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S

The Latin hypercube design is a popular choice of experimental design when computer
simulation is used to study a physical process. These designs guarantee uniform samples
for the marginal distribution of each single input. A number of methods have been pro-
posed for extending the uniform sampling to higher dimensions. We show how to construct
Latin hypercube designs in which all main effects are orthogonal. Our method can also
be used to construct Latin hypercube designs with low correlation of first-order and
second-order terms. Our method generates orthogonal Latin hypercube designs that can
include many more factors than those proposed by Ye (1998).
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1. I

Latin hypercube designs were introduced by McKay et al. (1979) and have proved to
be a popular choice for experiments run on computer simulators (Santner et al., 2003,
Ch. 5) and in global sensitivity analysis (Helton & Davis, 2000). Latin hypercube designs
are geared for simultaneous study of p input factors. Whereas standard factorial designs
limit each input factor to a small number of distinct values, Latin hypercube designs use
different settings of each factor on each experimental run, with the settings spread out
uniformly along each factor axis. Thus Latin hypercube designs achieve a very ‘uniform’
coverage of each individual factor.
There is no guarantee that Latin hypercube designs will have good multivariate

properties. The original construction of McKay et al. (1979) was to mate the levels
randomly for each of the p factors. Their proposal leads to designs in which most pairs
of input factors have low correlations, but, with a large number of input factors, a common
situation in computer experiments, there will usually be some pairs with correlations of 0·3
or more. The presence of correlated input factors can complicate the subsequent data
analysis and make it more difficult to identify the most important input factors.
Several authors have proposed modifications to the original construction scheme that

lead to Latin hypercube designs with low correlations between pairs of input factors.
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Owen (1992) and Tang (1993) showed how orthogonal arrays could be used to generate
Latin hypercube designs with better balance in low-dimensional projections. Owen (1994)
presented an algorithm for generating Latin hypercube designs with low pairwise
correlations between input factors. Tang (1998) extended this approach, considering
correlations among the input factors and also with higher-order terms derived from the
factors. Ye (1998) presented a method for constructing ‘orthogonal’ Latin hypercube
designs in which all the input factors have zero correlation; some additional constructions
can be found in a University of Michigan technical report by Ye. Butler (2001) showed
how to construct Latin hypercube designs in which the terms in a class of trigonometric
regression models are orthogonal to one another.
We present here a new construction method for orthogonal Latin hypercube designs.

The construction is very simple and involves a combination of two ideas. The first, due
to Beattie & Lin (1997, 2004, 2005), is that certain Latin hypercube designs can be con-
structed by rotating the points in a two-level factorial design, a technique that preserves
the orthogonality of the original factorial. The second, due to Bursztyn & Steinberg (2002),
is that rotations can be applied to groups of factors, thereby greatly increasing the number
of factors in the resulting design. Our construction produces orthogonal Latin hypercube
designs with n rows, where n=2k and k=2m. The number of possible factors is almost as
large as n. We use 16-run Latin hypercube designs to illustrate our ideas.

2. L  

We will describe experimental designs for p factors in n runs using an n×p matrix D,
where D

i,j
is the level of factor j on the ith experimental run. Throughout, we will assume

that the input factor space is [−1, 1]p and that the factors can be varied independently
in that region.
A design D

L
is a Latin hypercube design if each column in the design matrix includes

n uniformly spaced levels. The key question in constructing a Latin hypercube design is
how to mate the levels for the different factors. In the original paper of McKay et al.
(1979) the factors were mated by randomly permuting the entries in each column of the
matrix. The papers cited earlier for improving Latin hypercube designs employ a number
of alternative ideas for mating levels.
There are several variations on how to space the levels ‘uniformly’ for each factor.

The simplest scheme, and the one that we will employ in this paper, is to take
−1,−1+2/(n−1), . . . , 1−2/(n−1), 1 as the levels for each factor. Other lattices in
[−1, 1] with equally spaced levels could also be used. An alternative is to divide each
factor axis into n bins of equal width and then to select a level at random from each bin.
Yet another option, relevant for input factors that represent environmental variables with
known probability distributions, is to choose the levels as quantiles of probabilities on an
equally spaced grid.

3. O L     2k 

Beattie & Lin (1997, 2004, 2005) showed that a class of orthogonal Latin hypercube
designs with p=k factors can be generated as rotations of 2k factorial designs. Their
method can be applied when k is itself a power of 2, 2m, and the number of runs is
n=2k. We briefly review here the construction of Beattie & Lin.
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Denote by D
k
the n×k design matrix for the 2k factorial design, with −1 and 1 as

the two levels for each factor. It is well known that this is an orthogonal design,
i.e. that D∞

k
D
k
=nI, where I is the identity matrix. A k×k real matrix R is a rotation

matrix if R∞R=I. Such a matrix can be used to construct a rotated version of the two-
level factorial, D

R
=D
k
R. Rotation preserves the orthogonality of the two-level factorial,

as D∞
R
D
R
=R∞D∞

k
D
k
R=R∞(nI )R=nR∞R=nI.

Beattie & Lin defined a sequence of rotation matrices for which D
R
is a Latin hypercube

design. The rotation matrix for k=2m factors is defined by the following recursive scheme.
Let

V
0
=[1], (1)

V
m
=C Vm−1 −(2m )V

m−1
(2m )V

m−1
V
m−1
D . (2)

It is easy to check that V
m
is orthogonal. The entries of V

m
are 1,±21, . . . ,±2k−1, where

k=2m. Each of these integers, with either a plus or minus sign, appears exactly once in
each column. The uth entry in the jth column of D

k
V
m
thus has the form Wk

i=1
c
i
2i−1,

where c
i
is either −1 or 1, depending on D

k,u,j
and the sign of 2i−1 in column j of V

m
.

Running through all the rows of D
k
generates all possible binary combinations of these

powers of 2, regardless of the signs in column j of V
m
. Thus D

k
V
m
is an n×k matrix each

of whose columns has the entries −(n−1),−(n−3), . . . , n−3, n−1. Simple rescaling
converts V

m
into a rotation matrix,

R
m
= (1/a

m
)V
m
, (3)

with a
0
=1 and a

m
={Xm

j=1
(1+22j )}D for m=1, 2, . . . . For example,

R
2
=1/√(85)C1 −2 −4 8

2 1 −8 −4

4 −8 1 −2

8 4 2 1D . (4)

Note that the design D
R(2)
=D
4
R2 has factor levels that are no longer in the design space

[−1, 1]k. Further scaling produces an orthogonal Latin hypercube design for k factors in
n runs with the desired levels −1,−1+2/(n−1), . . . , 1−2/(n−1), 1 for each factor.

4. R  

Bursztyn & Steinberg (2002) proposed the idea of independently rotating groups of
factors in two-level designs. Let D

F
be a 2f−q fractional factorial design with n=2k runs

and let R be a t×t rotation matrix. Suppose we can decompose the f factors in D
F
into

B sets of t factors each, with f−Bt factors left over. Let D
S1
, . . . , D

SB
be the design

matrices obtained from projecting D
F
on to each of the B sets of t factors. We now obtain

an orthogonal rotation design by rotating each of the sets. Let R
B
be a Bt×Bt block

diagonal matrix with B copies of R on the diagonal. Then R
B
is a rotation matrix and
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the rotation design is

D
R(B)
=[D

S1
e…eD

SB
]R
B

(5)

=[D
S1
Re…eD

SB
R]. (6)

The orthogonality follows from the fact that D∞
Si
D
Si
=nI for all i and D∞

Si
D
Sj
=0

whenever iN j.

5. O 16- L     

In this section we use our construction method to generate orthogonal Latin hypercube
designs with 16 runs. We rotate factors in the saturated 215–11 design in groups of four,
using the matrix V2 defined earlier, and take care of all scaling in a single step. Throughout
we denote the columns in the saturated design by A, B, C, D and their products.

Example 1. Our method can be used to derive an orthogonal 16-run Latin hypercube
design with 12 factors. Such a design is shown in Table 1. This design was generated by
grouping the columns A, B, C and D in one set, AB, AC, ABC and AD in a second set
and BC, BD, ABD and BCD in the third set. As we will see in the next section, the key
property of the sets for achieving a Latin hypercube design is that each one gives a full
24 factorial design. Examination of the signs of the entries in Table 1 shows that it has
the orthogonal array structure of a U-design (Tang, 1993), corresponding to the 212–8
base design that was rotated.
The design in Table 1 has a very high factor-to-run ratio and can be useful in factor

screening. Typically, this would proceed by fitting a first-order model. If only a small
number of factors were found to be important, a next step might be to look for some
higher-order effects involving those factors, as, for example, in Hamada & Wu (1992).
A useful way of characterising the properties of the design is to use the alias matrix for

fitting a first-order model when second-order effects may be present. Let X denote the

Table 1: Example 1. An orthogonal L atin hypercube design for 12 input
factors in 16 runs. T he numbers in the table should be divided by 15 to

scale the design to the unit hypercube

1 2 3 4 5 6 7 8 9 10 11 12

−15 5 9 −3 7 11 −11 7 −9 3 −15 5
−13 1 1 13 −7 −11 11 −7 −1 −13 −13 1
−11 7 −7 −11 13 −1 −1 −13 9 −3 15 −5
−9 3 −15 5 −13 1 1 13 1 13 13 −1
−7 −11 11 −7 11 −7 7 11 5 15 −3 −9
−5 −15 3 9 −11 7 −7 −11 13 −1 −1 −13
−3 −9 −5 −15 1 13 13 −1 −5 −15 3 9
−1 −13 −13 1 −1 −13 −13 1 −13 1 1 13
1 13 13 −1 −9 3 −15 5 11 −7 7 11
3 9 5 15 9 −3 15 −5 3 9 5 15
5 15 −3 −9 −3 −9 −5 −15 −11 7 −7 −11
7 11 −11 7 3 9 5 15 −3 −9 −5 −15
9 −3 15 −5 −5 −15 3 9 −7 −11 11 −7
11 −7 7 11 5 15 −3 −9 −15 5 9 −3
13 −1 −1 −13 −15 5 9 −3 7 11 −11 7
15 −5 −9 3 15 −5 −9 3 15 −5 −9 3
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regression matrix for the first-order model, including a column of ones and the 12 factors
in the design, scaled to the unit hypercube. Let Xint denote the 16×66 matrix with all
the possible two-factor interactions and let Xquad denote the 16×12 matrix with all the
pure quadratic terms. The alias matrices for the first-order model associated with the
two-factor interactions and the pure quadratic terms are then given by

Aint= (X∞X)−1X∞Xint , (7)

Aquad= (X∞X)−1X∞Xquad ,

respectively.
A good design for factor screening should maintain relatively small terms in these bias

matrices. The orthogonal Latin hypercube design in Table 1 is very successful in terms
of minimising bias due to second-order coefficients. Table 2 summarises the two-factor
interaction and pure quadratic alias terms for the 12 rows of the alias matrices that relate
to the factor main effects. Only 3 of 936 terms, made up of 792 terms in Aint plus 144
terms in Aquad , exceed 0·2 in absolute value, and they all equal 0·202. Table 2 also compares
the alias matrices for the design in Table 1 with alias matrices for Latin hypercube designs
created with random ordering of the columns and for Latin hypercube designs that are
U-designs (Tang, 1993), in which the plus and minus signs of the Latin hypercube design
are a 212–8 fractional factorial design. For both of these competing classes of designs, we
examined the alias matrices for 100 randomly generated designs and chose the design with
the best performance. Table 2 shows that even these best selections are clearly inferior to
our 12-factor design.

Table 2: Example 1. A comparison of the alias properties of 16-run,
12-factor L atin hypercube designs. For rows associated with the 12 main
eVects, the table shows the percentage of entries in the two-factor inter-
action alias matrix Aint and the pure quadratic alias matrix Aquad with
absolute values that are greater than the listed cut-oV values. For the
standard L atin hypercube designs and U-designs results correspond to the

best performers from 100 randomly generated designs

Two-factor interactions Pure quadratics
Design �0·1 �0·2 �0·4 �0·6 �0·1 �0·2 �0·4 �0·6

Orthogonal  12·0 0·4 0·0 0·0 7·6 0·0 0·0 0·0
Standard  69·3 40·9 9·0 0·4 49·3 35·4 6·3 1·4
U-design 47·3 18·8 5·1 0·5 54·2 26·4 0·7 0·0

, Latin hypercube design

Other groupings of the factors into three sets of 4 could be used to generate orthogonal
Latin hypercube designs with our algorithm. We examined all possible different groupings
and found that the resulting designs, although not isomorphic to one another, had nearly
identical properties in terms of the alias matrix.

Example 2.We can also produce a 16-run design with 8 factors in which the main effects
are orthogonal to each other and to all second-order terms. This design is shown in
Table 3. The grouping scheme for this design has A, B, C and D in the first group and
the four three-factor interaction columns in the second group. The 16-run design in Ye
(1998) has the same orthogonality properties, but with only six factors. Inspection of the
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Table 3: Example 2. An orthogonal L atin hyper-
cube design for 8 input factors in 16 runs, in
which the main eVects are also orthogonal to all
second-order terms. T he numbers in the table
should be divided by 15 to scale the design to the

unit hypercube

1 2 3 4 5 6 7 8

−15 5 9 −3 −15 5 9 −3
−13 1 1 13 −1 −13 −13 1
−11 7 −7 −11 7 11 −11 7
−9 3 −15 5 9 −3 15 −5
−7 −11 11 −7 11 −7 7 11
−5 −15 3 9 5 15 −3 −9
−3 −9 −5 −15 −3 −9 −5 −15
−1 −13 −13 1 −13 1 1 13

1 13 13 −1 13 −1 −1 −13
3 9 5 15 3 9 5 15
5 15 −3 −9 −5 −15 3 9
7 11 −11 7 −11 7 −7 −11
9 −3 15 −5 −9 3 −15 5
11 −7 7 11 −7 −11 11 −7
13 −1 −1 −13 1 13 13 −1
15 −5 −9 3 15 −5 −9 3

designs shows that Ye’s design is not isomorphic to some set of 6 columns in our design.
In particular, we have 4 design points in which all factors have absolute value of 1

15
or 13
15
, a property that is not shared by any of the rows in Ye’s design. We note that an

additional orthogonal Latin hypercube with 8 factors, with the same orthogonality of
main effects to all second-order terms, can be found in the technical report by Ye.

6. G  

In this section we describe a general method for producing orthogonal Latin hypercube
designs with many factors. The number of runs will be n, where n=2k and k=2m. The
rotation matrix that we apply is R

m
from § 3. This matrix rotates separate groups of k

factors. The subdesign D
Si
R
m
for the ith group, rescaled to the unit hypercube, will be a

Latin hypercube design if D
Si
is a full factorial design. The entire design will be a Latin

hypercube design provided each subdesign is a Latin hypercube design. The fractional
factorial design that we will rotate will be the largest fractional factorial in n runs that
can be constructed from sets of k columns, each of which is a full factorial design. We will
use the term ‘maximal projection set’ to describe such a division of the factors in a 2p−q
design and will denote by B

k
the maximal number of sets achieved.

In general, with n=2k runs, the saturated two-level design has n−1 factors, bounding
the maximal number of full factorial sets by B

k
∏t (n−1)/ks, where tcs is the greatest

integer less than or equal to c. For example, with 16 runs, a saturated 2p−q design has 15
factors, so a maximal projection set cannot exceed three sets of 4 factors each. Similarly,
with 64 runs a maximal projection set includes at most 10 sets of 6 factors each and with
256 runs a maximal set includes at most 31 sets of 8 factors each.
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The following algorithm shows how to construct maximal projection sets that achieve
the above bound, B

k
=t(n−1)/ks. The main idea of the algorithm is to associate the

columns of the saturated n-run design with elements of the Galois field  (2k ); see
Appendix A of Hedayat et al. (1999) for a concise summary of relevant results on Galois
fields. The elements of  (2k ) are polynomials of degree k−1 or less, all of whose
coefficients are 0 or 1. Each polynomial can be identified by its vector (a0 , . . . , ak−1 )
of coefficients, and is associated with the generalised interaction of all factors j for which
a
j−1
=1. For example, the polynomial x2 corresponds to the main effect of factor 3 and the

polynomial 1+x+x4 to the interaction of factors 1, 2 and 5. The zero element of  (2k )
is given by a vector of k zeros and corresponds to the column of ones in the regression
matrix of the factorial design. It is known that there exists a primitive polynomial f (x) of
degree k such that the powers of x, modulo f (x), cycle through all 2k−1 nonzero elements
of  (2k ). The coefficients of f (x) are all 0 or 1 and the coefficients of the powers of x are
computed modulo 2.
The following theorems show that our algorithm provides a maximal projection set and

that the resulting orthogonal Latin hypercube design is also a U-design (Tang, 1993).

T 1. T he powers of x in  (2k ), x0, x, x2, . . . , x2k−2, provide an ordering of the
eVect columns into maximal projection sets with B

k
=t(n−1)/ks. In fact, every consecutive

set of k columns in this ordering is a full factorial design.

Proof. The powers of x in  (2k ), x0, x, x2, . . . , x2k−2, generate all the nonzero elements
of  (2k ) and thus, by the correspondence described above, all the columns in the
saturated, regular two-level fractional factorial with 2k−1 factors in 2k runs. The first k
terms in this sequence, x0, x, . . . , xk−1, correspond to the main-effects columns and
clearly are a full 2k factorial. Now consider any set of k successive terms in the sequence,
beginning with xt, say. The columns corresponding to these terms will be a full factorial
unless there is a linear dependency among the corresponding elements of  (2k ), that is
unless Wk−1

j=0
e
j
xt+j¬0 for a set of e

j
which are not all equal to 0. Dividing the last relation

by xt, we would then have Wk−1
j=0
e
j
xj¬0, stating that there is a linear dependency among

the first k columns. This contradicts the observation that the first k columns in the ordering
do provide a 2k factorial. Thus the ordering satisfies the property that each set of k
successive columns is a full 2k factorial design. In particular, dividing the ordered columns
into blocks of k leads to each such block being a full 2k factorial design. Thus we obtain
B
k
=t(n−1)/ks blocks. %

T 2. T he L atin hypercube designs generated from the above algorithm are
U-designs with respect to an orthogonal array with two symbols in each column. T he signs
of the columns in the rotated L atin hypercube design exactly match the signs of the columns
in the two-level fractional factorial that was rotated.

Proof. Each column in the rotated design is a linear combination of k columns in the
two-level fractional factorial design that was rotated. The weights assigned to these k
columns are±1,±2, . . . ,±2k−1. The signs of the entries in the rotated column will then
correspond exactly to the signs of the column in the original design that received weight
2k−1. The signs will match exactly if the weight is positive and will be multiplied by −1
if the weight is negative. %

In Table 3 we presented a 16-run, 8-factor design in which all the main effects were
orthogonal to all second-order terms. This construction can also be easily extended to
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the general case where n=2k and k=2m, to generate a design with 2k−1 factors. We take
as our initial design the standard resolution IV fractional factorial design with 2k runs
and 2k−1 factors, including from the saturated design all columns that correspond to main
effects and to interactions of an odd number of factors 1 to k, inclusive. We use the matrix
R
m
to rotate the factors in the initial design in groups of k. As the group size, k=2m,

divides the total number of columns in the initial design, 2k−1, all the columns can be
rotated. To order the columns, we apply a variation of the procedure in Theorem 1. The
columns of our initial design correspond to the vectors in  (2k ) that have an odd number
of ones and so are fully determined by their first k−1 entries. Moreover, the columns
include all possible binary vectors of length k−1. Ignoring the kth coordinate, apply the
procedure of Theorem 1 to the 2k−1−1 nonzero coefficient vectors, ordering them as
elements in  (2k−1 ). The only remaining vector is (0, . . . , 0, 1), which corresponds to the
main effect of factor k. Make this the first column in the ordering.

T 3. T he procedure described above generates an orthogonal L atin hypercube
design with n=2k runs, where k=2m, and 2k−1 factors, in which all main eVects are
orthogonal to all second-order terms.

Proof. The standard two-level fractional factorial of resolution IV has fold-over
structure: the reflection of each design point about the origin is also in the design. The
fold-over property is not affected by reordering the columns. Bursztyn & Steinberg (2001)
showed that rotation designs preserve fold-over structure. The orthogonality of the main
effects to all second-order terms then follows from the results in Box & Wilson (1951).
We must also show that the ordering algorithm described above produces blocks of k
columns, each of which is a full 2k factorial design. In fact, as in Theorem 1, we show that
each set of k successive columns is a 2k design. The proof requires one additional fact
from Galois field theory. The primitive polynomial f (x) for  (2k−1 ) can be written
f (x)=xk−1+Wk−2

j=0
d
j
xj, where each d

j
is 0 or 1, and the number of d

j
that equal 1 is even.

The parity of the number of coefficients follows from the fact that a primitive polynomial
cannot be divisible by any lower degree polynomial. Were the number of d

j
that equal 1

odd, it would then hold that f (1)¬0 mod 2 and f (x) would be divisible by x+1.
Now consider k consecutive columns in our ordering. The first k columns are the main-

effect columns and are a full factorial. Any other set of k columns is generated by successive
powers of x in  (2k−1 ), xt, xt+1, . . . , xt+k−1, say. Denote the coefficient vectors of
these columns in  (2k ) by c

t
, . . . , c

t+k−1
. The first k−1 elements of c

t
give the point

in  (2k−1 ) corresponding to xt and the kth element is defined by the requirement that
each vector have an odd number of nonzero entries. The set of k columns is a 2k factorial
unless it satisfies a linear dependency, Wk−1

j=0
e
j
c
t+j
=0, where 0 here is a k-vector of

zeros. By Theorem 1, there cannot be a linear dependency that is limited to k−1
consecutive columns, as that would give, in particular, a linear dependency in the first
k−1 coordinates. We can use the structure of the ordering to find exactly the linear
dependency among all k columns that holds for the first k−1 coordinates of the c

t+j
and then will show that it does not carry over to the kth coordinate. We can write
the linear dependency for the first k−1 coordinates only as Wk−1

j=0
e
j
xt+j¬0. Dividing

by xt gives the equivalent condition Wk−1
j=0
e
j
xj¬0. For j=0, . . . , k−2, xj¬xj mod f (x)

and xk−1¬Wk−2
j=0
d
j
xj mod f (x). Thus the linear dependency for the first k−1 coordinates

is given precisely by the primitive polynomial, i.e. by setting e
j
=d
j
, for j=1, . . . , k−2,

and e
k−1
=1. The total number of nonzero coefficients in the primitive polynomial is odd
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and the vector c
i
for each column in our design has an odd number of ones. Thus the

sum of all the coordinates in the vector Wk−1
j=0
e
j
c
t+j
must be an odd number. It follows

that the vector cannot be equivalent to 0 mod 2. %

7. D

We note that Ye’s (1998) Latin hypercube designs cannot be obtained directly as
rotations of two-level factorials. All points in a 2k design, or any of its fractions, are
equidistant from the origin. As rotations are isometric, the points in the rotated design
must also be equidistant from the origin. The points in Ye’s designs do not share this
property. Subsets of columns in a rotated design will not have the equidistance property.
We do not know if Ye’s 16-run designs can be obtained by rotating a larger design, with
8 or 12 factors, say, and then selecting a subset of 6 columns. In the orthogonal Latin
hypercube design in the technical report by Ye, all points are equidistant from the origin.
However, we have not found a way to generate this design as a rotation of a 16-run
two-level fractional factorial.
The construction method that we present in this paper leads to much larger orthogonal

Latin hypercube designs than were previously known. The primary limitation to our
method is the severe sample size constraint; we require the sample size to be n=2k, where
k is also a power of 2, k=2m. Extension of the proposed algorithm for accommodating
various run sizes is currently under study.
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