples

In this section, we review the two existing algorithms proposed by Park
(1994) and Morris and Mitchell (1995), respectively, for constructing opti-
mal LHDs. Then a columnwise-pairwise exchange algorithm (CP) is intro-
duced in the context of the construction of optimal SLHDs. The similarities

and differences between the CP and the other two algorithms are discussed.
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Through examples, we compare
(1) the performance of the CP and other two algorithms;
(2) the optimal SLHDs and the optimal regular LHDs with respect to the

design criteria and the searching time.

3.1 Existing algorithms

To construct optimal LHDs, Park (1994) presented an approach based on
the the exchanges of several pairs of the elements in two rows. His algorithm
first selects some active pairs which minimize the objective criterion value
by excluding that pair from the design. Then for each chosen pair of two
rows 7; and iy, the algorithm considers all the possible exchanges z;,;,
Tigjiy - - -1 Tirj, < Tinj, for & <[ and finds the best exchange among them.

Morris and Mitchell(1995) adopted a simulated annealing algorithm to
search for optimal LHDs. They also defined a maximin distance criterion.
For a given design, define a distance list {dy,ds, ..., d,},di < dy < ... < d,,
in which the d;’s are the distinct values of intersite distances. Let .J; be the
number of pairs of sites in the design separated by d;. Then a design is a
maximin distance design if and only if

(1a) d; is maximized, and among the designs for which this is true,

12



(1b) J; is minimized, and among the designs for which this is true,

(2a) do is maximized, and among the designs for which this is true,

(2b) Jo is minimized,

and so forth. Morris and Mitchell (1995) also pointed out that although this
extended definition is intuitively appealing, it would be better to use a scalar-
valued criterion as the driving criterion. For this purpose, they proposed a
family of functions

m 1/p
¢P = [Z dejp} ’ (2)

where p is a positive integer. Normally, different p values are tried to obtain
a maximin distance LHD.

In Morris and Mitchell’s algorithm, a search begins with a randomly
chosen LHD, and proceeds through examination of a sequence of designs,
each generated as a perturbation of the preceding one. A perturbation D,
of a design D is generated by interchanging two randomly chosen elements
within a randomly chosen column in D). The perturbation Dy, replaces D
if it leads to an improvement. Otherwise, it will replace D with probability
m = exp{—[¢(Duy) — ¢(D)]/t}, where ¢ is a preset parameter known as the

“temperature”.
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3.2 Our algorithm

Li and Wu (1997) considered a class of columnwise-pairwise algorithms in the
context of the construction of optimal supersaturated designs. A columnwise
algorithm makes exchanges on the columns in a design and can be partic-
ularly useful for designs that have structure requirements on the columns.
Note that each column in an n-run LHD is a permutation of {1,...,n}. At
each step, another permutation of {1,...,n} is chosen to replace a column
so that the Latin hypercube structure is retained. Therefore, we adopt the
columnwise-pairwise idea in searching for optimal LHDs. However, one im-
portant change has to be made to accommodate the special structures of
the SLHD. For a SLHD two simultaneous pair exchanges are made in each
column to retain the symmetry. For example, suppose a column in a 6-row
SLHD is (1,2, 3,4,5,6)". If element 1 is exchanged with ¢, element 6 must be
exchanged with n4+1 — i (i.e. 7— 1) to keep the design symmetric. The only
exception is when element ¢ is exchanged with element n + 1 — 4, which does
not require a second exchange. The exchange procedure for a SLHD with an
odd number of rows is slightly different. The center point of the design does
not participate in the exchange. For example, if a column in a 7-row SLHD

is (1,2,3,4,5,6,7), then element 4 may not to be exchanged with any other
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element.

The algorithm for searching optimal SLHD is summarized as follows:

1. Start with a random SLHD.

2. Each iteration has [ steps. At the ith step, the best two simultaneous
exchanges within column 7 are found. The design matrix is updated

accordingly.

3. If the resulting design is better with respect to the criterion, repeat
Step 2. Otherwise, it is considered to be an “optimal design”, and the

search is terminated.

The resulting optimal designs depend largely on the starting designs used in
the algorithm. Hence, one should repeat the algorithm with several differ-
ent random starting designs. The best design among the generated optimal

designs is chosen to be the final design.

3.3 Examples
Example 1 CP vs. Simulated Annealing

The simulated annealing algorithm proposed by Morris and Mitchell (1995)
aims at constructing optimal regular LHDs. We modify their algorithm to

15



search for SLHDs. Similarly, the CP algorithm discussed in the previous
section is modified to construct optimal regular LHDs. Both algorithms are
columnwise-pairwise procedures. The simulated annealing algorithm oper-
ates on a (randomly chosen) column and then considers a (randomly chosen)
pair in each column. Our proposed CP algorithm resembles the former with
a very low starting temperature (so that switches to inferior designs are never
made). An important difference is that the simulated annealing algorithm
perturbs the design in a random manner, and our CP algorithm perturbs the
design in a deterministic manner.

To compare their performances, we use both algorithms to construct opti-
mal regular LHDs and optimal SLHDs. Two examples are considered. Table
5 lists the 12 x 2 maximin distance LHDs and SLHDs generated by both
algorithms. The simulated annealing algorithm uses 10 starting designs and
the CP uses 100 starting designs. The driving criterion is ¢, with p = 50.
To compare the efficiency of the algorithms, the number of searched LHSs is
also recorded. Both algorithms obtain equally good optimal designs. But the
CP algorithm searches far fewer LHDs than the simulated annealing algo-
rithm does. When both algorithms are used to construct 25 x 4 designs, the

simulated annealing algorithm produces better optimal designs than the CP.
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design algorithm min. dist. # of searched LHDs

LHD Simulated Annealing .4545 (16) 269520
LHD CP 4545 (16) 44220
SLHD Simulated Annealing .4545 (16) 240416
SLHD cp 4545 (16) 14652

Table 5: Comparison of optimal 12 x 2 LHDs and SLHDs using two al-
gorithms, CP (100 starting designs) and simulated annealing (10 starting
designs). The search criterion is ¢, with p = 50 and L, distance. Note:
using the simulated annealing search in LHD, only two out of 10 starting
designs result in 0.4545 (16), compared to all 10 in the SLHD case.

design algorithm min. L; dist. # of searched LHDs
LHD Simulated Annealing  .9177 (19) 1537663
LHD CP .8750 (6) 2241900
SLHD Simulated Annealing  .9583 (36) 1426985
SLHD CP 9177 (6) 546480

Table 6: Comparison of optimal 25 x 4 LHDs and SLHDs using two al-
gorithms, CP (100 starting designs) and simulated annealing (10 starting
designs). The search criterion is ¢, with p = 50 and L, distance.

Therefore, we may conclude that the systematic search algorithm is better
for small designs and the simulated annealing algorithm is better for larger

designs.

Example 2 CP vs. Park

Park’s algorithm (1994) cannot be easily modified to accommodate the
property of symmetry. Thus, its comparison with the CP is done through
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construction of the optimal 9 x 2 regular LHDs, which is discussed in detail by
Park(1994) to illustrate his exchange algorithms. The CP algorithm is also
used to construct 9 x 2 SLHDs. Table 7 compares the optimal designs gen-
erated by two algorithms with respect to the entropy criterion (0 = 1,5, 25),
along with the total number of searched LHDs for each algorithm. Three
interesting observations are apparent in this example:

1. The CP seems to consistently produce better LHDs than Park’s al-
gorithm with respect to entropy. The former also reaches the final design
slightly earlier since it searches fewer LHDs. In fact, exhaustive searches re-
veal that the CP produces the global optimum for each value of = 1,5, 25.
Our study of constructing LHDs of different sizes shows the same patterns.

2. Comparisons between optimal LHDs and the corresponding SLHDs
show that the former are slightly better than the latter but take approxi-
mately 4 times as much time to search. However, for such a small design,
it takes so little time (6 to 7 seconds on a Sun Sparc 20 workstation) for an
exhaustive search in the whole LHD class. Therefore, there is no need to
restrict the search within SLHD class.

3. At 0 = 25, the global optimal LHD is symmetric. Moreover, it is also

an orthogonal Latin hypercube as constructed algebraically by Ye (1998).
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design algorithm optimal average # of searched LHDs

1 SLHD CP 20.38 22.16 0488
LHD CP 19.16 19.29 20592
LHD Park 20.01 20.79 24132

5 SLHD CP 3.09 4.35 4768
LHD CP 2.95 3.06 20052
LHD Park 3.42 3.79 23970

25 SLHD CP 0.49 x107% 0.83 x102 4784
LHD CP 0.49 x 1072 1.11 x10°2 19080
LHD Park 1.03 x107%  4.67 x102 23580

Table 7: Comparison of three algorithms for generating 9 x 2 optimal LHDs
with 100 random starting designs

Example 3 LHD vs. SLHD

We now revisit the case study at the beginning of this paper: the con-
struction of a 25 x 4 LHD for the thermal analysis of electrical traces. A
primary motivation of using the SLHD is to reduce the searching time. Since
the number of possible exchanges of each column in a SLHD is much less
than that for a regular LHD, it is expected that the exchange algorithm for
the SLHD will use much less CPU time. This is confirmed when the algo-
rithm is applied to the construction of the optimal 25 x 4 SLHD. Without
the restriction to SLHD, it takes 13.3 hours and 10.6 hours for the algorithm
to terminate using the entropy and ¢, criteria, respectively. Using the same

number of starting designs (100), the optimal SLHDs are found only after 1.6
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hours and 1.3 hours. The results are summarized in Table 8. Theoretically,
the global optimal SLHD cannot be better than the global optimal LHD
since the SLHD is a subset of the LHD. It is seen in our Example 2 that the
obtained optimal LHDs are globally optimal verified by exhaustive search,
but they do not always have the symmetrical structure. Morris and Mitchell
(1995) use an exhaustive search to find maximin distance LHDs for many
small designs. Not all those global optimal designs are symmetric. In prac-
tice, a globally optimal design is rarely obtained when the exhaustive search is
not feasible. In our case, with much less searching time, the optimal SLHDs
found are actually better than the two optimal LHDs obtained previously
with respect to both entropy and minimum distance criteria. The maximum
entropy SLHD has the criterion value of 18.53 compared with 20.48 for the
previously obtained optimal LHD. The former also has the better (i.e. larger)
minimum distance of 0.83, with six pairs separated by this distance. Using
¢, as the driving criterion, a SLHD was obtained with four pairs separated
by the minimum intersite distance of 0.92, which is considerably better than
the optimal maximin distance LHD previously found (six pairs separated by
0.83).

Now we revisit Table 6 and focus on the difference between SLHD and
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design criterion entropy min. L; dist. CPU time(hrs)

LHD  entropy  20.48 75 (1) 13.34
LHD ¢, 23.52 83 (6) 10.63
SLHD entropy  18.53 83 (6) 1.6
SLHD ¢, 19.48 92 (4) 1.28

Table 8: Comparison of optimal 25 x 4 LHDs vs. SLHDs with respect to
entropy and ¢,. The entropy is calculated for 6 = 2.

regular LHD. For the simulated annealing algorithm, restricting the search
within the SLHD did not save much searching time, but the obtained design
is significantly better with respect to the minimum distance criterion. For the
CP algorithm, there is a dramatic reduction in searching time after we restrict
the search within the SLHDs, yet the obtained design is much better. It is also
interesting to observe that in far less time the CP found a better design within
the SLHDs than the simulated annealing algorithm found within general

LHDs.

4 A robust design simulation example

One of the goals in computer experiments is prediction. The Kriging method
was developed in geostatistics and brought into computer experiment by

Sacks et al. (1989) and Currin et al. (1991) to predict untested sites in the
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experimental regions. It models the response as a Gaussian process. Given
a correlation function of the process, the best linear unbiased predictor of y
at site x is given by
g(w) = p+r' R (y — i),

where r is the vector of correlations between x and the design sites z;, R is
the correlation matrix among design sites, and y is the vector of the observed
responses. In this section, an example is used to illustrate the advantages of
using optimal SLHDs for Kriging methods.

The example presented here is taken from Mori (1985), which was orig-
inally presented as a robust design case study. It was later used by Li and
Wu (1999) to illustrate an integrated approach to parameter design and
tolerance design. The original study is concerned with the design of cy-
clones, which are used to separate solid mass and gaseous mass in chemical
engineering. There are seven variables whose original values are given by
(21, T2, X3, T4, T5, g, x7) = (0.1,0.3,0.1,0.11.5,16.0,0.75). The relation be-
tween the response, the diameter of a cyclone (y), and these seven variables

is

y = 174.42(

T T s, J L2021 036(2) PP

T5 Tg — 1 TeX7

The range of the input variables in this example is taken to be 1 £ 10% of
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the original value (see Table 9).

Unscaled Input Lower limit Upper limit

7 0.09 0.11
Ty 0.27 0.33
T3 0.09 0.11
o 0.09 0.11
5 1.35 1.65
6 14.4 17.6
Ty 0.675 0.825

Table 9: Range of the inputs in equation (3)

Experiments with 16 runs are performed using (1) 100 random LHDs; (2)
100 random SLHDs; (3) maximum entropy SLHDs generated by the CP with
6 = 0.05,0.5,1; and (4) a maximin L, distance SLHD generated by the CP
with ¢59. In each experiment, using the Kriging method with the correlation
function given in equation (1) with # = 0.05,0.1,0.5, we predict Y (z) at
the same 400 randomly selected sites. The mean squared error (MSE) of
predictions at these 400 sites was calculated for each experiment. The results
are summarized in Table 10. First, it can be seen that the MSE is sensitive
to the 6 used in the Kriging model but is insensitive to the optimal design
criterion. Second, all of the optimal designs are better than the random
designs. Third, in this case, SLHDs do not always outperform LHDs.

In practice, the choice of correlation function in the Kriging model is
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Correlation parameter in kriging model

Design =005 6=0.1 0 =0.5
random SLHD (mean of 100) 0.022 0.027 0.058
random LHD (mean of 100) 0.024 0.026 0.052
Max. Entropy(6 = 0.05) SLHD 0.016 0.017 0.025
Max. Entropy(f = 0.5) SLHD 0.017 0.018 0.026
Max. Entropy(f = 1) SLHD 0.019 0.020 0.027
Maximin Distance SLHD 0.020 0.020 0.028

Table 10: Square root of MSE for Maximum Entropy SLHD, Maximin dis-
tance SLHD, random LHD and SLHD over 400 randomly selected reference
sites

complicated and crucial to prediction accuracy. Sacks et al. (1989) suggested
using maximum likelihood estimate of . However, the modeling process
should not be limited to Kriging. One advantage of using Latin hypercube
designs is that they can facilitate almost any kind of model, parametric
and non-parametric. Authors of this paper have used MARS (multivariate
adaptive spline regression), GAM (generalized additive models) and second
order polynomials to analyze computer experiments.

The cyclone study was originally a case study in robust design. We choose
this study to demonstrate the link between computer experiments and ro-
bust designs. Robust design studies can also be carried out using computer
models as presented by Welch et al. (1990). Orthogonal Latin Hypercube

design and Symmetric Latin Hypercube design can be used in a robust design

24



study as well. One can follow the response model approach of robust designs
as proposed in Welch et al. (1990) and Shoemaker, Tsui and Wu (1991).
First, establish a prediction model for both control and noise factors. Then,
given the distribution of noise variables, estimate the variation of Y for each
combination of control variables using the model obtained at the first stage.
If a computer experiment is not expensive, one can skip the first step and es-
timate the variation caused by the noise variable directly using the computer
model. In that case, Latin hypercubes can serve as a sampling mechanism

to obtain samples from noise variable, as it was first proposed by McKay et

al. (1979).

5 Summary and Discussion

This paper proposes a class of symmetric Latin hypercube designs (SLHDs),
referred previously by Morris and Mitchell(1995) as “foldover designs”, and a
new columnwise-pairwise (CP) algorithm for searching optimal design within
the SLHD class as well as within the regular LHD.

We summarize the properties of SLHDs as follows.

1. They are a good subset of LHDs with respect to both entropy and
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maximin distance criteria (see Tables 2-4).

2. As a generalization of Orthogonal Latin hypercube designs, SLHDs
retain some orthogonality. The estimation of quadratic effects and bi-

linear interactions is uncorrelated with the estimation of linear effects.

3. The searching time of the CP algorithm is greatly reduced by restricting
the search within the SLHDs (see Tables 5-8). The restriction does
not significantly reduce the searching time of the simulated annealing

algorithm, but it often leads to better designs (See Table 8).

4. The global optimal LHD is not always a SLHD. Morris and Mitchell
(1995) did an exhaustive search to find the optimal LHDs of small sizes.

Not all of the true optimal designs they found are symmetric.

Despite the fact that the true optimal LHDs do not necessarily fall into the
symmetric class. We recommend using the SLHD in computer experiments
for two reasons. First, users will benefit from the orthogonal properties of
SLHD as summarized above when they try to fit the data with a polynomial
model. A non-symmetric LHD does not have such orthogonality. Second,
as shown in Tables 6 and 8, by restricting the search within SLHDs, one

could obtain approximately optimal designs in a more efficient manner for
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moderate to large-size designs. In fact, in these cases, an exhaustive search is
usually prohibitive and one should be less concerned about whether a search
method has the potential to reach the global optimum and more about how
it can obtain a good design with reasonable computing effort. Especially for
computer experiments, extra computing power could be spent on additional
runs rather than obtaining a slightly better design.

The performances of the three algorithms for searching optimal LHDs are

summarized as follows:

1. The CP algorithm consistently outperforms the algorithm of Park (1994).

2. For smaller designs, the CP algorithm is more efficient than the simu-
lated annealing algorithm of Morris and Mitchell (1995). However, the

latter can generate better large designs.

One of the referees suggested that we briefly comment on the performance
of optimal LHDs compare to other types of designs proposed for computer
experiments in recent literature, such as orthogonal arrays, OA based Latin
hypercubes and quasi-Monte Carlo lattices. The comparison of different kind
of designs is one of the most important problems and deserves a thorough

investigation that is beyond the scope of this paper. However, we would
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be glad to share some of our opinions. Unlike traditional designs for which
the models are in known forms, the computer experimenter often has little
idea which model in his/her statistical toolbox will best describe his/her
complex computer model before an experiment is done and several kind of
models are tried. Most of the proposed designs for computer experiments
allow users to try many different models, linear or nonlinear, parametric or
non-parametric. Among those, orthogonal arrays may not be appropriate for
computer experiments since they do not take the advantage of flexibility of
computer experiment in terms of changing levels. Their projections to low
dimensions are only a few points so that they are not good for non-parametric
regression methods. However, they are good for fitting low-order polynomial
models.

An optimal SLHD actually takes three criteria into consideration: the
discrepancy of one-dimension projection optimized by the Latin hypercube
structure, desired orthogonality inherited from the symmetric structure, and
a third criterion (entropy or minimum distance) optimized through an algo-
rithmic search. Therefore, we expect that optimal SLHD should perform very
well with many modeling methods. Quasi-Monte Carlo lattice designs (Fang

and Wang, 1994) are generated by some sequence which are asymptotically
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optimal in discrepancy measure. Since it spreads the design point evenly in
the design space, it should have robust performance with different modeling
methods. In particular, a glp (good lattice point) set is a Latin Hypercube.
Bates et. al (1996) compared Latin hypercubes designs with lattice designs
and found the quasi-Monte Carlo lattice design performed surprisingly well.
Tang(1993) and Owen(1993) proposed a special type of Latin Hypercubes
which are constructed based on orthogonal arrays. Such Latin hypercubes
spread points evenly on t-dimensional projections. The actual dimension
t depends on the strength of the original orthogonal array. However, this
approach only provides LHD at the sizes of which orthogonal arrays exist.
In Table 11, we compare three LHDs. The first one is the fourth optimal
SLHD listed in Table 6. The second one is a glp set of generating vector
(25;11,29,6,13). The third one is a LHD constructed based on OA(25;5'2)
using the procedure described in Tang (1993). It can be seen that in terms
of entropy and minimum intersite distance, the optimal SLH is better than
the glp and OA-based LH. The glp, however, is surprisingly good given the
fact that it is easy to generate. Therefore, it could be a good choice if quick
solutions to design problems in computer experiments are needed. On the

other hand, the OA-based LH is far inferior to the other two designs. Since
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Optimal SLH glp OA-based LH
Minimum 7, 0.92(6) 0.75(24) 0.54(13)
Minimum L, 0.46(2)  0.41(12)  0.29(13)
Entropy 6 = 0.05 33.03 39.09 50.17
Entropy 0 =1 21.68 26.99 37.00
Entropy 6 = 2 19.82 24.97 34.77
Entropy 8 =5 15.96 20.72 30.02
Entropy 6 = 10 13.50 17.96 26.89

Table 11: Comparison of three types of LHDs.

a class of LHD can be constructed based on an orthogonal array, a similar
algorithmic approach should be developed to find a better design within the
class.

We would like to see more research effort to compare those designs with
respect to different performance measure. We think that a good design will
not necessarily score the highest for any particular criterion but will be rea-
sonably high for all the criteria.
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