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Abstract

In the paper an algorithm for design reliability improvement is proposed. Its key part consists
in the computation of the correlations between constraint functions and design variables which are
subsequently used to find the new design iteration. It is shown that the optimal Latin hypercube
(OLH) sampling provides an extremely efficient technique for assessing the values of correlation
coefficients. Since finding the large OLH designs is not a trivial task, a study on the OLH generation
algorithms was performed. Two algorithms were found to be particularly effective, namely, the
columnwise-pairwise algorithm and the genetic algorithm.

The presented strategy proves to be especially useful when alternative gradient-based methods
cannot be used, which is often the case for computationally expensive problems involving noisy and
highly nonlinear responses. The method is best suited for problems where the probability of failure
for the initial design is large and the main interest is to finda more reliable design rather than the
optimal one in the sense of reliability-based optimization.

The method is illustrated with two numerical examples. One model example and one concerning
the problem of thin-walled beam crash.

Keywords: optimal Latin hypercube sampling, reliability-based optimization, genetic algorithms, crash-
worthiness reliability

1 Introduction

Due to the continuous development of computational technology we are now able to build and analyze
more and more refined models of complex nonlinear physical phenomena, e.g. simulate the crash of
a car. Finite element models can now include hundreds of thousands or even millions of elements and
powerful parallel machines are used for simulations. However, what is becoming commonly shared
opinion, by not investigating the influence of unavoidable randomness of model parameters we loose
important information concerning the underlying problem.This may lead in effect to potentially failure
prone design. Designs that perform well for nominal values of their parameters sometimes turn out to
be completely unreliable when the imperfections of the model parameters and operating conditions are
taken into account.

Such a behavior manifests itself particularly for designs resulting from deterministic optimization and es-
pecially in the optimization for crashworthiness. However, due to limitations of technology and computer
resources researchers do not address these problems very often. The papers dedicated to optimizations
in crashworthiness related problems that were published inthe last years, deal almost exclusively with
deterministic, response surface based optimization, see [2, 23, 18, 4, 21].

A remedy for the high probability of failure of the deterministic optimal design can be reliability-based
optimization (RBO). The RBO problem may be formulated in several ways [10, 8]. One way is to
minimize the initial structural cost under the constraintsimposed on the values of probabilities of failure
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corresponding to various limit states, another way is to maximize the system reliability under design con-
straints. RBO algorithms that usually employ first order reliability method (FORM) concepts, see [13],
proved to be efficient in many structural optimization problems but their direct application to crashwor-
thiness optimization problems seems to be rather unrealistic. First attempts of RBO for crashworthiness
were almost always based on some response-surface approximation of the structural response (see eg.
[6]).

The method that is proposed in the current paper is aimed at fast improvement of the design reliability
using a random sampling technique and is especially efficient when only a moderate number of sample
points can be afforded. Though formulated as a method to solve the RBO problem, the solution technique
and the scope of potential applications make the term “design reliability improvement method” more
appropriate than “RBO method”.

The response surface method (RSM) which, when cleverly used, is an excellent tool in solving many
optimization problems may be less reliable for extremely noisy designs, or if there is a high degree
of nonlinearity, especially instability. Since the crash analysis was meant as the main application of
the method presented in this paper, however being far from very strong opinions that question the very
idea of RSM-based crashworthiness optimization [11], it was deliberately decided not to use the RSM
concept. In the paper [23], Stander et al. compared various RSM and random search techniques for the
deterministic optimization. The random search was based onLatin Hypercube (LH) sampling. It was
shown that for some examples, even using small samples the obtained results may be surprisingly good
when compared to RSM-based optimization.

The sampling technique which is the key part of the proposed method is the so-called optimal Latin
hypercube (OLH) sampling. As it will be described in detail in section 3, the rearrangement of LH
points which minimizes an appropriate criterion can produce the design of experiments that is particularly
efficient in predicting statistical properties of a model response. It was proposed to use linear correlation
coefficients as a measure of dependency between model responses (optimization constraints) and design
variables. They are then used to determine the change direction and to select the new design iteration.
The OLH sampling allows to assess the values of correlation coefficient with acceptable accuracy even
for small samples. In the sections 3.1 and 3.2 are presented two efficient algorithms to create large and
medium size OLHs.

Up to now there have been few attempts to use LHs and OLHs in reliability analysis. For example, in
[16] Olsson et al. used LH in the framework of importance sampling method to improve the efficiency
of FORM results, and in [25] optimal symmetric Latin hypercube was used as the plan of experiments
to generate response surfaces that were subsequently used in the most-probable-point search algorithm.
However, both these techniques are much too expensive for our purposes.

The two examples (sections 4 and 5), which illustrate the method, were solved with the M-Xplore module
of the Radioss software [3], co-developed by the author.

2 Presentation of the method

2.1 Problem formulation

LetX = {X1,X2, . . . ,XN} be the vector of independent random variables representinguncertainties of
selected system parameters like: material parameters, geometry, loads, initial and boundary conditions.
Each random variableXi, i = 1, . . . , N , is described by its probability density function (PDF) with the
corresponding mean valueµXi

and standard deviationσXi
. Let us then denote byµ the vector of mean
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values of the random variables
µ = {µX1

, µX2
, . . . , µXN

}. (1)

Assume now thatn out of N mean values are the design variables in our design optimization (design
improvement) problem. To facilitate the formulation it is assumed that the random variables are ordered
in such a way that the firstn elements inµ correspond to the design variablesy. It is then

y = {y1 = µX1
, y2 = µX2

, . . . , yn = µXn}, n ≤ N. (2)

Depending on the nature of a random variableXi, i = 1, . . . , n, its standard deviation may be kept fixed
during the optimization/improvement process or changed according to a fixed coefficient of variation
νXi

= σXi
/µXi

.

The optimization problem can now be stated as follows:

find y ∈ R
n, (3)

that minimizes f(y), (4)

subject to: P[ci(X) ≥ 0] ≥ pa
i , i = 1, . . . ,m, (5)

lyj ≤ yj ≤ uyj, j = 1, . . . , n, (6)

wheref(y) is the objective function,ci(x) are the constraint functions,P( · ) is the probability function,
pa

i are the admissible probabilities andlyj, uyj are the lower and upper bounds, respectively, imposed on
the design variables.

The equations (5) set up the so-called reliability constraints. They state that the constraintsci(x) ≥ 0,
i = 1, . . . ,m, have to be fulfilled with a certain probabilitypa

i or that the respective probabilities of
failure, Pfi

, have to be smaller than1 − pa
i . However, it must be stressed that using a Monte Carlo

type simulation, when only small samples can be afforded andfor problems where high reliabilities are
required, will result in very poor approximations of the values of reliability constraints. For example,
deciding to use less then 100 sample points (which will usually be the case in ‘real life’ applications)
and settingpa = 0.99 the constraints (5) should rather be read as:ci(x) ≥ 0 for all the points (lowercase
x stands for samples ofX). In fact, to guarantee a good estimation (say, coefficient of variation of
the estimator smaller than 0.1) of the probability of failure using crude Monte Carlo sampling, for the
expectedPf value of about 0.01, 10000 sample points should be generated. As it will be shown later
in the text the OLH sampling allows to reduce the sample size but still, the accurate approximation of
the reliability constraints is not possible if we sample from the original distributions of random variables
(contrary to importance sampling technique, see [16]). However, since our aim in this paper is rather to
find a more reliable design than to find the optimal one we decided to accept the limited accuracy of the
adopted approach.

2.2 Solution algorithm

The solution method can be classified as a probabilistic search algorithm. To find the starting point and
subsequent points in the iteration process the sampling technique, based on the OLH design is employed,
(see section 3 for details). The principal idea of the methodis based on the assumption that the next
design point is chosen from among the points for which the values of objective function and the con-
straintsci(x), i = 1, . . . ,m, were already computed. By doing this, as opposed to the methods based on
the concept of response surface, we deliberately avoid any assumptions concerning the type of function
approximating the objective and constraints. This approach is similar to the one proposed by Marczyk
[11] and implemented in STORM [22] software.
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2.2.1 Choice of the starting point

Depending on having some prior knowledge of the problem, thestarting point can be either directly
specified or it can be chosen by examining the results for points generated using OLH sampling. In
the latter case the PDF’s of random variables correspondingto the design variables are temporarily
changed to uniform PDF’s with the bounds defined bylyi, uyi, i = 1, . . . , n. Next, a sample ofX is
generated and the feasible sample point that minimizes the objective function is chosen as the starting
point. This means that the mean values of variablesXi, i = 1, . . . , n, are shifted to the starting point.
Next, the modified PDF’s are changed back to the original oneswith the new mean values and the original
standard deviations. In the case of constant coefficients ofvariation the standard deviations should also
be recomputed.

A reason for the initial PDF’s modification is to be able to cover the entire design space with the samples
in order to find a good starting point. As will be described later in the text (section 3.3) the special,
modified OLH design is used at this stage.

2.2.2 Improvement strategy

At each iteration step of the algorithmK sample points are generated using the OLH design. Now, the
problem to be solved is to choose from among these points the next design. The selection strategy can
be summarized as follows:

First, the values of reliability constraints (5) are estimated, and those which are violated are identified.
Let I be the set of indices corresponding to these constraints

I = {i : 1 ≤ i ≤ m, P[ci(X) ≥ 0] < pa
i }. (7)

Next, taking into account only the last sample’s results thecorrelation coefficients between the random
variablesXi, i = 1, . . . , n, and the constraint functionscj(x), j ∈ I, are computed. They are given by

ρij =

K
∑

k=1

[x
(k)
i − x̄i][cj(x

(k)) − c̄j ]

√

√

√

√

K
∑

k=1

[x
(k)
i − x̄i]2

√

√

√

√

K
∑

k=1

[cj(x(k)) − c̄j ]2

, i = 1, . . . , n, j ∈ I, (8)

whereρij = ρ(Xi, cj), x̄i andc̄j are the sample means andx
(k)
i denotes thei-th component of thek-th

realization (k-th sample point) of the random vectorX. The computed correlation coefficients play the
key role in selecting the change ‘direction’ or, more precisely, selecting the subset of sample points from
which the new design will be chosen. Some pointsx(k), k = 1, . . . ,K, can be immediately eliminated
if they violate simple bounds (6) or ifci(x

(k)) < 0, i = 1, . . . ,m. To facilitate the presentation let us
denote byĨ the set of indices corresponding to the points fulfilling these criteria, that is

Ĩ = {k : 1 ≤ k ≤ K, ci(x
(k)) ≥ 0, i = 1, . . . ,m and lyj ≤ x

(k)
j ≤ uyj, j = 1, . . . , n}. (9)

Now, from the set of pointsx(i), i ∈ Ĩ we want to choose the points which are the most likely to
‘improve’ the reliability constraints. In order to do this for each design variable the following expression
is computed

di =
∑

j∈I

ρ(Xi, cj)
(

1 + P[cj(X) < 0]
)

, i = 1, . . . , n. (10)
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If di is positive then only the sample points which have the value of the i-th variable greater then the
corresponding mean valueµXi

are considered, and similarly ifdi < 0 only points for whichx(k)
i < µXi

are taken into account. Ifdi = 0 then all the pointsx(i), i ∈ Ĩ, can be considered. The idea behind the
expression (10) is based on the information carried by correlation coefficients. With the values changing
from -1 to 1 they provide a measure of linear dependence between the random variables and the constraint
functions. The weight factor in parenthesis accounts for the extent of violation of a particular reliability
constraint.

Due to the nonlinear character of the constraint functions it can happen that the described procedure will
exclude some points that might also be considered as potential ‘candidates’ for the next design iteration.
To avoid this, in addition to the points already chosen from the sample, we select (if they exist) those for
which the values of constraintsci, i ∈ I, are greater than the corresponding ones for the point selected
in the previous step as the current design.

To illustrate the above procedure let us consider an examplewith 3 design variables where at a typical
iteration step 50 sample points are generated. The values ofadmissible probabilitiespa(cf. (5)) are the
same for all the constraints and equal 0.99. Assume next thatfour constraints,ci(x), i = 1, . . . , 4, are
violated by 20, 10, 3 and 15 samples, respectively. Computing first the correlation coefficients (values in
the table below), the correspondingdi, i = 1, . . . , 3, values are subsequently computed.

c1 c2 c3 c4

X1 −0.6 −0.1 0.8 −0.2

X2 0.01 0.5 −0.9 −0.3

X3 0.65 0.2 −0.3 0.1

d1 = − 0.6
(

1 +
20

50

)

− 0.1
(

1 +
10

50

)

+ 0.8
(

1 +
3

50

)

− 0.2
(

1 +
15

50

)

= −0.37,

d2 = 0.01
(

1 +
20

50

)

+ 0.5
(

1 +
10

50

)

− 0.9
(

1 +
3

50

)

− 0.3
(

1 +
15

50

)

= −0.73,

d3 = 0.65
(

1 +
20

50

)

+ 0.2
(

1 +
10

50

)

− 0.3
(

1 +
3

50

)

+ 0.1
(

1 +
15

50

)

= 0.96.

According to the adopted strategy one will choose the next design point from among pointsx(i), i ∈ Ĩ,
for which x

(i)
1 < µX1

, x
(i)
2 < µX2

andx
(i)
3 > µX3

and from the additional points selected as it was
described above.

For a big number of design variables it is likely to happen that there will be no sample points satisfying
all the criteria. In such a case additional points (at least one) should be generated in the region defined
by thedi values. Of course, a newly generated point can be accepted asthe new design if it satisfies all
the constraints (see (9)).

After determining the set of candidate sample points a criterion must be employed to choose the ‘best’
one. In the examples presented later in the text the following function was used as a criterion

h(x) = wf f̃(x) −
m
∑

i=1

wic̃i(x), (11)

wheref̃(x) andc̃i(x), i = 1, . . . ,m, are the normalized values of the objective function and constraints,
respectively, andwf andwi are the weight factors. The sample pointx̂ that minimizes the functionh is
taken as the next design, or more precisely,yi = x̂i, i = 1, . . . , n.
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There is some freedom in selecting the weight factors. For example, definingwf as

wf = exp

(

1 − P[ck(X) < 0]

1 − pa
k

)

, (12)

wherek is the index of the most violated reliability constraint, preferences points more likely to fulfill
reliability constraints. The same is achieved by the following definition of thewi factors:

wi = 1 + P[ci(X) < 0]. (13)

Neglecting 1 in the above formula leads in practice to takinginto account only violated reliability con-
straints. The choice of weight factors may also be determined by the computational cost of the underlying
analysis. If one cannot afford to many sample points and its main aim is to make the initial design more
reliable thenwf factor should be set to zero and the process stopped after finding the first design satisfy-
ing reliability constraints.

3 Efficient sampling techniques

A good samples generation technique is a crucial component of the presented optimization algorithm.
It is especially important for computationally expensive problems. In order to avoid clustering of the
sample points and to assure good estimation of the statistical moments of response functions the OLH
sampling technique has been selected. Later in this sectionthe two methods for building large OLH
are presented, the columnwise-pairwise (CP) algorithm invented by Park [17] (with the modification
described in [24]) and the genetic algorithm, inspired by the algorithm proposed in [20]. They were
implemented in the M-Xplore module of the Radioss software [3] and explained in details in [9]. Below,
only the most important information on the OLH design and thealgorithms is given.

OLH is a viable sampling technique when one considers statistical optimality and projection properties.
There are many criteria of the statistical optimality of a design of experiments. Most of them are based
on fitting a (stochastic) model to experiments/computed data, see eg. [14] and [17]. Another criterion,
which is of interest in the current paper, measures how well the statistical properties of some model are
predicted. By good projection properties we mean here that the sample points are well spread out when
projected onto a subspace spanned by a number of coordinate axes. This is very often desired in the
applications when one does not know a priori if some random variables have a negligible effect on the
response of the system.

A Latin hypercube is represented byK ×N -matrix (i.e. a matrix withK rows andN columns)L where
each column ofL consists of a permutation of the integers 1 toK. We will refer to each row ofL as a
(discrete) sample point and use the notation

L =







x1
...

xK






=







x11 · · · x1N

...
...

xK1 · · · xKN






, (14)

wherexi is thei-th sample point.

The LH design obtained by simply generatingN random permutations of the numbers1 to K and
placing them as columns in the matrix, without any subsequent changes, will be referred later in the text
as random Latin hypercube (RLH).
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The matrixL can now be used to generate ‘real’ samples of the random vector X taking into account
the distribution of each variable. To find the realization(xi)j of the random variableXj , 1 ≤ j ≤ N ,
corresponding to the numberi, 1 ≤ i ≤ K, in thej-th column of the matrixL, the cumulative distribution
function (CDF) ofXj is used

(xi)j = F−1
Xj

(x̃i), (15)

where

x̃i =
i

K
− 1

2K
. (16)

In other words, the range of variability of each random variable is divided intoK intervals of equal
probability and the values(xi)j , i = 1, . . . ,K correspond to the medians ofXj in these intervals.
Another choice, instead of (15), is to choose the(xi)j randomly in thei-th interval.

It is important to mention that in general the random variables can be arbitrarily distributed and cor-
related. However, to use the sample design generated with LHthe variables must be first numerically
transformed to a set of uncorrelated random variables. In the case when the joint probability density
function is known the Rosenblatt transformation [19] can beused and when only marginal CDFs of the
variables and the correlation matrix are known one may employ the Nataf transformation [15]. Both
transform the original variables to the space of independent standardized Gaussian variables. The val-
ues of the random variables found in the transformed space using (15) are next transformed back to the
original random variablesX.

The criterion that is used in the current paper to optimize LHdesign was proposed by Audze and Eglais
in [1]. It is based on the functionG which, in a physical analogy, is the sum of the norms of the repulsive
forces if the samples are considered as electrically charged particles

G(L) :=

K
∑

i=1

K
∑

j=i+1

1

‖xi − xj‖2
. (17)

From the point of view of the physical analogy, it would have been natural with the power 1 (instead of
2) in the denominator of the terms of the sum. However, with the power 2 a computation of a square root
for each term is avoided. This has a noticeable effect on the execution speed since the functionG will be
evaluated many times in the inner loop during optimization.Using the functionG the criterion that will
allow to compare two LH designs can be stated as

L1 is better thanL2 if G(L1) < G(L2). (18)

As it was shown in [9] this criterion is a reasonable compromise between good statistical properties and
efficiency.

Although for small Latin hypercubes the computational costof finding OLH is negligible compared to
the expensive computer simulation of a physical phenomenon, it grows very fast with the sample size and
the number of variables. For large LH (hundreds of sample points and tens of variables) it may even take
hours and days with fast computers. The computational cost depends of course on the algorithms used
for OLH optimization and the adopted optimality criterion.In the next two sections the main features of
the CP algorithm and the genetic algorithm are presented.

3.1 Columnwise-pairwise (CP) algorithm

The CP algorithm can be described in pseudo-code as follows:
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Generate a random Latin hypercube: Lnew

stop = FALSE

while( not stop )

Lold = Lnew

Do a CP-sweep to generate Lnew from Lold

if stopping criterion fulfilled

then stop = TRUE

end of while-loop

The so-called ‘CP-sweep’ operation is given as follows:

for i = 1 to N

Find the best first order modification of column i and replace column i

with it

end of for-loop

where the first order modification of a column of a LH matrix is defined as an interchange of two of
its elements. Of course, ‘best’ first order modification means the modification which gives the best LH
according to the chosen criterion. The name CP-sweep indicates that it is a systematic procedure going
through (sweeping) all columns of the LH-matrix testing interchanges.

The stopping criterion in thek-th step is given by the inequality

∆Gk < ǫ∆G1, (19)

where∆G1 is the improvement in the first step andǫ is a chosen parameter.

It can be shown [9] that the computational complexity of the CP algorithm is estimated by the expression

Ttot ∼ NK3(c1KN + c2K
2), (20)

whereTtot stands for the total complexity of the algorithm andc1 and c2 are constants. It must be
emphasized that the execution time is very sensitive to variations inK. A number of tests have been
performed to estimate the speed of the computations. These include the casesK = 50, 60, . . . , 100 for
N = 3 which indicate an execution timeT ∼ Kq with q between 4.5 and 5.5. To illustrate the order
of magnitude of the growth one can extrapolate from the execution time of approximately 3 minutes for
the100 × 3 OLH on an SGI Octane2 workstation, assumingT ∼ N5. This gives an execution time for
1000 × 3 OLH of eight months.

3.2 Genetic algorithm

The genetic algorithm is a very general optimization technique and can be applied to a large class of
optimization problems. In the general form it can be described in pseudo-code as follows

Generate initial population

Calculate fitness for individuals in the initial population

stop = FALSE

while( not stop )
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Select ‘survivors’

Cross-over the ‘survivors’

Mutate the resulting population

Calculate the fitness of the new population

if stopping criterion fulfilled

then stop = TRUE

end of while-loop

The step of producing one new generation in the genetic algorithm is cheap compared to the CP-sweep.
Also there is the possibility that the best LH in the new generation is not an improvement even if further
iterations gives important improvements. For these reasons in the stopping criterion the accumulated
improvement in the firsts (says = 50 or 100) generations is saved (not only the first improvement like
in (19))

∆G̃s = G(Ls) − G(L0), (21)

whereLs is the best LH in thes-th generation. Then in generationk, if k is a multiple ofs the following
inequality is checked

G(Lk) − G(Lk−s) < ǫ∆G̃s. (22)

There are many variations of the genetic algorithm according to how one chooses to define the steps of
selection, cross-over and mutation, also the initial population can be chosen in various ways. We now
turn to the description of these steps for the problem of optimizing Latin hypercubes.

Initial population. We start by generatingNpop of random LHs which constitute the initial population.
The numberNpop is required to be even because of the selection step.

Selection.TheNpop/2 best LH are chosen as ‘survivors’ and the rest is thrown away. 

    

        

L1             L2             L3                    L4              L5                 L6               L7             L8 

L1             L2             L3                    L4         
~               ~               ~              ~         

After selection (parents) 

After crossover (children) 

    

L1             L2             L3                    L4         
~               ~               ~              ~         

Figure 1: Illustration of the cross-over step. Observe thatafter cross-overL1 andL5 will be identical to
L̃1 before cross-over, the best LH. Later, in the mutation step,L5 is allowed to change but notL1, so at
least one copy of the best LH is always kept.
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Cross-over. In this stepNpop children of theNpop/2 survivors are generated. This step is illustrated
in Fig. 1. First, the best LH is put as number 1 andNpop/2 + 1 among the total set of children. Then
for k ∈ [2, Npop/2] the best LH is mated with thek-th in the following way. The best and thek-th
will generate two children. The first child is obtained by taking the best LH and replacing a random
column with the corresponding column in thek-th LH. The resulting child is given the numberk among
the children. The second child is obtained by taking thek-th LH and replacing a random column with
the corresponding column of the best LH. The resulting childis given numberNpop/2 + k among the
children.
Mutation. Mutation is done on all except the best LH from the earlier generation in the following way:
for each column a random number in[0, 1] is generated (according to the uniform distribution), if this is
lower than a thresholdpmut, then two randomly chosen elements in the column are swapped.

As it was shown in [9] depending on the size of LH the CP algorithm or the genetic algorithm are found
to be most competitive. Numerical experiments suggest the use of CP forK less than 150 and the genetic
algorithm for larger problems. For the genetic algorithm the optimal values for the population size and
the probability of mutation depend, of course, on the size ofthe problem. However, as a robust choice,
Npop = 50 andpmut = 0.1 can be recommended.

3.3 Modified OLH design

Latin hypercube ensures good stratification of the design space when projected into 1-dimension. In
addition, the OLH design avoids clustering of the sample points. However, it is not possible to eliminate
clustering when projecting sample points of theN -dimensional OLH into less dimensions. In Fig. 2 two
Latin hypercubes are presented. The left one is the OLH of 50 points in 2 dimensions. It can be seen
that the points are uniformly scattered in the square. The right LH is the projection of the 50 points 4
dimensional OLH into 2D. In this case the clustering of sample points is clearly visible.

Figure 2: Left: 50×2 OLH. Right: Projection of the 50×4 OLH into 2 dimensions.

This feature of the OLH design is particularly unwanted whenchoosing the starting point for our al-
gorithm (see section 2.2.1). Since the final design depends very much on the appropriate choice of the
starting point, it is important to ‘cover’ the space of the design variable as good as possible. On the
other hand the idea of the presented optimization/improvement approach is to account all the time for the
uncertainties of the other parameters (not corresponding to the design variables). In order to find a com-
promise, the modified optimal Latin hypercube design (referred as MOLH) was proposed. It is optimal
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in the subspace of design variables, and the coordinates of sample points corresponding to remaining
N − n random variables are selected using either the CP or the genetic algorithm with the additional
constraint that the optimality of the LH projection on the design space must be preserved.

From the implementation point of view this modification is quite straightforward. First, the ‘design’
OLH is generated, i.e.K × n matrixLd is found. Next, in theK × N matrixL, being the starting RLH
for CP algorithm (or in initial population of RLHs for genetic algorithm), the columns corresponding to
design variables are replaced by those fromLd. Then, the algorithms described in the previous sections
are employed with the following modifications: in the CP-sweep the columns ‘pasted’ fromLd are not
considered, while in the genetic algorithm the cross-over and mutation operations do not affect columns
from Ld, their position in the matrixL and their contents remain unchanged.

3.4 Example: Efficiency of the OLH sampling

In order to compare the efficiency of different sampling techniques for the estimation of statistical prop-
erties let us consider the so-called Rosenbrock functionb defined as

b(X1,X2) = 100(X2 − X2
1 )2 + (1 − X1)

2. (23)

It is assumed that the two variablesX1 andX2 are random and uniformly distributed in the interval
[0, 2]. The goal is to estimate the mean valueE[b] of the functionb as well as the correlation coefficients
ρ(b,X1) andρ(b,X2). The exact values of these statistics can be easily computedanalytically

E[b] =

∫ 2

0

∫ 2

0
b(x1, x2)

1

4
dx1dx2 = 187,

E[X1] = E[X2] = 1,

(24)

σb =

√

∫ 2

0

∫ 2

0
[b(x1, x2) − 187]2

1

4
dx1dx2 = 255.55,

σX1
= σX2

=
2√
12

,

(25)

ρ(b,X1) =
1

σbσX1

∫ 2

0

∫ 2

0

[b(x1, x2) − 187] (x1 − 1)

4
dx1dx2 = 0.54, (26)

ρ(b,X2) =
1

σbσX2

∫ 2

0

∫ 2

0

[b(x1, x2) − 187] (x2 − 1)

4
dx1dx2 = −0.15 (27)

To evaluate the different sampling methods we now set out to calculate these values with the OLH, RLH
and the ‘standard’ Monte Carlo (MC) method.

The results of the computations are shown in Tab. 1, where theaverage of the error percentage in the
estimates is shown. To explain how these numbers were obtained let us take the example of the estimator
of the mean valueE[b]. First, M designs of experiments{X(k)}M

k=1 with the method in question are
determined (in the computationsM = 100 was selected). The elements of the matricesX(k) are denoted
by x

(k)
ij , wherei = 1, . . . ,K andj = 1, 2. Next, based on these,M estimatesm(k) of the meanE[b] are

computed,

m(k) =
1

K

K
∑

i=1

b(x
(k)
i1 , x

(k)
i2 ). (28)
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Sample size E[b]: % error ρ(b,X1): % error ρ(b,X2): % error

K OLH RLH MC OLH RLH MC OLH RLH MC

10 7.42 19.34 28.98 10.84 13.75 50.74 64.38 188.6 346.9
20 3.89 13.02 26.31 5.18 9.27 23.00 31.33 94.30 117.2
50 1.88 9.30 15.01 2.92 5.85 13.60 14.59 67.62 79.92
100 1.02 5.45 10.68 1.77 3.82 8.34 8.83 43.36 39.33
200 0.73 3.88 7.53 1.31 2.81 5.91 5.49 30.17 33.94
500 - 2.48 4.43 - 1.77 4.04 - 17.73 21.47
1000 - 1.94 3.52 - 1.40 2.46 - 14.72 15.02
2000 - 1.29 2.55 - 0.87 1.97 - 9.84 11.11
5000 - 0.83 1.48 - 0.56 1.19 - 5.76 7.33

Table 1: The average of the error percentage for the different sampling methods and sample sizes. OLH
with more than 200 points have not been computed because of the long computational time.

The value given in Tab. 1 is then the average of the error of these estimates, given as a percentage of the
exact mean value,

1

187M

M
∑

k=1

|m(k) − 187|. (29)

By examining the results in the table it is easy to rank the methods. The OLH with 50 samples points
gives equally good results as Monte Carlo with 1000 points and OLH with only 20 points provides the
better estimations than 200 points MC simulation. On the other hand, sampling based on the RLH design
does not seem to be that much advantageous when compared to MC. Thus, it can be seen that the OLH
sampling is of the fundamental importance for the efficiencyof the presented optimization algorithm. It
provides a cheap and accurate estimation of the values of correlation coefficients between the constraints
functions and the random variables, which are subsequentlyused in the algorithm to find the change
‘direction’.

4 Example: Constrained minimization of the Rosenbrock function

Before applying the algorithm to a more complex realistic application problem let us first consider a
simpler case of constrained minimization of the Rosenbrockfunction (23). The problem is formulated
as follows:

find: y1 = µX1
, y2 = µX2

, (30)

that minimizes f(y) = 100(y2 − y2
1)

2 + (1 − y1)
2, (31)

subject to: P[c1(X)] ≥ 0.99, (32)

P[c2(X)] ≥ 0.99, (33)

P[c3(X)] ≥ 0.99, (34)

0 ≤ y1 ≤ 3, (35)

0 ≤ y2 ≤ 3, (36)
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where

c1(X) = X7(X3X1 + X2 + X4), (37)

c2(X) = X7(X5X1 − X2 + X6), (38)

c3(X) = X7(−2X1 − X2 + 7), (39)

andX1, . . . ,X7 are random variables with the probability distributions given in Tab. 2.

Distribution Mean Std. dev.

X1 normal y1 0.2

X2 normal y2 0.2

X3 uniform -0.5 0.029

X4 uniform 0.0 0.058

X5 uniform 2.0 0.058

X6 uniform -0.8 0.058

X7 normal 1.0 0.02

Table 2: Random variables in the Rosenbrock function minimization problem

Thus, we are looking for the mean values of random variablesX1 andX2 in the range[0, 3] that would
minimize the Rosenbrock function and satisfy the reliability constraints (32)–(34).

The contours of the objective function and the feasible domain enclosed by the constraints lines:c1(x) =
0, c2(x) = 0 andc3(x) = 0 are shown in Fig. 3. VariablesX3, . . . ,X6 are the random parameters of the
first two constraint functions resulting in the uncertaintyof the feasible domain definition. The random
factor X7 could be interpreted as an additional ‘noise’ effect in the computation of constraints values.
Analyzing Fig. 3, it is quite evident that the minimum point (1,1), from the deterministic optimization, is
very sensitive to parameter variations and thus does not give a reliable design.

To illustrate the method, an example of design history is shown in Fig. 4. The initial design was found
using MOLH sampling (see section 3.3) with 60 points and assuming uniform distribution ofX1 and
X2 in the interval[0, 3] (so, projecting into 1D, the distance between adjacent two points equals 0.05).
At the subsequent iteration steps, 40 points OLH sampling was used to assess the values of reliability
constraints and to evaluate correlation coefficients between c1, c2, c3 and variablesX1 andX2. The
scatter of points around the initial and optimal/improved designs presented in Fig. 4 demonstrates that
in the presence of uncertainties the initial design is not acceptable. However, as was stressed in section
2.1 the optimal design obtained with the presented approachdepends on the size of the sample used to
check the reliability constraints. Since the admissible probabilitiespa in (32)–(34) were equal 0.99 and
only 40 sample points were used, one can only claim that the resulting design is more reliable than the
initial one but not that the reliability constraints are satisfied.

The results of the optimization process very much depend on the choice of the starting point, which on
the other hand depends on the sample size. In order to analyzethe scatter of the results 30 optimization
processes were performed, first, using 40 points OLH sampling and next, 100 points OLH. In the first
case 60 points MOLH was used to find the starting point, in the second case it was 100 points MOLH.
It was decided that the optimization process is stopped after the first feasible design (i.e. ‘satisfying’ all
reliability constraints) is found. To speed up the computations the weight factorwf in criterion (11) was
set to zero (this strategy was mentioned in section 2.2.2).
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Figure 3: Rosenbrock function contours and the constraintsof the optimization problem. The uncertainty
of the parameters defining constraintsc1(X) andc2(X) results in the feasible domain uncertainty.
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Figure 4: Iterations history for the case with 40 sample points. The scatters of possible designs around
the initial and final points are shown.

In Tab. 3, the mean values and the standard deviations of the design variables and the objective function
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y1 y2 f

Mean Std.dev.Mean Std.dev.Mean Std.dev.

OLH 40 1.71 0.13 1.50 0.17 213.6 104.2

OLH 100 1.69 0.10 1.47 0.12 200.2 73.2

RLH 15000 1.68 0.03 1.47 0.07 186.6 14.7

Table 3: Results of the Rosenbrock function minimization problem for different sampling methods.

are presented. These results are compared with the corresponding values obtained using RLH sampling
technique with 15000 sample points. Because of the large sample size and the small scatter of results,
these values could be treated as a reference. It is interesting to observe comparing the OLH 40 and the
OLH 100 results that the mean values ofy1, y2 andf do not differ significantly. However, the scatter
of results is smaller in the case of the optimization with the100 points OLH sampling. This can also be
seen in Fig. 5 where the optimal design points are shown. The ‘envelops’ enclose points resulting from
the same sampling method, shaded region corresponds to the RLH results. Of course, such a comparison
can only be performed in a simple case when the objective and the constraints are explicitly given.
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Figure 5: Scatter of the optimal points for various samplingtechniques.

5 Example: A crash of the thin-walled s-beam with uncertain parameters

Here we consider a problem of the thin-walled steel s-beam, shown in Fig. 6, clamped at one end and hit
at the other end by the 100kg mass moving with the initial velocity v0 = 15m/s in thex-axis direction.
The beam consists of 3 omega-shaped parts and the cover plate. The omega parts are attached to the
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Figure 6: S-beam crash problem. The finite element model and geometry. Dimensions are in millimeters.
The arrows indicate the locations of the parts.

cover with 64 spotwelds. The finite element models consists of 5760 MITC4 type shell elements [5] and
64 spring elements to model the spotwelds. The finite elementanalysis was performed using the explicit
finite element software [12], particularly developed for the analysis of highly dynamic and nonlinear
problems, in particular crash.

Figure 7: left: buckling type deformation, little absorbedenergy; right: regular folding, good energy
management

The beam acts here as an energy absorbing device. The major concern in its design is to ensure that
it guarantees a good energy management by collapsing in regular folding rather than buckling mode
(see Fig. 7). However, very often a design that performs satisfactorily in the ideal (nominal) operating
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Description Distribution Mean Std. dev./c.o.v.

X1 t1 - thickness of the part 1 lognormal y1 [mm] νX1
= 5%

X2 t2 - thickness of the part 2 lognormal y2 [mm] νX2
= 5%

X3 t3 - thickness of the part 3 lognormal y3 [mm] νX3
= 5%

X4 t4 - thickness of the part 4 lognormal y4 [mm] νX4
= 5%

X5 σ0 - yield stress lognormal 180 [MPa] σX5
= 15 [MPa]

X6 σmax - maximum stress lognormal 350 [MPa] σX6
= 15 [MPa]

X7 vy
0 - y component of the mass initial velocity normal 0 [m/s] σX7

= 1.5 [m/s]

X8 vz
0 - z component of the mass initial velocity normal 0 [m/s] σX8

= 1.5 [m/s]

Table 4: Random variables in the s-beam crash problem

conditions is not reliable due to unavoidable uncertainties of some parameters. In reality it is hard to
guarantee that the mass will impact the beam precisely in theassumed direction, that all the spotwelds
are well made and the thicknesses of the metal parts do not differ from their nominal values. For this
reasons it seems essential that a design is verified for its sensitivity to parameter uncertainties and, if
necessary, improved to satisfy certain reliability level.Since the presented optimization/improvement
method is based on the scatter analysis of system’s responses it is important to carefully check if the
finite element model is good enough to represent the physicalphenomenon and is not the source of the
scatter of the results. If a slight change in the FE mesh or different choice of contact algorithm have
similar influence as uncertainties of physical parameters,the model should not be used for stochastic
analysis.

In our problem 8 random variables were identified. Their description is presented in Tab. 4. Variables
X5 and X6 are the parameters of the Johnson Cook elastic plastic brittle material law [7] while the
variablesX7 andX8 account for variations of the initial conditions. To account for uncertain quality
of the spotweld connections 3 (≈ 5%) randomly selected spring elements are being deleted from the
model. The mean values of the first four random variables (thicknesses of the parts) are chosen as design
variables. Since their values change in the optimization process the corresponding standard deviations
will also change in order to keep the coefficient of variationconstant and equal to 5%.

We formulate the optimization problem as follows:

find y={y1 =µX1
, y2 =µX2

, y3 =µX3
, y4 =µX4

}, (40)

that minimizes volume of materialV (y), (41)

subject to: for all the sample points:

1) absorbed energy is greater then7500 J, (42)

2) deformation of the part 1 is greater

than 50% of the total deformation, (43)

0.8mm ≤ yi ≤ 2.0mm, i = 1, . . . , 4. (44)

The crash duration is taken as 20ms. The minimal admissible value of absorbed energy in the constraint
(42) corresponds to the designt1 = t2 = t3 = 1.5mm, t4 = 1mm and the mean values of the variables
X5 . . . X8. The constraint (43) was introduced to favor the designs which lead to deformation localized
in part 1.
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The initial design was selected using MOLH technique (see sections 2.2.1 and 3.3) with 50 sample points.
In Fig. 8, where the design history is shown, the starting point corresponds to iteration 0. It can be seen
in Fig. 9 that this initial design is not reliable. 28 out of 50sample points do not satisfy the first constraint
and 1 does not satisfy the second one. Similarly to the first example, the adopted strategy was to find the
first acceptable design using 50 points OLH sampling. Such a design was found in 4 iterations. As seen
in Fig. 8, the volume of the beam must be increased with the thicknesses of parts 2 and 3 being almost
equal and close to the upper bound and the thickness of the part 1 considerably smaller.
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6 Conclusions

It is often the case that the design that performs satisfactorily for nominal values of its parameters is not
reliable. This means that the unavoidable imperfections ofgeometrical or material parameters as well as
loading and initial conditions may lead to an unwanted behaviour.
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The reliability improvement method that was proposed in this paper is based on stochastic simulations
with the samples generated according to the OLH designs. It was shown that OLH sampling is an
efficient method to assess the statistical moments of the functions of random variables. The proposed
algorithm for improvement makes use of correlations between the design constraint functions and the
random system parameters. Thanks to the adopted sampling technique moderate size samples are able
to produce accurate estimations of correlation coefficients. Since for a large number of random variables
and many sample points the OLH generation may take a long time, two OLH generation algorithms
were tested. It was concluded that the CP algorithm is more efficient for small and medium size Latin
hypercubes while the genetic algorithm is better suited forlarge OLH designs.

For computationally expensive problems, like e.g. crash analysis, when only limited number of simu-
lations can be afforded and when the design sensitivities are either not available or very inaccurate the
presented method seems to be an acceptable solution. It is also the case when the response surface mod-
els of the phenomenon oversimplify the real responses and their use together with the standard RBO
methods is likely to produce substantial errors. However, it must be realized that the method is best
suited for problems where the probability of failure for theinitial design is large and the main interest is
to find more reliable design rather than the optimal one in thesense of RBO.
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