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ABSTRACT

The growing popularity of latin hypercubes during the last decade both in simulations and in
experimental designs is largely due to their attractive properties in one dimension. Their possibly
anomalous behavior in multi-dimensions also causes some concerns among statisticians. Toward
this a remedial measure has been proposed by several authors that aims at controlling the
correlations in latin hypercubes. The problems with this approach are that there is no direct
connection between uniformity and low correlation and that it works only for two-dimensions.
In this paper we introduce orthogonality in latin hypercubes by exploiting the use of orthogonal
arrays. The resulting designs and sampling scheme are referred to as U-designs and U-sampling
respectively. Our approach is preferable in many ways. We show that U-sampling when used
in Monte Carlo integration offers a substantial improvement over latin hypercube sampling.
Many examples of U-designs are presented. A procedure for generating U-samples is also
provided.

Key words and phrases: latin hypercubes, orthogonal arrays, OA-based latin hypercubes,
U-designs, U-sampling.



1 Introduction

To motivate our approach, we begin by describing and reviewing briefly some developments

in two related statistical areas.

1.1 Simulation

In many scientific and technological fields, we are often confronted with the problem of
evaluating a complex integral over a multi-dimensional domain. Among a whole collection
of numerical integration techniques, the Monte Carlo method is especially useful and often
competitive for problems of high dimensions( Davis and Rabinowitz, 1984 chapter 5.10 ).
The problem is formulated as follows:

Consider a deterministic function Y = f(X) where Y € R, X € R™ and f is known but
expensive to compute. The random vector X has m statistically independent components
X1,...,X™ and X7 has a known distribution Fj, j = 1,...,m. Let F = [[-, F; denote the
distribution of X. We want to estimate the mean of Y, p = E(Y).

The simplest way by Monte Carlo is to draw X3,..., X, independently from F and use
Y = n' ¥, Y; as the estimate of y, where Y; = f(X;). Mckay, Conover and Beckman(1979)
introduce latin hypercube sampling(LHS) as an alternative to i.i.d. sampling. They show
that LHS can result in the variance reduction of Y when f is monotone in each variable.
Stein(1987) obtains a more informative result. If we define the main effects as f;(X) =
E(f(X)|X?) — p and write

FX) = i+ 30 50 +7(X),
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where

m
r(X) = f(X) —p - Zlfj(X)-
. i=
Stein shows that the variance of Y under LHS is n~!Var[r(X)]+o(n!) that is asymptotically
smaller than the i.i.d. variance n™'Var[f(X)].

The main feature of LHS is that it stratifies each dimension simultaneously. Stein’s
result simply states that by using LHS the main effects are filtered out. One may expect
that if stratification is also achieved on each two-dimension, one may filter out another part
from the error term. Owen(1990) demonstrates that some bilinear terms can be filtered out

by matching the sample and the population correlations. Our approach aims directly at

stratification for multi-dimensions and hence a more general result can be obtained.

1.2 Experimental Design

In the theory and practice of experimental design, it is well-known that when the assumed
model is suspect, we are led to concentrating on and minimizing the bias part of the mean
square error. This usually can be achieved by scattering design points uniformly in the
design region. See Box and Draper(1959) ant'i Sacks and Ylvisaker(1984) for references.
Orthogonal array designs are extensively used for planning experiments in industry and the
successes achieved by using them are at least in part due to their uniformity properties.
However, when a large number of factors are involved in an experiment and only a few of
them are important, orthogonal array designs when projected onto the subspace spanned by
the important factors might result in replication of points. This is undesirable when the bias
is more serious than the variance, and is a disaster for deterministic computer experiments.

In this case, latin hypercube designs are the preferred alternatives to adopt(Welch, Buck,
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Sacks, Wynn, Mitchell, and Morris, 1992). However, the projections of design points onto
even two-dimensions cannot be guaranteed to be uniformly scattered. Current methods for
improving latin hypercube designs control the correlations, see Iman and Conover(1982) and
Owen(1990). Two objections tp this approach are that there is no direct connection between
uniformity and low correlation and that it works solely for two-dimensions.

We introduce orthogonality in latin hypercubes by exploiting the use of orthogonal arrays.
Our approach seems to be preferable to the correlation approach in many ways. It not only
eliminates the drawbacks of the correlation approach but also has some important statistical
properties. We will discuss these problems in later sections.

By using these OA-based latin hypercubes, the resulting designs and sampling scheme are
referred to as U-designs and U-sampling, respectively. We introduce the basic concepts of U-
designs and U-sampling in Section 2 present various examples in Section 3. Some theoretical
results on U-sampling are provided in Section 4. Finally in Section 5 we give generalization

and discussion of our approach.

2 Basics of U-designs and U-sampling

2.1 Mathematical Preliminaries

An n x m matrix A, with entries froﬁ a set of s > 2 elements, is called an orthogonal array
with strength r, size n, m constraints and s levels if each n x r submatrix of A contains all
possible 1 x r row vectors with the same frequency A. The number ) is called the index of
the array. Clearly n = As". The array is denoted by OA(n,m,s,r).

Denote the s elements by 1,2,...,s. Let P, be the set of permutations of n objects



{1,...,n}. A generic element of P, will be denoted by p with or without a subscript, p
permuting {1,...,n} to {p(1),...,p(n)}. Let I'y, be the set of all sequences with entries
from P, of length m. Since n = \s", we can define a mapping Z from {1,...,n} onto

{1,...,s} as follows:

1 1=1,2,...,q,

2 i=q+1,q+2,...,2
Z(i)=< q b b )q’

s i=(s—1)g+1,(s—1)g+2,...,n,
where ¢ =n/s.
An element (p1,pz2,--.,pm) in 'y is said to be an orthogonal sequence with strength r,

if the matrix

( 2(n(1)) Z(pa(1)) - Z(pm(D)) )
Z(m(2) Z(px(2) - Z(om(2)

| Z(a(m) Z(pa(m) -+ Z(om(m)
forms an OA(n,m,s,r).

For each 2 < r < m, we define
I" = {p € T,u|p is an orthogonal sequence with strength r }.

Clearly, " CT™ 1 C... CT% CT,.



2.2 The Concepts of U-designs and U-sampling

Now, we can define a latin hypercube design(LHD) as follows: for any sequence (p1,...,pm)

in I',,, we say the matrix

'(m(l) p2(1) --- pm(l)\

(2 2(2) --- pm(2
p1(2) p2(2) Pm(2) O

\ i(n) pa(n) - pm(n)
is an LHD. '

If we allow pq,...,pm to be chosen freely, the resulting LHD could be very undesirable.
For example, the situation in Figure 1 of Section 3 could arise, where n = 4, m = 2, and
P1 = P2-

To rectify this problem, we introduce
Definition 1 For any sequence (p1,-...,pm) in Iy, we say the matriz in (1) is a U-design

with parameters (n,m,s,r).

We avoid giving the same names for (n,m, s,7) as we do for an orthogonal array, because
they do not all have an obvious statistical interpretation. The most notable is s which does
not refer to the number of levels of the design(actually the design has n levels), although the
others n,m,r have similar interpretations.

From the definition, a U-design is a special LHD that forms an orthogonal array design
after grouping n original levels into n/s levels in a systematic way. One obvious implication
is that a U-design can achieve some kind of uniformity in each r-dimension. Since U-designs
also retain some sort of balance properties inherent from the parent orthogonal array, it is

possible to use the grouped levels to perform a preliminary data analysis to identify the
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important factors. After the important factors have been identified, one can revert to the
original levels to model the response by a regression or Bayesian model.

To motivate the definition of U-sampling, we first describe LHS as follows: for each
j=1,...,m, draw independently X ~U((s —1)/n,i/n), i =1,...,n, such that all X! are
independent. Next a sample of size m is drawn from P, by simple random sampling with

replacement; the resulting permutation sequence is denoted by (p1,...,pm). Then
— 1 2 m
Xi = (X, 6y Xoar -+ 1 X o)
i=1,...,n,is a desired latin hypercube sample.

Definition 2 Instead of drawing a permutation sequence randomly from I'y,, we draw a
permutation sequence randomly from I, and form the n inputs in the same way. Then
the sample so obtained is called a U-sample and the corresponding sampling scheme is called

U-sampling with strength r.

The essential difference between the U-sampling and LHS is that U-sampling excludes
those permutation sequences not contained in I'},. This is in line with controlled sam-
pling in sample survey theory. For a recent reference on controlled sampling, see Rao and
Nigam(1990). Intuitively, the permutation sequences in I';, are preferred since some kind of
stratification is achieved for all r dimensions. We will give some theoretical justifications in
Section 4.

To estimate the mean of Y, u, we still use the sample mean, that is,
.1
f= (Yot V),

where Y; = f(X;),i1=1,...,n.



Before going further, we present some examples in Section 3 for illustration. A method
for obtaining all possible U-designs by starting with an orthogonal array is also described

through these examples.

3 Examples

Example 1 Consider the case of two factors and four runs, that is, n =4 and m = 2. We

can take s = 2 and the mapping Z as follows:
Z(i) =
Since
Z(1) Z(2) Z(33) Z(4) 112 2

Z(1) Z(3) Z(2) Z(4) 121 2
is an OA(4,2,2,2), the following matrix

is a U-design. And since
Z(1) Z(2) Z(3) Z(4) 1122
Z(1) Z(2) Z(4) Z(3) 1122
does not form an orthogonal array, the matrix
1 2 3 4

1 2 43

is not a U-design.
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These two designs are represented by Figures 2 and 3. Figure 2 represents a U-design
and Figure 3 an LHD which is not a U-design. On intuitive grounds, the former is preferred
to the latter. Indeed suppose that the area within the dashed-line-box is the design region.
The design points in Figure 2 are more uniformly scattered than those in Figure 3 in the
two-dimensional region in the sense that each small dashed-line-box contains only one design

point.
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Figure 3 Figure 4



Another U-design, more attractive in the sense that the design points are more uniformly

scattered than those given in Figure 2, is

1 2 3 4

2 413

which is represented by Figure 4.

Example 2 Let n =9, m = 4. We choose s =3 and

4

1 i=1,2,3,

Z(i)=1 2 i=4,5,6,

\3 1=17,8,09.

It is easy to check that the matrix

(123456789\
369 2528147

147582936

\174528963)

is a U-design with parameters (9,4,3,2). The projections of points onto the first two columns
of the matrix can be represented by Figure 5.

Note that for each column of the OA(9,4,3,2), if we replace three 1’s by any permuta-
tion of {1,2,3}, replace three 2’s by any permutation of {4,5,6}, and replace three 3’s by
any permutation of {7,8,9}, the resulting matrix is a U-design with parameters (9,4,3,2).
This gives a simple procedure for constructing all possible U-designs by starting with an

orthogonal array.



Example 3 Let n =8, m = 3. We choose s =2 and

1 i=1,23,4,
Z(i) =
2 i=5,6,1,8.

It is easy to check that the matrix

t

4 3 21817665
317542286
152637438
is a U-design with parameters (8,3,2,3).
The projections of points onto the first two columns of the matrix can be represented by

Figure 6.

* l __l .

I . |
Figure 5 Figure 6

Example 4 Letn = 16, m = 2. We can choose s to be either 4 or 2, since both OA(16,2,4,2)
and OA(16, 2, 2, 2) can be used to construct U-designs. It is felt that the case of s = 4 is

preferred and recommended. Generally, larger values of s provide more balance.

10



Example 5 We consider a more realistic situation where n = 49, m = 8, s = 7, and the

mapping Z is defined to be

1 i=1,23,4,5,6,7,

2 i=8,9,10, 11,12, 13, 14,
3 i=15,16,17, 18, 19, 20, 21,
Z(i) =14 4 =22, 23, 24, 25, 26, 27, 28,
5 i=29, 30, 31, 32, 33, 34, 35,

6 =236, 37, 38, 39, 40, 41, 42,

| 7 i=43, 44, 45, 46, 47, 48, 49.

A random U-design with parameters (49,8,7,2) is generated using the method given in
Example 2. The pairwise plots of all the two-dimensions are provided in Appendix B. In
order to make a comparison, we also generate a random LHD. It is seen that the design

points in the former look more uniform than those in the latter.

Example 6 This ezample is devoted to U-sampling with n = 4,m = 2,8 = 2 and Z as in

Ezample 1. The resulting U-sample is plotted in Figure 7.

In addition to stratifying each dimension, it also stratifies the two-dimensional region as

shown in Figure 7.
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Before we conclude this section, we point out that construction of a U-design depends on
the existence of a corresponding orthogonal array. The same remark is true of U-sampling.
For related results on orthogonal arrays, we refer to Plackett and Burman(1946), Rao(1947),

Bose and Bush(1952), Dey(1985) and de Launey(1986).

4 Some Results on U-sampling

We proceed to study some theoretical properties of U-sampling in this section. First we
introduce a generic two-stage sampling scheme in Section 4.1 which includes both LHS and
U-sampling as special cases. This general framework facilitates the theoretical development
in the rest of the section and also offers the possibility of constructing new sampling schemes.
In Section 4.2 some results on U-sampling are presented; comparisons with the work of Stein

and Owen are also given. Finally we briefly describe a procedure for generating U-samples
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in Section 4.3.

4.1 Two-stage Sampling

Recall that Y = f(X) and X = (X1,...,X™), where X!,...,X™ are mutually independent
and X? ~ Fj, j = 1,...,m. Without loss of generality, we may assume that X7 ~ U(0, 1],
j=1,...,m. Let

A={(0, 1/n],(1/n, 2/n],...,(1 —1/n, 1]}
and

C={Ay X xAn| A;€ A j=1,...,m}.

Members of C are referred to as cells and thus n™ cells form a partition of (0, 1]™.
To estimate the mean of Y, u, for each cell in C we would like to draw an X from the
uniform distribution on that cell. Consideration of cost, however, leads us to use only a

sample of cells and hence to consider the following two-stage sampling scheme:

Stage 1. Draw a sequence of cells C4,...,C, from C using some sampling scheme satisfying

1. The random vector (Ci,...,Cy) is exchangeable,

2. The marginal distribution of C; is uniform on C,: =1,...,n.

Stage 2. For each C;, i = 1,...,n, X; is drawn from the uniform distribution on C;, the

drawing being carried out independently for each C;, 7 = 1,...,n.

Denote the variance of Y as o2. Let Y = (Y +---+Y,)/n where ¥; = f(X;),i =1,...,n.

Then we have the following obvious assertions.
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Assertion 1. Under the two-stage sampling scheme, Y is an unbiased estimator of y, that
is,

E(Y) = p.

Assertion 2. Under the two-stage sampling scheme, the variance of Y is given by

o2 n

Var(Y) = . +

-1
- Cov(Y1,Y2).

The proofs of the assertions are straightforward. Assertion 1 follows immediately from
the fact that the marginal distribution of X; is uniform on (0, 1]™ under the two-stage

sampling , 2 = 1,...,n. The proof of Assertion 2 is based on the formula:

Var(Y) = -7%(27‘: Var(Y;) + 2": Cov(Y1,Y2)),

i=1 i
and the two conditions in Stage 1.
It is easy to see that both LHS and U-sampling are special cases of the two-stage sampling

scheme, where the ith cell C; corresponds to the ith row of the matrix in (1) of Section 2.2.

Therefore Assertions 1 and 2 hold for both of them.

4.2 Some Results on U-sampling

Let
B ={(0, 1/s],(1/s, 2/s],...,(1 —1/s, 1]}
and

L={Byx+-+xBn| B;€B,j=1,...,m}.

Members of L are referred to as large cells and thus s™ large cells form a partition of (0, 1]™.

We shall refer to the members of C introduced in Section 4.1 as small cells from now on.
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Intuitively, it is required that s be large in order to derive the asymptotic variance of Y’
under U-sampling. In this case, an economical way is to choose an orthogonal array with
A = 1. In this section we shall concentrate on the case r = 2 for two reasons. First, the
sample size n = s? is held at its minimum. Second, the basic ideas should carry through for
a general r although things become very complicated.

Now we are ready to give the following theorem.

Theorem 1 Suppose f is bounded. Then under U-sampling we have
1
Cou( f(X1), f(Xz2)) = —— 3 Var(E(f(X1) | (4;)))
j

L5 van(B( (%) 1 (B x By)) — B(S(X0) | o(B) — B | (B} +o(),

i<j

where n = 82, Ay X +++ X A and By X -+- X By, are the small and large cells to which X;
belongs, and c(A;), c(B;) and ¢(B; x B;) are the cylinder sets with bases A;, B; and B; X B,

respectively.
The proof of Theorem 1 is given in the Appendix A.

Corollary 1 If f is bounded continuous, then under U-sampling we have
1 )
Colf(Xy), £(X3)] = —= 3 Varl B(f(X) | X7)
i

LS varlB(£(X) | X, X0) — BUSX) | X) - BUOO 1 X))+ o),

i<j

where X is uniformly distributed on (0, 1]™.

It follows from Theorem 1 and the continuity of f.
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Theorem 2 If f is bounded continuous, then under U-sampling we have

Var(Y) = — - —Z Varl f;(X7)] - = E Var{fi;(X*, X7)] + 0( )s

c<]

where
£(X) = B(f(X) | X7) —

is the main effect of X?, and
fiJ'(Xi,Xj) = E[f(X) I Xi’Xj] - fi(Xi) - f.‘i(Xj) + ]
is the second-order interaction between X* and X7.

It follows from the Corollary 1 and Assertion 2 in Section 4.1.

If we write

f(X) = #+Efa(X’)+qu(X' X7) + r(X), (2)

1<J

it is easy to check that the terms on the right hand side of (2) are orthogonal to each other.

Therefore we have the corresponding variance decomposition

o= EVa.r(f,) + Y Var(fi;) + Var(r(X)).

1<j

Then Stein’s result(1987) shows that under LHS
- o 1 1
Var(Y) = — —— %:Var(fj) +o(-),

and Theorem 2 states that under U-sampling

VM(Y) =" ZVa.r(f,) - ;VM(fm) +o(= )
1
~ IVar (0] 4 o)
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The advantage from using U-sampling instead of LHS is obvious. U-sampling is capable of
filtering out all the second-order interactions as well as the main effects. This generalizes
Stein’s work. Owen(1990) demonstrates that bilinear terms can be filtered out by matching
correlations of latin hypercube sample and population. To compare Theorem 2 with the

Owen’s work, further let
(X%, X7) = 755(X° = 0.5)(X7 — 0.5) + gij(X*, X7), (3)

where
 E[f(X5, X9)(XF = 0.5)(X7 — 0.5)]
T TE[(XF - 0.5)(X5 — 0.5)]2

so that the two terms on the right hand side of (3) are mutually orthogonal. Then Owen’s

result can be written as

Var(F) = ~Varls(X)] + = 3 Var(gis) + o).

i<
It is seen that Theorem 2 is also more general than Owen’s work.
Recently, Owen(1991) independently obtains a similar result as Theorem 2 by merely

using randomized orthogonal arrays. To get the same accuracy for estimating the main

effects, the number of runs required for orthogonal arrays may be too large.

4.3 A Method for Generating U-samples

It is difficult to use Definition 2 of Section 2 to generate U-samples since the number of
orthogonal sequences of permutations is too large. We will give a method for doing this in
this section. The method is illustrated by a simple example.

Suppose that n = 9 and m = 3. Here we take s = 3. Consider the orthogonal array
0A(9, 4, 3, 2).
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1. Draw three columns from four columns of the OA(9, 4, 3, 2) by simple random sampling

without replacement. Denote the three columns by a,, a2 and a3 in drawn order.

2. For each column a;, j = 1,2, 3 replace the three objects 1, 2, 3 by a random permutation

of them.

3. For each column aj, j = 1,2, 3 replace three 1’s by a random permutation of {1,2,3},

replace three 2’s by that of {4,5,6}, and replace three 3’s by that of {7,8,9}.

Then the 9 x 3 matrix (a;, a2, as) gives an orthogonal sequence of permutations as defined
in Section 2. The nine rows of the matrix above represents nine small cells. The work for

selecting X’s is trivial after the small cells have been obtained.

5 Generalization and Discussion

5.1 A Generalization of U-designs and U-sampling

There are some limitations in the previous definitions of U-designs and U-sampling. By
utilizing asymmetric orthogonal arrays, the ideas still carry through. For recent references
on asymmetric orthogonal arrays, see Rao(1973), Dey(1985), Wu(1989), Wang and Wu(1991)
and Wu, Zhang and Wang(1990).

The notation OA(n,r,s1,...,8ms) is used to denote an orthogonal array of size n and

strength r with s; levels in the jth column, j = 1,...,m, and the s;’s may not be distinct.
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Define m mapping Z; as follow:

1 i=1,2,...,q

2 i=¢q;+1,q;+2,...,2¢q;
Z;i(3) = | S

Ls,- i=(s; —1)g;+1,(s; —1)g; +2,...,n,
where ¢; = n/s;, for j =1,...,m.
Given a permutation sequence (p1,p2,--.,Pm), We say the matrix in (1) of Section 2 is

an asymmetric U-design if the matrix

[ Zi() Za(pa()) -+ Zm(pm(D) )
L) Za(pa() -+ Bm(om(2)

\ Zu(pr(n) Zalpa(m) -+ Zm(pm(m)

forms an OA(n,7,81,...,5m)
The generalization of U-sampling can be made accordingly. We shall not give the details

here.

Example 7 We consider the case where n =6, m = 2, s; = 2 and s, = 3. Two mappings

are defined as follows:

1 i=1,2,
1 i=1,2,3,

Zy(3) = Z(i)={ 2 i=3,4,
‘ 2 i=4,5,6,

3 i=25,6.

It is easy to see that the matrix

1 23456

26 415 3
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is an asymmetric U-design that can be represented by the following figure.

_— .. e o - — - -

Note that in the figure above, each small dashed-line-box contains only one design point.

5.2 Discussion

For a given orthogonal array, there are many corresponding U-designs and apparently these
U-designs are not equally preferable as demonstrated in Figures 2 and 4 of Section 3. This
raises the question on the choice of U-designs. Keeping in mind the objective of uniformity,
two approaches, distance approach and correlation approach, can be utilized. We do not
intend to go into details here but merely point out this important problem. The results will
be included in a forthcoming paper.

Very often a large number of factors are studied in an experiment. For such an experiment
the first problem is to screen out the unimportant factors. Highly fractionated factorial
designs are widely used for this purpose( Box, Hunter a.nd Hunter 1978 ). These designs

have the advantages of runsize economy and simplicity in a data analysis. There are also
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some disadvantages as described in Section 1. LHDs have been used in screening experiments:
Iman and Conover(1980) judges the relative importance of factors by the magnitudes of the
linear correlations of the response and the factors by using LHDs; Welch et al.(1992) uses the
same designs for screening in their Bayesian approach. As we have mentioned in Section 2,
it is possible to use the grouped levels to perform a preliminary data analysis to identify the
important factors. However, the main effects defined by the grouped levels are confounded
with each other. This raises a very interesting question: how to assess the strengths of

confounding?
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Appendix A

We will prove Theorem 1 of Section 4 in this appendix.

Let ¢y be a small cell in C and L be the large cell that includes ¢;. Suppose that
cp=A; XX A, and 'L=le---><Bm.

Let

G = (U e(4,)) U «(B: x B;)).
=1 i#j
By the definition of U-sampling, we first have

Prob(Cy =c;|C1 =c1)=0foralle; € G.

We proceed to derive the general formula for the expression Prob(C,; = ¢z | C1 = ¢;1) which plays a
key role in later development.

Lemma 1

a, for all c; C (Ujzy ¢(B;))° = Nixy ¢(B;)°

b’ fOT all ez C (U;n=1 c(B.’i)) \ G= U?:l(c(BJ') \ G) ’

P‘I‘Ob(Cz = C2 | 01 = 61) =

where a and b are constants. Note that G° = (=, ¢(B;)°) U(Uj=1(c(B;) \ G))-

This is obvious from the definition of U-sampling.

Lemma 2

s—m+1
. .

a_
7 =
PROOF. Let ¢; = (u11, U12,- . -, U1m). Without loss of generality, we may take for

Case (i). c2 = (u21,u22y...,U2m) for ¢z C UjL;(c(B;) \ G) such that Z(u11) = Z(uz) and

Z(u1;) # Z(ugj),for j =2,...,m,
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Case (ii). c2 = (u3;,u22,...,U2m) for c2 C N1, ¢(B;)° such that Z(u11) # Z(u3,).

Let a* = Z(u$,). To obtain a matrix U = (u;;) in I'Z, with the fixed first two rows to be ¢; and

Ca, it is convenient to divide the work into the following three steps.

Step 1. Obtain the elements u;;, 2 = 3,...,n, in the first column. The number of ways for doing

this is (n — 2)! for both cases.

Step 2. Obtain an orthogonal array OA(s?,m,s,2), A = (a;;), with the first two rows equal to
»Z(cl) and Z(cp) and the first column fixed by a;; = Z(ui1).
Consider the s rows with the elements of the first column to be a*.
Case (i): For column 2, the number a;, must occur once in the s rows above and therefore
there are s ways to arrange a,,, for column 3, the number a;3 must occur once in the s — 1
rows unoccupied by a;2 and therefore there are s — 1 ways to arrange a;3, and so on until
a1, is arranged in column m and in the s — m + 2 rows unoccupied by a;2, «+sy@1m—1. Thus,
the total number of ways to arrange ajz,...,a1m is $(s —1)---(s — m + 2).
Case (ii): By a similar argument, we can show that the total number of ways to arrange
125+ +501m is (8 —1)(8 —2)---(s —m+ 1), since one of the s rows is already occupied by c;.
After the arrangements above, we claim that the number of ways to obtain the remaining
a;;’s is the same for both cases. This is readily seen by first considering the 2s rows with the

elements of the first column to be a;; or a*, and then considering the remaining n — 2s rows.

Step 3. Obtain u;j, i > 3, j > 2, such that Z(u;;) = a;;. It is easily seen that the number of ways

of getting such u;;’s is the same for both cases.

In summary, we conclude that the number of matrices in I'2, with the first two rows equal to

c1 and ¢y is ks(s —1)---(s — m + 2) for Case (i) and k(s — 1)(s — 2):--(s — m + 1) for Case (ii).
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Therefore
a_ k(s—1)(s—2)---(s—-m+1) s-m+1

- = = a
b ks(s—1)---(s—m+2) s
Lemma 3
_ s—-m+1
BRI
1

T i(s— ™) (s +1)

PROOF. The number of small cells in ¢(B;) \ G is
(n—s8)" Y s-1)=s""Ys-1)"forj=1,...,m.
The number of small cells in (]2 ¢(B;)° is
(n—s)™=sm(s—1)"

So we have

as™(s —1)™ + mbs™ (s - 1)™ = 1.

By combining this with Lemma 2, we obtain Lemma 3. O
Let v be the uniform measure on G°. Let g(z | C1 = c1) be the probability density function of

X, conditionally on C; = ¢; with respect to ». Then we have

Lemma 4

ltmllemmtl) or z € (v, ¢(B;)°¢
9(z|01=c1)= s(s+1) » nJ—l ( J) ’

o1 for z € UiLi(e(B;5) \ G)-

PROOF. It is easy to show that

A0 B =
(B @) = s = 1yem.

=1
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By Lemma 1, we have
a, forz € n;"=1 C(Bj)c,

B, forze U;"‘=1(C(Bj) \ G)’

where a and 3 are constants. By Lemma 3

9(z|Ci=¢)=

s—m+1

Prob(C; C (] ¢(B;)°) = s™(s — 1)"a = i)

J=1
On the other hand,

Prob(C, C ﬁ ¢(Bj;)°) = Prob(X; € ﬁ c(B;)°)
j=1 Jj=1

= s
=/ . 9(z | C1=c1) dv = av([ ] ¢(B;)°) = a .
/nj=1 c(Bj)° ) :’Q J s+ m
So
(s+m)(s—m+1)
a =
s(s+1)
Similarly we have
s+m
p= s+1

This proves Lemma 4. O

PROOF OF THEOREM 1: We have

Cov(f(X1)f(X2)) = E(f(X1)f(X2)) = E(E(f(X1)f(X2) | €)),

where C = A; X+++ X A, and L = By X --- X B,, are the small and the large cells to which X;

belongs respectively. Further let

6= () etas) U e(B: < B)

=1 i#j

. as before. Then conditionally on C, X; and X, are independent and X, has the probability density

function
(etm)(s—m+l) = £50 2 € (Y2, o(B;)S,
9(z|C) = *(s+1) =2 ()
sm for z € Uj,(¢(B;) \ G).
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Therefore
E(f(X1)f(X2)) = E(E(f(X1) | C)E(f(X2) | C))
and
E(f(X2)| C)
= Jg f(z)9(z| C) dv
= Jur.e@ne f@9(= 1 C) dv + far o (p,) f(2)g(z | C) dv
= Jur.cmne F@L+ 571 dv + o (s, F@)L - mlm P dv

m-—1 m(m-1
= Jo f(2) dv + TR fm emone) F(2) v = TR I, o8, 1(2) d.
Noting that v has a density 1+0(1) with respect to the Lebesgue measure on G°, we have

/ﬂL o(B;) f(z) dv = /ﬂ}';l o(B;)° f(z)[1+4 o(1)] dz = o(1).

The last equality follows from the assumption p = 0. Moreover, it is easy to show that

m-—1

s+1.Jyr (B)\e)

fle) dv = 22 Y B(S(X) | e(B))) + of ).
Also
Jo- £(&) dv = ~ [ f(2) do + o)
= 1T E(A(X) | e(4;)) — 2 Tie; B(F(Xa) | (B x B;)) + o(2).

Therefore we obtain

B(f(X2)| €) = —= 3" B(F(Xa) | e(47))

LS E) | (B x B,) — B(A(X0) | e(B)) — B (X) | (B} + of)-

i<j
Note that

E[E(f(X1) | C)E(f(X1) | e(4;))] = Var[E(f(X1) | e(45))],
E[E(f(X1) | C)E(f(X1) | ¢(B: x Bj))] = Var[E(f(X1) | ¢(B; x Bj))],
E[E(f(X1) | C)E(£(X1) | ¢(B;))] = Var[E(f(X1) | (B;))],
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and

E[E(f(X1) | ¢(B:))E(f(X1) | ¢(B;))] = 0,
E{E(f(X1) | ¢(B:))[E(f(X1) | ¢(B; x Bj)) — E(f(X1) | ¢(B:)) — E(f(X1) | ¢(B;))]} = 0.
So that ‘

Cov(f(Xa), £(X2)) = = Y- VarlB(F(X1) | e(4))]

L S VarlB(A(X1) | e(B: x B) ~ B((X1) | e(B)) — B(F(X) | eBs))] + of3).
i<j

The proof is completed. O
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Appendix B

Random U-design
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