
Latin Supercube Sampling for Very HighDimensional SimulationsArt B. OwenStanford UniversityJune 1997AbstractThis paper introduces Latin supercube sampling (LSS) for veryhigh dimensional simulations, such as arise in particle transport, �-nance and queuing. LSS is developed as a combination of two widelyused methods: Latin hypercube sampling (LHS), and Quasi-MonteCarlo (QMC). In LSS, the input variables are grouped into subsets,and a lower dimensional QMC method is used within each subset.The QMC points are presented in random order within subsets. QMCmethods have been observed to lose e�ectiveness in high dimensionalproblems. This paper shows that LSS can extend the bene�ts of QMCto much higher dimensions, when one can make a good grouping ofinput variables. Some suggestions for grouping variables are given forthe motivating examples. Even a poor grouping can still be expectedto do as well as LHS. The paper also extends LHS and LSS to in�nitedimensional problems. The paper includes a survey of QMC methods,randomized versions of them (RQMC) and previous methods for ex-tending QMC to higher dimensions. Furthermore it shows that LSSapplied with RQMC is more reliable than LSS with QMC.1 IntroductionThe fundamental problem we consider here is to compute the value ofI = Z[0;1)d f(X)dX:This problem can include, via change of variable, integration over nonrectan-gular regions, integration with respect to non-uniform probability distribu-tions, and reformulations designed to improve accuracy, such as importance1



sampling or periodization. Some simulations described below can be cast inthis form with d =1.For small dimensions d and smooth integrands f , classical techniquessuch as those of Davis and Rabinowitz [6] provide an excellent solution. Formoderate dimensions, iterated versions of the classical techniques may workwell. These are justi�ed by Fubini's theorem and are typically constructedas tensor products of univariate or low dimensional rules.A working de�nition of a \high dimensional" problem, is one in whichsuch iterated integration methods are computationally infeasible. This candepend somewhat on f and on the computer at hand, but large changes incomputing power are required to make even small increases in the point atwhich dimension becomes large. For high dimensional problems, simulationmethods such as Monte Carlo (MC) and equidistribution or Quasi-MonteCarlo (QMC) are used.Theory has it that QMC is more accurate than MC at least for enormoussimulations, and numerical experiments often �nd the advantage appearsat practical sample sizes. But, the advantages of QMC have often beenobserved to diminish as d increases. See Moroko� and Ca
isch [25, 26, 27]for a discussion of this point.For a large enough dimension d, it becomes di�cult or impossible toeven construct a QMC point set, having meaningful equidistribution prop-erties. A working de�nition of a \very high dimensional" problem, is onefor which QMC constructions either are not practically computable or arenot especially equidistributed for practical sample sizes.The purpose of this article is to present LSS as a method, that in fa-vorable cases restores the e�ectiveness of QMC for very high dimensionalproblems, while performing at least as well as MC in the unfavorable cases.Throughout this paper, d is the dimension of the original integration prob-lem and s is the dimension of an integration rule, such as a QMC rule. Theemphasis is on what to do when d > s or even d� s.Some examples of very high dimensional simulations are given next. Thissection then concludes with an outline of the article.1.1 Examples of very high dimensional problems1.1.1 Transport SimulationsParticle transport simulations are used in the design of radiation shieldsfor nuclear reactors (see Spanier [44]). The trajectories of a large numberof particles are simulated as they transit from a source towards a target2



possibly undergoing a sequence of collisions. Each collision may take 6 or7 random numbers to describe changes in the particles' positions, velocitiesand energies and whether they are absorbed. To simulate k collisions thustakes d = 6k or 7k. Since there is no a priori upper bound on k theseproblems can be considered in�nite dimensional, even though any givenparticle only undergoes a �nite number of collisions.Light transport problems, arising in computer graphics, have a similar
avor. One can follow a photon from a light source until it splats on theimaging plane, possibly after a number of re
ections. See Keller [21] andGuibas and Veach [50].Solving Laplace's equation with a boundary constraint arises in the de-sign of semiconductors [40]. One approach due to Kakutani [20] is to simu-late Brownian paths from a point in the region until they reach the boundary.The solution is the average of the boundary values reached by the paths.The simulation proceeds in a series of steps each of which takes a particle tothe edge of a bounding box within the boundary region. There is no a priorilimit on the number of steps one particle might require, so again d = 1.For more applications to microelectronics, see Kersch and Moroko� [22].1.1.2 Financial valuationThe value of some �nancial derivatives depends on a whole time series ofrandom 
uctuations, in a way that cannot be replaced by a closed formexpression. For example, collateralized mortgage obligations [4, 37, 38] de-pend on the interest rate at 360 future time periods (for monthly paymentson 30 year mortgages) and on the fraction of mortgage holders prepaying ineach of those 360 time periods. Thus d = 360 if the prepayment levels aremodelled as a deterministic function of interest rates and otherwise d > 360.Similarly, Asian options depend on the average value of a security over anumber of time points and some options involve multiple correlated securitiesat a number of future time points. See Boyle, Broadie and Glasserman [2]and Joy, Boyle and Tan [19] for examples and further references.1.1.3 Ergodic simulations and transientsSome simulations are conducted by following only a single sample path fora very long run. For such simulations to work, the problem must have anergodic property such that one long run simulation converges to the ensembleaverage of many runs. The methods described here are not aimed at thisproblem per se, but can be of use in studying transient phenomena.3



For example, suppose that a queue starts o� empty and we want to knowthe average amount of time required to reach half of its capacity for the �rsttime. It may be better here to simulate a large number of initially emptyqueues than to sample a single queue (and wait for the initial conditions torecur). Once again d =1. For a discussion of the initial transiet problem,see Glynn [13].1.2 Outline of this article1.2.1 BackgroundSection 2 reviews MC and QMC integration methods and introduces nota-tion for them. That section also describes randomized quasi-Monte Carlo(RQMC) methods. These are hybrids of QMC and MC, with at least theaccuracy of the former, and having the data based error estimation methodsof the latter. Section 3 presents an ANOVA (analysis of variance) decompo-sition of square integrable functions over [0; 1)d for d <1. This decomposi-tion may be used to explain for which integration problems QMC might beexpected to improve on MC. Section 4 presents Latin hypercube samplingfor d <1.1.2.2 SurveyThe two leading families of QMC methods are lattice methods and (t;m; s)-nets. Section 5 describes lattice sampling and RQMC versions of it. Sec-tion 6 describes the (t;m; s)-nets and the related (t; s)-sequences and someRQMC versions of them. Section 7 surveys some previous methods for ex-tending (R)QMC to higher dimensions, and gives examples of how to applythem in some of the motivating problems.1.2.3 New resultsSection 8 proposes a new simulation method in which di�erent sets of in-put variables are each handled by (R)QMC. The method is called Latinsupercube sampling (LSS) because it randomizes the run order within setsof input variables in the way that Latin hypercube sampling randomizesstrati�ed input variables, one at a time. Section 9 considers the accuracyof LSS. Theorem 1 gives expressions for the bias and variance of LSS withQMC points. Theorem 2 gives an expression for the variance of LSS usingRQMC points. This section also shows how to use replications to estimatethe accuracy of LSS, and explains why LSS with RQMC is more reliable4



than LSS with QMC. Section 10 considers the case where d = 1. Usingmartingale truncations, an ANOVA decomposition is developed for squareintegrable functions on [0; 1)1. This decomposition is then used to studyLHS and LSS for d =1. Some conclusions are given in Section 11.2 Monte Carlo, Quasi-Monte Carlo and hybridsAll of the methods we consider in this paper estimate the integral I byÎ = În = 1n nXi=1 f(Xi) (1)for carefully chosen points Xi = (X1i ; : : : ;Xdi ) 2 [0; 1)d. That is, we donot consider here the e�ects of weighting the observations unequally. Someimportance sampling and periodization techniques appear to weight the ob-servations, but can be written as in (1) by subsuming the weight into f .2.1 Monte CarloThe simplest Monte Carlo method for estimating I takes n points Xi inde-pendently drawn from the uniform distribution on [0; 1)d. In practice thisis almost always approximated by deterministic points taken from a pseu-dorandom number generator, but we will analyze the pseudorandom pointsas though they were genuinely random.Under Monte Carlo sampling, and mild conditions on f , the estimatorÎ is a random variable with expectation I and variance �2=n where �2 =R (f(X) � I)2dX. (Here and elsewhere, when no region of integration isspeci�ed, the whole space [0; 1)d is understood.) Thus the error in Î is oforder n�1=2 in probability. Classical methods can achieve rates much betterthan n�1=2, for small d and well behaved f , but the MC rate is remarkablein that it holds for all dimensions with only weak conditions on f .2.2 Quasi-Monte CarloThe accuracy of MC is adversely a�ected by gaps and clusters that ariseby chance among the Xi. Equidistribution, or Quasi-Monte Carlo methodsuse deterministic lists of points X1; : : : ;Xn that are constructed to avoid,to the extent possible, gaps and clusters. For details on QMC methods seethe monograph by Niederreiter [29]. 5



To quantify the uniformity of a list of points, one uses a distance betweenthe continuous uniform distribution on [0; 1)d and the discrete uniform dis-tribution taking Xi with probability 1=n for i = 1; : : : ; n. The most widelystudied distance measure is the star discrepancyD�n = D�n(X1; : : : ;Xn) = sup0�cj<1 ������ dYj=1 cj � 1n nXi=1 dYj=1 10�Xji<cj ������ (2)which compares the continuous and discrete uniform distributions on hyper-rectangles with one corner at the origin. Some other discrepancy measuresappear in [29] and Hickernell [16] has further generalized discrepancy.Star discrepancy is related to integration accuracy by the Koksma-Hlawkainequality jÎ � Ij � D�n(X1; : : : ;Xn)VHK(f) (3)where VHK(f) is the total variation of f in the sense of Hardy and Krause.See [29] for the de�nition of VHK, and [16] for analogues of the Koksma-Hlawka inequality with other notions of discrepancy.It is possible to construct an in�nite sequence of points X1;X2; : : : alongwhichD�n = O(n�1(log n)d). This proves that one can achieve an asymptoticrate better than that of MC, at least for integrands with VHK(f) <1. Theerror bound (log n)d=n, increases with n until n � exp(d), so clearly forlarge d it takes impractically large samples before the asymptote is relevant.Yet empirical studies suggest that QMC is more accurate than MC on somereal problems with practical sample sizes. Unfortunately, the superiorityof QMC over MC appears to take greater n to set in when d is large. SeeMoroko� and Ca
isch [26, 27], Sarkar and Prasad [41] and van Rensburgand Torrie [49] on these issues.2.3 Randomized quasi-Monte CarloA serious drawback with QMC methods is that there is no practical way toestimate the size of Î � I from the function evaluations f(X1); : : : ; f(Xn).Estimating VHK from data appears to be extremely di�cult, and in anyevent, the inequality (3) can be quite conservative.By comparison, in the basic MC method above, the estimate�̂2 = 1n� 1 nXi=1(f(Xi)� Î)2
6



has expected value �2 and the central limit theorem allows one to constructapproximate con�dence intervals for I. For more complicated MC methods,one can replicate the whole procedure independently a number of times.Hybrid methods have been developed to combine the best of MC andQMC. The history of this idea is outlined in [34]. The general approach isto introduce some randomness into a QMC procedure, while retaining theequidistribution properties of the QMC method. If the resulting estimate Îis unbiased, then by using several independently randomized estimates onecan use standard statistical methods to combine the estimates and estimatethe variance of the result.3 Functional ANOVAsThis section describes some ways to decompose the integrand f into a sumof simpler functions. We begin with notation. The set A = f1; 2; : : : ; dgdenotes the coordinate axes of [0; 1)d. We assume here that d <1, treatingthe in�nite dimensional case in Section 10. The letter u denotes a subset ofA, juj is the cardinality of u and�u is the complement of u with respect toA.We use these subsets as superscripts: [0; 1)u denotes the space of values forthose components Xj of X, with j 2 u. SimilarlyXu denotes the coordinateprojection of a point X onto [0; 1)u and, in integrals, dXu = Qj2u dXj . Thecase u = ; can require special attention, either by specifying a convention,or by restricting some operations to juj > 0.Under the mild conditions that R f(X)2dX < 1 and f is measurable,we can write f(X) as a sum of 2d orthogonal functions, one for each subsetof the input axes f(X) = Xu�f1;2;:::;dg fu(Xu): (4)Here fu only depends on the components ofX inXu, though for conveniencewe may write it as fu(X), or as fu(Xv) for v � u, functions that are constantover values of Xj with j 2 v � u.The ANOVA decomposition is orthogonal in that R fu(X)fv(X)dX = 0whenever u 6= v. The functions fu are de�ned recursively byfu(Xu) = ZZ:Zu=Xu�f(Z)�Xv�u fv(Xu)�dZ�u (5)where the sum is over strict subsets v 6= u. If j 2 u, then R 10 fu(X)dXj = 0at any value of Xu�fjg. 7



Examples make equation (5) clearer. First of all f; = R f(Z)dZ = I.Then ffjg(Xj) = RZ:Zj=Xj (f(Z) � I)Qk 6=j dZk and so on. The functionffjg(Xj), called the \main e�ect of Xj" can be thought of as the averagee�ect of the j'th variable on the response function f(X). The functionffj;kg(Xfj;kg) describes the joint e�ect, or interaction, of variables Xj andXk on the response, beyond their individual contributions ffjg and ffkg.More generally fu is the juj-factor interaction among variables Xu.The term ANOVA is an acronym for \analysis of variance". The decom-position is completely analogous to the one used in experimental statistics,for functions over Cartesian products of �nite sets. The variance being an-alyzed is �2 = R (f(X)� I)2dX and one easily �nds that�2 =Xu �2u = Xjuj>0�2uwhere �2u is the variance of fu. That is �2u = R fu(Xu)2dXu if u 6= ;, and�2; = 0. This ANOVA decomposition for functions is due to Hoe�ding.Takemura [46] gives a history. Notable contributions were made by Efronand Stein [8], Stein [45] and Wahba [51]. The notation used here is basedon Owen [32]. Hickernell [16] has proposed a family of generalizations.The best (in mean square) constant approximation to f is I = f;. Stein[45] notes that the best additive approximation to f isfadd(X) = I + dXj=1 ffjg(Xj): (6)Furthermore the best approximation to f using sums of functions dependingon m or fewer components is Pjuj�m fu(Xu), and the best approximationto f using variables contained in the set u is Pv�u fv. We note for later usethat Z[0;1)v f(X)dXv = Xu��v fu(X): (7)For the integration rule given by (1) we have Î =Pu Îu whereÎu = 1n nXi=1 fu(Xi):Easily Î; = I and so Î � I =Pjuj>0 Îu.8



3.1 E�ective dimensionCa
isch, Moroko� and Owen [4] de�ne two notions of the e�ective dimensionof an integrand, using the ANOVA decomposition.De�nition 1 The e�ective dimension of f , in the superposition sense, isthe smallest integer dS such that Pjuj�dS �2u � 0:99�2:A method with good uniformity in every dS dimensional projection ofX1; : : : ;Xn can be expected to work well with functions of e�ective dimen-sion dS (or smaller), in the superposition sense.De�nition 2 The e�ective dimension of f , in the truncation sense, is thesmallest integer dT such that Pu�f1;2;:::;dT g �2u � 0:99�2.Amethod with good uniformity in the �rst dT input variables ofX1; : : : ;Xncan be expected to work well with functions of e�ective dimension dT (orsmaller), in the truncation sense.To illustrate the di�erence, a linear function has dS = 1 but can havedT = d. Clearly the cuto� threshold 0:99 is arbitrary and could be replacedby another.4 Latin hypercube samplingFor one dimensional integration, the midpoint rule uses integration pointsgiven by Ai = i� 0:5n ; i = 1; : : : ; n: (8)Here and below we follow the convention that Ai denote the points of anintegration rule used in constructing another integration rule. The pointsXi denote the integration rule that is used to construct Î.If we view the midpoint rule as a one dimensional quasi-Monte Carlosampling scheme, the following strati�ed sampling methodAi = i� Vin ; i = 1; : : : ; n (9)where the Vi are independent U(0; 1] random variables, can be thought ofas an RQMC method. In (9) each interval [(k � 1)=n; k=n) for k = 1; : : : ; nhas exactly one uniformly randomly located point in it.9



A variant of Latin hypercube sampling can be constructed from d mid-point rules, by randomizing their run orderXji = A�j(i) = �j(i) � 0:5n : (10)The �j are independent uniform random permutations of the integers 1; : : : ; n.Each of the n! possible permutations has an equal chance of being used.The original de�nition of Latin hypercube sampling of McKay, Conoverand Beckman [24], was based on randomizing the run order of d indepen-dently strati�ed samples AjXji = Aj�j(i) = �j(i) � V j�j(i)n = �j(i)� U jin : (11)Here U j1 ; : : : ; U jn are V j1 ; : : : ; V jn in random order, and so the nd randomvariables U ji are also independent with the U(0; 1] distribution. The centeredversion in equation (10) was originally due to Patterson [39] in the setting ofagricultural experiments, while the version in equation (11) was motivatedby computer experiments.In Latin hypercube sampling each coordinate projection of the Xi isnearly uniform. It should therefore be no surprise that when f is nearly asum of univariate functions of the coordinates of X, that Latin hypercubesampling does well.Under Latin hypercube sampling (11), Î is a random variable withE(Î) = I andVLHS(Î) = 1n Z (f(X)� fadd(X))2 dX + o� 1n�= 1n��2 � dXj=1�2fjg�+ o� 1n� (12)where fadd is the additive function closest to f in mean square. See Stein[45] for details.If the integrand is not nearly a sum of univariate functions, then Latinhypercube sampling cannot be expected to improve upon Monte Carlo. Butit never does much worse than Monte Carlo either. For any f with R f2dX <1, we have VLHS(Î) � nn� 1 VMC(Î): (13)Latin hypercube sampling with n > 1 observations is never worse than10



Monte Carlo sampling with n� 1 observations. See Owen [35] for details.5 Lattice Methods and RandomizationsThe de�nitive reference on lattice methods is the book by Sloan and Joe [42].The simplest form of lattice method is the method of good lattice points,or the number theoretic method. Another good reference for these points isHua and Wang [17] and Fang and Wang [9] discuss applications in statistics.For the method of good lattice points, in dimension s,Xji = � i gjn � ; i = 1; : : : ; n; j = 1; : : : ; s (14)where fzg = z�bzc is the fractional part of z (or \z modulo 1") and gj areintegers. The points Xi belong to a lattice. A judicious choice for n and thegj can produce a sequence of points with good equidistribution propertiesin the unit cube, hence the term \good" in \good lattice points".Good lattice points and their generalizations are extremely well suitedto integrating periodic functions with rapidly decaying Fourier coe�cients.Combined with techniques for replacing non-periodic integrands by periodicones having the same integral they are one of the leading families of Quasi-Monte Carlo integration methods.5.1 Cranley-Patterson RotationsCranley and Patterson [5] randomize the good lattice points as follows. LetAji be the good lattice points for 1 � i � n and 1 � j � s. Let U j beindependent U [0; 1) random variables. Then letXji = fAji + U jg: (15)If one maps the unit interval [0; 1) onto the unit circle by identifying theendpoints, the result of the Cranley-Patterson randomization is to rotatethe n points Aj1; : : : ; Ajn to the right by a distance of U j , with wrap-around.Taking r replicates of these n points and letting r ! 1 produces errorsat the Monte Carlo error rate O((nr)�1=2) but perhaps with a much morefavorable constant than has simple Monte Carlo. Joe [18] uses the samerandomization on more general lattice rules.
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5.2 Orthogonal rotationsThe Cranley-Patterson rotations are natural for periodic functions on theunit cube. However, sometimes points Aji are transformed from indepen-dent uniform random variables to independent N(0; 1) random variablesZji = ��1(Aji ), where � is the normal distribution function, prior to use.Applying Cranley-Patterson rotations to the Ai does not lead to a naturalrandomization of the Zi. One might instead produce a random orthogo-nal matrix Q (see Devroye [7]) and apply it to the rows of A to producerow vectors Zi = AiQ. This technique gets expensive if s is large becausegenerating Q takes O(s3) work.6 Nets and RandomizationsWe begin with more notation. We describe nets as sequences of points inthe cube [0; 1)s, where in most applications s = d. When s > d one simplyselects d of the dimensions to use. When s < d one can apply the compromisemethods of Sections 7 and 8.The integer b � 2 is used throughout as a base for representing points in[0; 1). Thus Xji =P1k=1 xijkb�k where xijk are integers with 0 � xijk < b.6.1 (t;m; s)-nets, (t; s)-sequences and (�; t;m; s)-nets.Here we describe equidistribution methods known as (t;m; s)-nets and (t; s)-sequences. These have been developed by Sobol', Faure, and Niederre-iter and a comprehensive discussion of them appears in the monograph byNiederreiter [29] on which this subsection is based. Some graphical displaysof these input points appear in [23]. We also make two minor variations onNiederreiter's terminology in De�nitions 3 and 4.An elementary interval of [0; 1)s in base b is de�ned as a set of the formB = sYj=1 h tjbkj ; tj + 1bkj � (16)for nonnegative integers kj and tj < bkj . We use Tezuka's [47] term \b-arybox" for \elementary interval in base b".The b-ary box B in (16) is a hyperrectangle of volume b�m where m =Psj=1 kj . In addition to the volume of a b-ary box, the \e�ective dimension"of the b-ary box is a useful quantity.12



De�nition 3 The e�ective dimension of the b-ary box B de�ned in (16) is� = �(B) = sXj=1 1kj>0:For a point X to belong to B requires nontrivial constraints on exactly�(B) of the coordinates Xj . The e�ective dimension of the b-ary box is thesame as the e�ective dimension of the function equal to one in that b-arybox and zero outside of it (in the superposition sense, possibly requiring athreshold higher than 0:99). The unit cube [0; 1)s is the unique b-ary box ofe�ective dimension 0. No b-ary box of e�ective dimension � can have volumelarger than b��.Ideally each b-ary box of volume V should have nV points of the in-tegration rule. Let t � 0 and m � 0 be integers. A �nite sequenceX1; : : : ;Xn 2 [0; 1)s with n = bm is a (t;m; s)-net in base b if every b-ary box of volume bt�m contains exactly bt points of the sequence. Thenet property starts to become relevant at n = bt+1 where it constrains theequidistribution over some b-ary boxes of e�ective dimension 1. It takes atleast n = bt+s points before the net property applies to any b-ary boxes ofe�ective dimension s.The in�nite sequence X1;X2; : : : 2 [0; 1)s is a (t; s)-sequence in base b iffor all m � 0 and all k � 0 the �nite sequence Xkbm+1; : : : ;X(k+1)bm is a(t;m; s)-net in base b. Niederreiter [29] discusses existence and constructionof (t;m; s)-nets and (t; s)-sequences.Smaller values of t imply better equidistribution properties for both(t;m; s)-nets and (t; s)-sequences. An advantage of using nets taken as the�rst n = bm points of a (t; s)-sequences is that one can later increase nthrough a sequence of values n = �bm, 1 � � < b, and �nd that all of thepoints used in Î�bm are also used in Î(�+1)bm . As n increases through thissequence of values, any b-ary box of volume V eventually contains nV of thepoints, and once such a b-ary box is balanced this way, it remains balancedas n increases.The initial �bm points of a (t; s)-sequence are well equidistributed butare not a (t;m; s)-net, unless � is a power of b. Owen [35] introduces thefollowing de�nition to describe such point sets.De�nition 4 Let m; t; � be integers with m � 0, 0 � t � m, and 1 � � < b.A sequence of �bm points in [0; 1)s is called a (�; t;m; s)-net in base b ifevery b-ary box of volume bt�m contains �bt points of the sequence and nob-ary box of volume bt�m�1 contains more than bt points of the sequence.13



Numerical integration by averaging over the points of a (t;m; s)-net hasan error that is O(n�1(log n)s�1), for functions of bounded variation in thesense of Hardy and Krause. See Niederreiter [29] for this result and some re-lated ones. The error attained along a �xed (t; s)-sequence is O(n�1(log n)s).6.2 Base b scrambling of the unit cubeThe upper bound from the Koksma-Hlawka inequality is very hard to esti-mate, and is usually quite conservative, since it applies to the worst possibleintegrand f for the given points X1; : : : ;Xn. For this reason Owen [34]suggested randomizing the points of a (t;m; s)-net or (t; s)-sequence. Byindependently repeating the randomization and noting how the resultinganswers di�er, it is possible to judge statistically the accuracy of an answer.For this to work it is necessary that the randomization preserve the(t;m; s)-net or (t; s)-sequence structure. Below is a geometric descriptionof the scrambling method. For an algebraic description see [34, 35]. For adiscussion of computational issues see [34].Begin by partitioning the unit cube [0; 1)s along the X1 axis into b par-allel b-ary boxes of the form [a=b; (a + 1)=b) � [0; 1)s�1 for a = 0; : : : ; b� 1.Then randomly shu�e those b-ary boxes replacing them in one of the b!possible orders, each such order having probability 1=b!. Next take eachsuch b-ary box in turn, partition it into b congruent b-ary boxes of volumeb�2 along the X1 axis, and randomly shu�e those boxes. Then repeat thisprocess on b2 b-ary boxes of volume b�3, b3 b-ary boxes of volume b�4 andso, ad in�nitum. In practice this can stop when the b-ary boxes are narrowcompared to machine precision. The full scrambling involves applying theabove operations along the other s� 1 axes X2; : : : ;Xs as well. All of themany permutations used are to be statistically independent, and in practicethey are generated through pseudo-random numbers.If A or Ai is a point in [0; 1)s, let X or Xi be that point's location afterthe scrambling. A sequence (Xi) thereby inherits certain equidistributionproperties of a sequence (Ai) and the individual points in it are uniformlydistributed on [0; 1)s. Owen [34, 35] proves the following two propositions.Proposition 1 If (Ai) is a (�; t;m; s)-net in base b then (Xi) is a (�; t;m; s)-net in base b with probability 1.Proposition 2 Let A be a point in [0; 1)s and let X be the scrambled versionof A as described above. Then X has the uniform distribution on [0; 1)s.14



A consequence of Proposition 2 is that Î is a random variable with ex-pectation I. This holds even if the underlying Ai are not points of a net.Because of Proposition 1, any theorems describing the accuracy of Î basedon a (�; t;m; s)-net with points Ai also holds for the scrambled points Xi.The randomization in scrambled nets can lead to improved accuracy dueto some error cancellation. This appeared to be the case in the simulatedexamples in [34] and in [36] it is shown thatVPNET(Î) = O(n�3(log n)s�1) (17)under mild smoothness conditions on f . Thus the typical error is of ordern�3=2(log n)(s�1)=2, an improvement on the rate attained by unrandomizednets. Hickernell [15] shows that scrambled nets have an L2-star discrepancythat attains the best possible rate.The variance in scrambled net simulation satis�esVPNET(Î) = Xjuj>0VPNET(Îu): (18)The results in [36] suggest that VPNET(Îu) may become appreciably smallerthan VMC(Îu) at around n = bt+juj. Moreover VPNET(Îu) � 2:7183VMC(Îu)for any scrambled net with t = 0 in any dimension s � 1 with any integrandf , so least favorable integrands can't make randomized nets much worsethan simple Monte Carlo.6.3 Cranley-Patterson RandomizationIt is also possible to apply the Cranley-Patterson randomization of Section5.1 to points from (t;m; s)-nets and (t; s)-sequences. See Tu�n [48] fordetails. This randomization does not preserve equidistribution over b-aryboxes, but it does produce unbiased estimates Î whose variance can beestimated by replication.6.4 Nets in very high dimensionsThere are limitations to the applicability of nets in very high dimensions.Consider d = 50. For a (0; s)-sequence to be usable requires s � 50, which inturn requires b � 50. Niederreiter [28] gives constructions of (0; s)-sequencesfor prime powers b � s. The natural choice for d = 50, is the smallest one,b = 53. Because 53 is a prime, the resulting sequence is a Faure sequence[10]. Natural sample sizes with such a base are powers of 53. The superior15



asymptotic rate of convergence of these may be expected to set in aftern = 5350 := 1:64 � 1086. Unless n � 532 = 2809 the net property does notgaurantee balance for any b-ary box of e�ective dimension larger than one.Another approach is to use a (t; s)-sequence with smaller b, and in thetradeo� take a larger t. The most widely studied version of this strategytakes b = 2, the smallest possible base. For b = 2 and s = 50, the presentlybest possible value of t is 77, by a construction of Niederreiter and Xing[30]. The superior asymptotic rate of convergence with this sequence maybe expected to set in after n = bt+s = 2127 := 1:70 � 1038. This is thesmallest value of n for which we can partition the unit cube into b-ary boxesof e�ective dimension 50 and be sure that each such box has at least onepoint in it.Widely used software for generating nets has a limit on the dimension.For instance, the code of Bratley, Fox and Niederreiter [3] has by default alimit of d = 12.The asymptotic advantage of nets, scrambled or otherwise, in dimension50 appears to take an impractically large number of observations to set in,and the matter is worse for d = 1000 or d =1. Yet as described in Section11 and seen in [4, 37, 38] it is possible for high dimensional functions to beintegrated accurately. This may be because the functions involved have alow e�ective dimension.7 Padding TechniquesThe full input sequence for the simulation is a n by d matrix Xji of numbersbetween 0 and 1. An (R)QMC method may be used for s of the columns ofthis matrix. Some simple techniques below may be used to \pad out" thematrix.7.1 Padding by Monte CarloA natural solution is to pad out the input matrix with independent U [0; 1)random variables. Suppose for example, thatAi are the points of an (R)QMCmethod in s dimensions. Then one might take Xji = Aji for 1 � j � s andXji = U ji for j > s where U ji are independent U [0; 1) random variables, inde-pendent of the randomization, if any, used in constructing A. This approachis taken by Spanier [44] and Okten [31] studies the resulting discrepancy.The success of this method will depend in part on making a good choiceof which s variables to use (R)QMC on. One might try to identify the most16



important subset u of s variables, perhaps by their ANOVA contributionPv�u �2v . These are not necessarily the �rst s variables in any natural order,and it may take subject matter knowledge, guesswork and experimentationto make a good choice. A more realistic goal may be to pick those variableswith a large value of Pjvj�d?;v�u �2v , where d? is the largest dimensionalityin which good equidistribution may be expected of the projected (R)QMCpoints.7.2 Padding by Latin hypercube samplingIt is possible to pad out (R)QMC in a way that is better than simple MonteCarlo. For any choice n, one can pad with a Latin hypercube sample of nrows and d�s columns. This is even true if d > n. In simulations with largeenough d (d can be in�nite) it may take a \sampling without replacement"trick to generate only those rows of the column Xj that the simulation reallyuses. Owen [33] gives an example in which a randomized orthogonal arraysample is padded out with a Latin hypercube sample.Padding with Latin hypercube samples instead of independent samplesimproves the accuracy of integration for the main e�ects in the d�s variablesnot sampled by a net. In principle, this may make one want to change whichsubset u of s variables to apply (R)QMC to. Consider a variable that has anenormous but purely additive e�ect on f . That variable is handled poorlyby Monte Carlo but Latin hypercube sampling handles it as well as most(R)QMC methods do. If one is padding by MC then this variable should beamong the (R)QMC variables, but if one is padding by LHS then it shouldnot be among the (R)QMC variables. A natural choice would be the subsetu for which P1<jvj;v�u �2v or perhaps P1<jvj�d?;v�u �2v is maximized.A disadvantage of Latin hypercube padding is that one cannot add moresimulation points to a Latin hypercube sample of size n and still have a Latinhypercube sample. One remedy, used by Ca
isch, Moroko� and Owen [4] isto use r independent Latin hypercube samples of n0 rows and d� s columnswhere n = rn0. Using blocks of Latin hypercube samples allows one to selectsample sizes that are multiples of the block size n0. It makes sense to choosea block size which is a divisor of the natural sample sizes for the (R)QMCmethod being used. For nets, a power of b seems reasonable.7.3 Padding with (R)QMCFor simplicity suppose that d = ks. It would clearly not work to repeat ans dimensional (R)QMC method k times taking Xi = (Ai; Ai; : : : ; Ai), where17



Ai are the s dimensional points of an (R)QMC method. For example, thepoints Xji and Xki where j = k mod s would then lie on a diagonal in theXfj;kg plane.Similarly, using k independent randomizations of a single underlyingQMC point set cannot be expected to work well in practice either. Forrandomized nets, suppose Xj and Xk are both randomizations of A1 takenfrom a (t;m; s)-net in base b with m > t. There are n=b points with 0 �A1i < 1=b. If 0 � A1i < 1=b, then �j=b � Xji < (�j + 1)=b and �k=b �Xki < (�k + 1)=b for some randomly chosen 0 � �j; �k < b. This impliesthat a box [�j=b; (�j +1)=b)� [�k=b; (�k +1)=b) of volume b�2 has a fractionb�1 of the points in the Xfj;kg plane. The \diagonal" referred to in theprevious paragraph is rearranged, but not enough to produce a uniformdistribution in the Xfj;kg plane. Similarly, the randomization of Cranley-Patterson (Section 5.1) produces points (fA1i +U jg; fA1i +Ukg) so that thediagonal line is shifted to a new random line with \wraparound".Another tempting trick that fails is to apply various nets in relativelyprime bases. One might consider using Faure sequences, (0; p)-sequences inbase p for primes p = 2; 3; 5; : : : until the sum of primes used is greater thanor equal to d. This does with Faure sequences what the Halton sequencedoes with generalized van Der Corput sequences. One naively expects, forexample, that given an inputXj generated in base 2 and an inputXk gener-ated in base 3 that all boxes of the form [�j=2; (�j+1)=2)� [�k=3; (�k+1)=3)for integers �j 2 f0; 1g, �k 2 f0; 1; 2g would each have one sixth of the pointsXfj;kgi , when n is a multiple of 6. They don't. Faure [11] (Section 6) sug-gests something similar but reports in a personal communication that hethinks it's not a good idea. As explained by Niederreiter (personal commu-nication), there is no reason to expect this method to work, because unlikethe Halton setting, there is no analogue of the Chinese remainder theoremto apply here.7.4 Reducing E�ective DimensionWhen one plans to use (R)QMC points on some inputs and padding forthe others, one may be able to do more than simply choose the importantvariables for QMC. In some cases one can rewrite the integrand in a way thatputs a greater amount of the variation into a small number of inputs. Forexample, when the inputs are used to construct Brownian paths a Brownianbridge encoding as in [4] makes the �rst few input variables more importantthan the regular encoding.Acworth, Broadie and Glasserman [1] use an encoding based on princi-18



pal components for Brownian motion. The �rst 5 principal components ofBrownian motion explain about 96% of the variation in the Brownian path.Thus it may pay to use an (R)QMC method on these variables but not onthe others.Fox [12] describes some additional settings where hybrids may be ap-plied. For discrete event simulation, with a Poisson arrival process, Foxsuggests �rst drawing the number of arrivals, then the median arrival time,then a sequence of intermediate times. Fox recommends using QMC on theearlier variables and MC for the remainder. Another possibility he consid-ers is recursively splitting the time interval and using binomial sampling todetermine how many observations to put in each subinterval.Yet another recommendation is for simulations requiring �nite indepen-dent samples Z1; : : : ; Zd from some distribution. There Fox suggests usingQMC to generate some or all of the order statistics and then MC to gener-ate the remaining order statistics, if any, as well as the random allocationof order statistics to sample values.8 Latin Supercube Sampling8.1 IntroductionIn Latin supercube sampling (LSS) one takes a list of QMC point sets orRQMC point sets and randomizes their run order the same way that Latinhypercube sampling randomizes the run order of the midpoint and strati�edtechniques.Let A = [kr=1Ar with Ar \ Ar0 = ; for r 6= r0 be a partition of thesimulation variables into k nonempty subsets. Letting sr = jArj we havesr � 1 and Pkr=1 sr = d. Let X ri 2 [0; 1)Ar for i = 1; : : : ; n and r =1; : : : ; k. In practice these X ri will ordinarily be points of an sr dimensional(R)QMC method. For r = 1; : : : ; k let �r(i) be independent uniform randompermutations of the integers 1; : : : ; n. Then a Latin supercube sample (LSS)is formed by taking Xi = (X 1�1(i);X 2�2(i); � � � ;X k�k(i)): (19)Equation (19) assumes that the variables in Ar come before those inAr0 whenever r < r0. This is not at all necessary. The variables can beinterleaved in any order, taking XAri = X r�r(i). The ordering assumption ismade solely to simplify notation.In words, the �rst s1 columns in the LSS are obtained by randomly19



permuting the run order of the QMC points X 11 ; : : : ;X 1n , the next s2 columnscome from an independent permutation of the run order of X 2i and so on.The best results may be expected if one can arrange that variables thatinteract most strongly are grouped into a subset Ar. In the extreme case,suppose that �2u = 0 unless u � Ar for some r. For simplicity suppose alsothat each sr = s. In this case the error in LSS is the sum of k (R)QMCerrors, one from each subset of axes. One then has an integration rule for a ddimensional function, that converges at a rate usually seen in s dimensionalproblems. More realistically, one might be able to arrange for most of thevariance in the function f to take place within subsets Ar of axes. Then theresidual f(X)� I � kXr=1 X0<juju�Ar fu(X)is small, and Section 9 shows that this residual contributes to the integrationerror at essentially the Monte Carlo rate.How could LSS randomization of QMC work when padding with multipleRQMC randomizations, as in Section 7.3 does not work? Consider againinput variablesXj and Xk which are both randomizations of the same QMCcolumn A1. Suppose that j 2 A1 and k 2 A2. With RQMC randomizationalone, Xji andXki are both images of the same pointA1i . By randomizing runorder, LSS breaks the link between Xji = A1�1(i) and Xki = A1�2(i), because�1(i) is independent of �2(i).8.2 PartitionsThe best way to partition axes is problem speci�c and may take skill toguess. In addition to the variation considerations above, software engineer-ing complications arise. It may be much more convenient to group togethervariables used within a software module than to group together variablesthat span several modules.For example, in particle transport simulations, it may be best for thevariables that determine the r'th collision to be drawn from the same ran-domization of the (R)QMC points. Or, it might be better to use one(R)QMC sequence for the change in x component direction for s consec-utive collisions, another for the change in y component direction and soforth. Which is better depends on which input variables \interact most"and this can be expected to depend on what response is being measured.In a �nancial simulation with k Brownian paths, it may make senseto select 5 principal components of each path, apply an (R)QMC method20



to each of them with LSS and then pad out the other variables by LHS.Alternatively, it may be better to group the k �rst principal componentstogether then the k second components and so on.In a discrete event simulation each source of arrivals could receive itsown set of (R)QMC variables. Similarly the variables describing servicetimes could be bundled within one or more (R)QMC sets.9 LSS Accuracy9.1 Finite k, QMCWe begin with Latin supercube sampling of a �nite number of �nite setsof variables. Let X r 2 [0; 1)sr , where 1 � sr < 1 for r = 1; : : : ; k < 1.Suppose that the points X ri for i = 1; : : : ; n are a nonrandom sr dimensionalintegration scheme and that d =Pkr=1 sr. The motivating case is where onehas an sr dimensional QMC method for each set of points X ri .For independent random permutations �r of 1 through n, letXi = (X 1�1(i);X 2�2(i); � � � ;X k�k(i))de�ne an integration point in [0; 1)s. We are interested in the error Î � Iwhere Î = n�1Pni=1 f(Xi) as always.The integration error may be decomposed asÎ � I = (Î � IG) + (IG � I) (20)where IG = 1nk nXi1=1 nXi2=1 � � � nXik=1 f(X 1i1 ;X 2i2 ; � � � ;X kik) (21)is the average of f over a perhaps very large grid containing all nk integrationpoints that could possibly be sampled by LSS. De�ne�2G = 1nk nXi1=1 nXi2=1 � � � nXik=1�f(X 1i1 ;X 2i2 ; � � � ;X kik)� IG�2 (22)and�2G(r) = 1n nXir=1� 1nk�1 nXi1=1 � � � nXir�1=1 nXir+1=1 � � � nXik=1 f(X 1i1 ; � � � ;X kik)� IG�2:21



Lemma 1 Under LSS with deterministic QMC point sets,E(Î � ÎG) = 0; (23)and for n > 1V (Î � ÎG) � 1n� 1��2G � kXr=1 �2G(r)� (24)V (Î � ÎG) � 1n �1� 1(n� 1)2���2G � kXr=1�2G(r)�: (25)Proof: Consider the function h de�ned on [0; 1)k throughh(z1; : : : ; zk) = f(X 11+bz1nc; : : : ;X k1+bzknc);where as usual bxc denotes the smallest integer less than or equal to x.Now for any permutations �1; : : : ; �k of 1; : : : ; n the Latin hypercube samplewith Zji = (�j(i)�U ji )=n, the centered version of Latin hypercube samplingwith Zji = (�j(i) � 1=2)=n, and the Latin supercube sample with Xi =(X 1�1(i); � � � ;X k�k(i)) all yield the same function values Yi = f(Xi) = h(Zi).That randomly centered Latin hypercube sampling of h is unbiased es-tablishes (23). The other two results follow from equation (3.2) of [33] whichtreats the variance of centered Latin hypercube samples, as a special caseof randomized orthogonal arrays. The quantity �2G is the variance of h and�2G(r) is the discrete version �2frg for h.The performance of LSS sampling depends on the quantities IG, �2G and�2G(r), which involve approximate integrals of f and related quantities, basedon the QMC point sets X ri . LetErn = Ern(f) = supX2X�Ar �����ZZ:Z�A=X f(Z)dZr � 1n nXi=1 f(X 1; : : : ;X ri ; : : : ;X k)�����denote the worst error obtained by the integration rule X r1 ; : : : ;X rn in inte-grating f over X r with the other components of X held �xed. If the QMCpoint sets are really superior to MC, then we should have Ern = o(n�1=2).It is well known that the integration error in a product of one dimensionalrules is essentially the sum of the one dimensional integration rule errors.See Davis and Rabinowitz [6], Chapter 5.6, who cite Haber [14]. Here wepresent a version for ÎG, a product of multidimensional rules.22



Proposition 3 jÎG � Ij �Pkr=1 Ern:Proof: By de�nition of Ekn ,ÎG �  1nk�1 nXi1=1 � � � nXik�1=1 Z[0;1)Ar f(X 1i1 ; � � � ;X k�1ik�1 ;X k)dX k!+ Ekn= Z[0;1)Ar 1nk�1 nXi1=1 � � � nXik�1=1 f(X 1i1 ; � � � ;X k�1ik�1 ;X k)dX k!+ Ekn :Making k � 1 more comparisons between integrals with respect to X r andintegration rules X ri gives IG � I + Pkr=1 Ern: A similar argument givesIG � I �Pkr=1 Ern:Theorem 1 In Latin supercube sampling, if Ekn(f) = o(n�1=2), thenELSS(Î) = I + o(n�1=2) (26)If also Ern(fufv) = o(n�1=2) for all u; v � A, thenVLSS(Î) = 1n��2 � kXr=1 Xu�Ar �2u + o �n�1=2��: (27)Proof: Equation (26) follows from equation (20), Proposition 3 and Lemma1. If also Ern(fufv) = o(n�1=2) for all u; v � A, then Ern(f2) = o(n�1=2) andso �2G = �2 + o(n�1=2):Similarly, assuming each Ern(fufv) = o(n�1=2), and making use of equation(7) with v = �Ar we �nd�2G(r) = 1n nXir=1�Z[0;1)�Ar f(X 1; � � � ;Xir ; � � � ;X k)dX�Ar � IG�2 + o(n�1=2)= 1n nXir=1� X0<juj;u�Ar fu(X ri )�2 + o(n�1=2)= Xu�Ar �2u + o(n�1=2):Substituting into the variance results of Lemma 1 establishes equation (27).Comparing LSS through (27) with LHS through (37) we see that bothmethods remove all components �2u with juj = 1 from the variance of Î. The23



latter method also removes those higher order components corresponding tou � Ar.As for the case of padding we can obtain a more realistic �nite sampleapproximation VLSS(Î) := 1n��2 � kXr=1 Xjuj�d?;u�Ar �2u�: (28)Here d? is the largest dimension in which one can expect the superiority ofQMC to have set in. The results in [36] suggest that d? could be as large asm� t for a (t;m; s)-net in base b.9.2 Finite k, RQMCSuppose that the RQMC points X ri are used instead of QMC points. Weassume that as a result of their randomization, RQMC points satisfy X ri �U [0; 1)sr . This implies that Xi � U [0; 1)d. We also assume that the random-ization preserves (or enhances) the accuracy of the underlying points. Thisis easiest to establish when the randomization applied preserves the equidis-tribution properties of the QMC method used. Thus Ern(f) = o(n�1=2).Theorem 2 In Latin supercube sampling, with RQMC point sets, if eachXi � U [0; 1)d, then ERLSS(Î) = I: (29)If also Ern(f) = o(n�1=2) and Ern(fufv) = o(n�1=2) for all u; v � A, thenVRLSS(Î) = 1n��2 � kXr=1 Xu�Ar �2u + o �n�1=2��+ o(n�1): (30)Proof: Equation (29) follows because each Xi � U [0; 1)d. There aretwo sources of randomization in RLSS, the RQMC randomization of theunderlying QMC points, and the LSS randomizations of their run orders.Let Q denote all the random variables used in construction of the RQMCpoints X ri . Given Q, we may apply conclusions of Theorem 1,VRLSS(Î) = ERQMC �VLSS(Î j Q)�+ VRQMC �ELSS(Î j Q)�= ERQMC0@ 1n��2 � kXr=1 Xu�Ar �2u + o �n�1=2��1A+ VRQMC(ÎG)24



= 1n��2 � kXr=1 Xu�Ar �2u + o �n�1=2��+ o(n�1):The asymptotic variance formula in Theorems 1 and 2 are essentially thesame. In Theorem 1 there is an asymptotically negligible bias whereas inTheorem 2 there is no bias, though randomness in ÎG may add an (asymp-totically negligible) amount to the variance.9.3 RQMC versus QMC in LSSIn LSS with QMC points the di�erence Î � ÎG makes an asymptoticallynegligible contribution to bias, whereas with RQMC points the e�ect ofÎ � ÎG is an asymptotically negligible increase in variance. This sectionexplains why RQMC is preferred in practice.While Î � ÎG is asymptotically negligible in LSS, a given value of n maynot be large enough that jI � ÎGj � jÎ � ÎGj. In this case the QMC versionof LSS may be misleading, in a way that the RQMC version is not.The accuracy of LSS can be estimated using multiple independent es-timates Î1; : : : ; Îr of I. Standard statistical methods may then be used toestimate the variance in equation (27) or (30), and estimate the variance ofthe pooled estimate I? = 1=rPrh=1 Îh, by1r(r � 1) rXh=1�Îh � I?�2 : (31)In the case of QMC, the value of ÎG� I is constant in each replicate andE(I? � I) = E(Îh � I) = IG � I. Increasing the number r of replicates willnot decrease this source of error. Furthermore the variance estimate (31)will not re
ect the error ÎG � I, and hence will be misleadingly small.By contrast, in the case of RQMC, each independent replication of theLSS permutations can be done with independently generated QMC points.Then ÎG� I has mean zero and varies independently from replicate to repli-cate. The variance contribution of ÎG�I thus decreases with r. Furthermorethe 
uctuations in ÎG � I are captured in (31).In some cases we might be interested in comparing the magnitude ofÎ � ÎG with that of ÎG � I. With the RQMC version of LSS both errorscontribute to variance. Standard statistical experimental designs can beused to compare these variance components. One can vary the RQMCpoints r1 times and for each of them vary the LSS randomization r2 times.Then an analysis of the r1r2 replicates would allow us to infer whether n is25



large enough that jI � ÎGj � jÎ � ÎGj.10 In�nite Dimensional versions10.1 Issues when d =1The in�nite dimensional case needs to be treated with some extra care. Forexample, in �nite dimensional Latin hypercube sampling, one may proceedby showing thatVLHS(Î) = 1nV (f(X1)) + n� 1n CovLHS(f(X1); f(X2)):Then CovLHS(f(X1); f(X2)) = E((f(X1) � I)ELHS(f(X2) � IjX1)), andgiven X1 the location of X2 is uniformly distributed over a set of volume(1 � 1=n)d. But if d = 1 this set has volume zero, calling into questionaverages over it.An ANOVA on in�nitely many dimensions also requires some care, be-cause there are uncountably many subsets of f1; 2; : : :g among which topartition the variance. Also if juj =1 then the de�nition of fu in equation(5) involves an uncountable sum over all proper subsets of u. What wouldwe make of an ANOVA e�ect fu for juj =1, such as an interaction amongall components Xj for which j is prime? Fortunately, we only need to use�nite subsets u, and there are only countably many of these.10.2 Martingale truncationIn the in�nite dimensional examples of Section 1.1, one expects that f shouldbe \almost �nite dimensional", in that the �rst s dimensions for some possi-bly large s should capture virtually all of the important variation in f . Thisexpectation is borne out, whenever R[0;1)1 f(X)2dX <1.Let 1 :s denote the set f1; 2; : : : ; sg of leading variables. There are anumber of ways to approximate an in�nite dimensional f by a function ofX1:s. One could simply replace each Xs+1;Xs+2; : : : by a convenient valuesuch as 0:5 or 0:0, e�ectively turning f into a function of s variables. Or onecan replace f(X) by its minimum (or maximum) value over Xs+1;Xs+2; : : :with X1:s held �xed. Or one can replace f(X) by its expectation overXs+1;Xs+2; : : : with X1:s held �xed. This latter approximation is mostconvenient theoretically because it allows the use of martingale methods.See Williams [53]. We do not give a rigorous treatment of martingales here.26



Now de�nef s(x1; : : : ; xs) = E(f(X)jX1 = x1; : : : ;Xs = xs); (32)where expectation is taken over independent Xj ; j � s+ 1 having a U [0; 1)distribution. When 1:s � u the function f s(Xu) is taken to mean f s(X1:s)ignoring any coordinates in 1:s� u. For s = 0 we take f0(Xu) = I for anyu. The sequence f s(X); s � 0 is a martingale, by Levy's upward theorem(Chapter 14.2 of [53]), when the Xj are independent U [0; 1) random vari-ables. The key martingale property is that E(f s+1(X)jX1:s) = f s(X). Inthis paper f2 always means the square of f and never means f s with s = 2.Because we assume E(f(X)2) < 1 the martingale is bounded in L2.Thus as s ! 1, we have f s(X) ! f(X) in L2 and pointwise. The L2convergence means thatlims!1E �(f(X) � f s(X))2� = 0: (33)The pointwise convergence is \almost sure". That is lims!1 f s(X) = f(X)holds on a subset of [0; 1)1 having probability one.10.3 ANOVA with d =1To study functions over in�nite dimensional domains we �rst truncate thedimension, replacing f by some f s, and then apply a �nite dimensionalANOVA to f s. We begin by de�ning ANOVA terms for f and for thetruncated functions f s. Then Proposition 4 shows that the two de�nitionsare compatible.The in�nite dimensional ANOVA enjoys two key properties of the �-nite dimensional ANOVA: Proposition 5 shows that the in�nite dimensionalfunction is still a sum of its ANOVA components, and Proposition 6 showsthat the variance decomposes into a sum of terms for each component.De�nition 5 For d = 1 and juj < 1 de�ne fu by equation (5). Forjuj =1 take fu(X) = 0 for all X.De�nition 6 For u � 1:s let f su be the ANOVA term for u obtained byreplacing f by f s in d = s dimensional ANOVA de�nition (5). For u 6� 1:s,take f su = 0.Proposition 4 If s <1 and u � 1 : s, then f su = fu.27



Proof: Consider �rst u = ;. For s � 1,f s; = Z[0;1)s f s(X1:s)dX1:s = E(f(X)) = f;by the de�nition (32) of f s. Now suppose that f su = fu whenever juj < k,for k � 0. Then from the de�nition (32) of f s and by (5), we get f su = fufor u � 1:s, for juj � k. By induction on juj, it now follows that s <1 andu � 1 : s implies f su = fu :In the �nite dimensional case, the identity f =Pu fu holds everywheresimply by the de�nition of the highest order interaction ff1;:::;dg. For d =1the decomposition is more subtle. De�nition 5 asserts that in�nite orderterms vanish. But it remains to prove thatf(X) = X0�juj<1 fu(X): (34)Proposition 5 If E(f2) < 1 then equation (34) holds almost surely andin L2.Proof: In the chain f(X) = lims!1 f s(X)= lims!1 Xu�1:s f su(X)= lims!1 Xu�1:s fu(X)= Xjuj<1 fu(X)the �rst inequality holds almost surely and in L2 because the martingale isbounded in L2, the second is exact from the �nite dimensional ANOVA, thethird follows from Proposition 4, and the fourth follows from two di�erentways of listing all �nite subsets of the positive integers.Proposition 6 If E(f2) <1 then�2 = Z (f(X)� I)2dX = X1�juj<1 Z fu(X)2dX: (35)
28



Proof: For any s � 1 we may write�2 = Z (f(X)� f s(X) + f s(X)� I)2 dX= Z (f(X)� f s(X))2dX + Z (f s(X)� I)2dX (36)� Xjuj>0u�1:s Z fu(X)2dX:Taking the limit as s!1, we �nd �2 �P1�juj<1 R fu(X)2dX:For � > 0 choose s0 so that R (f s(X) � f(X))2dX < � whenever s �s0. The decomposition (36) now leads to P1�juj<1 R fu(X)2dX > �2 � �.Letting �! 0 establishes (35).10.4 LHS with d =1Because eachXi is individuallyU [0; 1)1 it follows that ELHS(Î) = EMC(Î) =I. Where it makes no di�erence, the subscript LHS or MC may be droppedfrom the expectation symbol. Because they are both unbiased, LHS and MCcan be compared through their variances. We show below that the varianceunder LHS is a sum of contributions from each ANOVA term.The main point of this subsection is to extend two results from �nitedimensional LHS to the in�nite dimensional case: Lemma 2 shows that LHSnever has a much larger variance than MC, and an informal description ofthe results of Lemma 3 below is thatVLHS(Î) := 1n��2 � 1Xj=1�2fjg�: (37)So Latin hypercube sampling of the in�nite dimensional cube also removesthe variance contribution of an additive approximation to the integrand.Using the ANOVA decomposition of Section 10.3 we writeÎ � I = 1n nXi=1 X1�juj<1 fu(Xi) = X1�juj<1 Îu:The integration error in in�nite dimensions is a sum of contributions fromdi�erent ANOVA terms. Because the ANOVA terms are orthogonal, thesecontributions are uncorrelated under MC. This also holds under LHS.29



Proposition 7 If R[0;1)1 f(X)2dX <1 thenVLHS(Î) = X1�juj<1VLHS(Îu):Proof: First we give the steps in the proof, then we justify them.VLHS(Î) = 1n2 nXi=1 nXi0=1 X1�juj<1 X1�ju0j<1E(fu(Xi)fu0(Xi0))= 1n2 nXi=1 nXi0=1 X1�juj<1E(fu(Xi)fu(Xi0))= E X1�juj<1� 1n nXi=1 fu(Xi)�2!= X1�juj<1VLHS(Îu):The �rst, third and fourth equalities above follow from expanding andcollecting terms. To demonstrate the second equality, we need to show thatE(fu(Xi)fu0(Xi0)) = 0 whenever u 6= u0.Let u 6= u0 be �nite subsets. Without loss of generality there is somej0 2 u with j0 62 u0. The desired result follows because fu integrates to zeroover Xj0 . FormallyE(fu(Xi)fu0(Xi0)) = E �E �fu(Xi)fu0(Xi0) j Xji0 ; j 2 v;Xji ; j 2 u� fj0g��= E �fu0(Xi0)E �fu(Xi) j Xji ; j 2 u� fj0g��= 0regardless of whether i = i0:Lemma 2 For n > 1 and 1 � d � 1,VLHS(Î) � nn� 1VMC(Î):Proof: If R f(X)2dX =1 then VMC(Î) =1 and the inequality is trivial,though worthless. Suppose that R f(X)2dX < 1. If d < 1 the inequal-ity holds by (13). If d = 1, the inequality follows by the expansion inProposition 7 followed by a term by term application of (13).30



Lemma 3 If R[0;1)1 f(X)2dX <1 then for any � > 0VLHS(Î) � 1n��2 � 1Xj=1�2fjg + ��+ o� 1n� ; (38)and VLHS(Î) � 1n��2 � 1Xj=1�2fjg � ��+ o� 1n� : (39)Proof: It follows from Proposition 7 thatVLHS(Î) = 1Xj=1VLHS(Îfjg) + X1<juj<1VLHS(Îu): (40)By Lemma 2, the second term in (40) may be bounded bynn� 1 X1<juj<1VMC(Îu) = 1n� 1��2 � 1Xj=1�2fjg�:We split the �rst term of (40) into two pieces. For any �xed s, we �ndthat Psj=1 VLHS(Îfjg) = o (1=n) by applying equation (12) to the additiveintegrand Psj=1 ffjg. Given � > 0, choose s0 so that E((f � f s)2) < �whenever s � s0. For such s, making another comparison to VMC gives1Xj=s+1VLHS(Îfjg) � 1n� 1 1Xj=s+1 Z f2fjgdX � 1n� 1E((f � f s)2) < �n� 1 :Putting the pieces together, and using 1=(n� 1) = 1=n+ o(1=n) establishesequation (38). Similar techniques establish equation (39).10.5 In�nite LSSSuppose that k =1. The martingale construction used in Section 10 appliesto LSS by taking f r = E(f(X)jX 1; : : : ;X r); r = 0; 1; : : : ;1. Here thetruncation is from an in�nite to a �nite number of QMC rules coveringinput variables that capture virtually all of the variation in f . Thus we canexpect good results from LSS even with k =1.In Theorems 1 and 2, no special use was made of the fact that all the(R)QMC rules had �nite dimension sr. The only problem with having somesr =1 is that it may be impossible to �nd an (R)QMC method in in�nite31



dimensions with Ern = o(n�1=2). Some recent work by Wasilkowski andWozniakowski [52] shows that the error rate O(n�0:677) is attainable for anydimension d <1. If this can be extended to d =1 then LSS with sr =1would work well. There would remain interesting issues in deciding how topartition the input variables to good e�ect with �nite n, when one or moresubsets in the partition can have in�nitely many inputs.11 ConclusionsIn view of results like Bahvalov's theorem (given in [6]) numerical integra-tion in high dimensions is known to be intractable. This means that what-ever method we're using, there are integrands, perhaps even smooth ones,on which we'll get bad results. Sloan and Wozniakowski [43] give anotherintractability result for high dimensions, where smoothness means rapidlydecaying Fourier coe�cients. Of course, intractability does not mean thatwe'll always get bad results in practice.When good results are obtained in integrating a high dimensional func-tion, we should conclude �rst of all that an especially tractable integrandwas tried and not that a generally successful method has been found. Asecondary conclusion is that we might have made a very good choice inselecting an integration method to exploit whatever features of f made ittractable. For example, even if f is virtually linear, simple Monte Carlo willget a bad result if f has a large variance, while some other methods will dovery well.In this paper we've considered methods that can exploit integrands oflow e�ective dimension. Latin hypercube sampling works well on integrandsthat are largely one dimensional in the superposition sense. Methods basedon (R)QMC with padding work well on integrands with low dimensionalstructure among the variables treated by (R)QMC and, if padded by Latinhypercube sampling, one dimensional structure among the other variables.Latin supercube sampling allows the practitioner to exploit still morestructure in the integrand. If much of the variation is concentrated withingroups of a few variables, especially if it is concentrated within low dimen-sional subsets of those variables, then LSS allows us to exploit that structureby grouping those variables within (R)QMC groups.It is not reasonable to expect that these methods will be able to turnhigh dimensional integration, in general, into a tractable problem. But itmay turn out that some broad classes of integration problems have theirvariation concentrated among several small subsets of input variables. And32
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