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Abstract

A crucial component in the statistical simulation of a cotigtionally expensive model is a good
design of experiments. In this paper we compare the effigiefithe columnwise-pairwise (CP)
and genetic algorithms for the optimization of Latin hypéyes (LH) for the purpose of sampling in
statistical investigations. The performed experimendgizte, among other results, that CP methods
are most efficient for small and medium size LH while an addgienetic algorithm performs better
for large LH.

Two optimality criteria suggested in the literature areleated with respect to statistical proper-
ties and efficiency. The obtained results lead us to favoiterion based on the physical analogy of
minimization of forces between charged particles suggdeastil] over a ‘maximin distance’ criterion
from [9].

Keywords: Design of experiment, Latin hypercube, Genetic algorithm

1 Introduction

In this article, concerning design of experiments (DOE)iake the point of view of computer simulation
of stochastic phenomena. By this we mean that we have afdetstic) computer model of a physical
phenomenon and some model parameters are given as randaiviesfas opposed to fixed numbers).
We thus want to first sample the random variables, then, fdr sample point, run a computer simulation
and finally analyze the stochastic properties of the satutio

Some of the algorithms evaluated in this paper have beeremmgaited in the M-XPLORE module of the

RADIOSS software [3]. This module is primarily aimed at $tastic simulations of car crash simulation.
The results of this paper are, of course, of interest in a naidar spectrum of applications, the important
feature being only that the simulation is computationallgensive so that only few (say in the range 20
to 500) samples are affordable.

The paper is focused on sampling using optimized Latin royisrs (OLH). In section 2, the definition
of an LH and the optimality criteria for OLH are presenteds lvell-known that OLH is a viable choice
for design of experiments when one considers the followspeats.

Statistical optimality

There are many measures of statistical optimality of a desigxperiments. Most of them are based on
fitting a (stochastic) model to experiments/computed d@itas point of view is taken in e.g. [12] and
[16] and leads to optimality criteria often referred to ag@py criteria. The important theoretical paper
[9] also takes this point of view, but in addition introducesnimax’ and ‘maximin’ distance criteria.

It is then proved that asymptotically the introduced ci@dwhich are simpler to compute than entropy
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criterion) give similar designs for large problems as th&apy based optimal DOE. A second point
of view concerning optimality criteria is to study how wetllet statistical properties of some model are
predicted/computed. This is used in the present paper aodrathe pioneering article [11] where LH
where first introduced and (experimentally) shown to be agtitipe. In the current paper a convenient
optimality criterion introduced in [1] as well as the maxinariterion are used to evaluate the quality of
the resulting DOE.

Projection properties

By good projection properties we mean that the sample pshrsld be well spread out when projected
onto a subspace spanned by a number of coordinate axessTfien desired in the applications when
one does not know a priori if some random variables have agielg effect on the response of the
system.

Once generated, an OLH fprvariables andV points is independent of the considered application. It is
stored in a matrix and does not need to be computed again.

Although for small Latin hypercubes the computational aafstinding OLH is negligible comparing
to the expensive computer simulation of a physical phen@mangrows very fast with the number
of samples and variables. For large LH (hundreds of sampidgens of variables) it may even take
hours and days with fast computers. The computational aystretls, of course, on the algorithms used
for OLH optimization and the adopted optimality criterioin this paper the CP algorithm invented
in [16] (with the modification described in [19]) and a genedilgorithm, inspired by the algorithm
proposed in [18], are compared. There are more methods fooptlhization in the literature which
seem competitive. In [19] the CP algorithm was proposedyfomrsetric OLH and in [13], the simulated
annealing algorithm was used for LH optimization.

There are two main purposes of the current paper. First,ifgpece optimality criteria for the optimiza-
tion of LH with respect to the prediction accuracy of statet moments of the output. This is done in
the computational experiments of section 4 where we, foréwamples, evaluate the accuracy of the
mean estimates, for different methods, criteria and sasipés. The second main purpose is to compare
the efficiency of the CP and the genetic algorithms for LHmation. Some indications for the choice
of optimality criterion and optimization algorithm will deased on the study of two numerical examples.

The fundamental problem which is addressed in this paperdsstribute points as uniformly as possi-
ble in a hypercube (taking into account statistical optitpand projection properties). This problem
also arises for quasi-Monte Carlo methods for multi-dinn@mal integration. In this area the research
has focused on so called low discrepancy sequences, sefl8]g[5] for an overview of this line of
research. We perform comparative tests for OLH and Sobalesexps (which are of the low discrep-
ancy type) generated by the free software which is discribdd] and which is available from Netlib
(wwv. net | i b. or g) . These tests are presented in section 4.1 and 4.4.

2 Description of algorithms

A Latin hypercube is given by & x p-matrix (i.e. a matrix withN rows andp columns)L where
each column ofL consists of a permutation of the integers 1o We will refer to each row of as a
(discrete) sample point and use the notation
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wherez; is thej-th sample point.

Our ultimate goal is to obtaifV points in the parameter spa&. The sample must, of course, be gener-
ated taking into account the probability distributions lué parameters. The most difficult task, however,
turns out to be the construction of an optimized LH. In secd2 the CP method for LH optimization
is presented and in section 2.3 the genetic algorithm isrithest Before these, in sections 2.1 we state
a number of optimality criteria and formulate the optimiaatproblem. Section 2.4 describes the con-
vergence criteria used in the computations and in sectoiit & shown how to use LH for generating
samples of continuous random variables.

For the generation of Sobol sequences, which are based opletety different ideas, we refer to [4]
and the references therein. In section 2.6 we collect somaries on the algorithm we use for the tests.

2.1 Optimality criteria

We will now introduce three functions from the set of Latinpkycubes tdR. These functions will
subsequently be used in the criteria with respect to whichwlilHoe optimized.

The first functiond is defined to be the square of the minimum (Euclidean) distdretween sample
points

— : 2
d(L) := 1§z',jn%111\},i7éj | w]H . (2

We define another functiom to be the number of occurrences of the minimum distance. Eomea LH
this number is thus denoted byL).

Next we introduce a functiod: which, in a physical analogy, is the sum of the norm of the ispal
forces if the sample points are considered as electrichlyged particles (see [1] and [2])

N N 1

From the point of view of the physical analogy, it would haeeb natural with the power 1 (instead of
2) in the denominator of the terms of the sum. However, withgbwer 2 a computation of a square root
for each term is avoided. This has a noticeable effect onxeeuwtion speed since the functichwill be
evaluated many times in the inner loop during optimization.

The above three functions will now be used to formulate tliteria we use for LH optimization.
Minimum distance:

According to this criterion a LHL; is considered better than an LE if d(Ly) > d(L2). If d(Ly) =
d(Ls) thenL, is better thanL, if n(Lq) < n(Ls).

Force:

L, is better thanL, if G(L1) < G(L3).

We remark that, for the minimum distance criterion, it isgibke to check for equality even in floating

point arithmetic. This is so, because one can compare theeqfithe minimum distances which is an
integer (since all points have integer coordinates).

2.2 The columnwise-pairwise algorithm

A first order modification of a column of a LH matrix is definedaasinterchange of two of its elements.
Now, in pseudo-code, we describe the idea of the so-call@ds@eep'.



for i =1..p
Find the best first order nodification of colum i and
replace colum i with it

end of for-1oop

Where ‘best’ above and ‘better’ below, of course, means tleification which gives the best LH
according to the chosen criterion. The name CP-sweep itedithat it is a systematic procedure going
through (sweeping) all columns of the LH-matrix testingenchanges.

The complete CP algorithm can now be described in pseude-asdollows.

CGenerate a random Latin hypercube: Lnew_
stop_ = FALSE
VWil e( not stop_ )
Lold_ = Lnew_
Do a CP-sweep to generate Lnew_ from Lold_
If stopping criterion fulfilled then stop_ = TRUE
End of while-Iloop

Concerning the stopping criteria in the while-loop, sedisa@.4.

Often in the text we write that we use a (random) LH, sometineésrred to as a RLH design of exper-
iments. This is simply done by generatipgandom permutations of the numbers 1Noand placing
them as columns in the matrix. This procedure is much chabaper for example, a CP-sweep.

2.3 The genetic algorithm

The genetic algorithm is a very general optimization tegbaiand can be applied to a large class of
optimization problems. In the general form it can be desdtiim pseudo-code as follows

CGenerate initial popul ation
Calculate fitness for individuals in the initial population
stop_ = FALSE
VWil e( not stop_ )
Sel ect ‘survivors’
Cross-over the ‘survivors’
Mut ate the resulting popul ation
Cal cul ate the fitness of the new popul ation
If stopping criterion fulfilled then stop_ = TRUE
End of while-Iloop

The stopping criteria in the while-loop is discussed iniseck.4.

There are many variations of the algorithm according to hoe/chooses to define the steps of selection,
cross-over and mutation, also the initial population carchi@sen in various ways. For example, in [2]
a basic off-the-shelf genetic algorithm was employed fdimoizing LHs with respect to criterion (3).
However, this approach requires a special encoding of thigaeariable (which are points coordinates)
and in order to enforce that the optimal design produces leHothjective function must include term
penalizing designs violating the concept of LH.

All the genetic operators that are used in this paper opdiegetly on L matrices (1) preserving the LH
properties. They were designed particularly for the puepolsthe LH optimization. The major steps
shown in the pseudo-code can be described for our problewilaws$:



Initial population. We start by generating/,,,, of random LHs which constitute the initial population.
The numberV,,, is required to be even because of the selection step.

Selection.The N, /2 best LH are chosen as ‘survivors’ and the rest is thrown away.

After selection (parents)
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After crossover (children)

Figure 1: lllustration of the cross-over step. Observe dfiar cross-oveL; and L; will be identical to
L, before cross-over, the best LH. Later, in the mutation skggs allowed to change but ndi;, so at
least one copy of the best LH is always kept.

Cross-over.In this stepN,op, children of theV,,, /2 survivors are generated. This step is also illustrated
in Fig. 1. First the best LH is put as number 1 aNg,,/2 + 1 among the total set of children. Then
the best LH is mated with the-th (for & € [2, N, /2]) in the following way. The best and theth

will generate two children. The first child is obtained byitekthe best LH and replacing a random
column with the corresponding column in theh LH. The resulting child is given the numbkamong
the children. The second child is obtained by taking &kt LH and replacing a random column with
the corresponding column in the best LH. The resulting cisildiven numbetV,,,/2 + k among the
children.

Mutation. Mutation is done on all except the best LH (the first childnirthe earlier generation. The
mutation of an LH is done in the following way. For each coluarandom number ifo, 1] is generated
(according to the uniform distribution) if this is lower tha threshold,,,, then two randomly chosen
elements in the column are swapped.

2.4 Stopping criteria

Here only the case of the LH optimization with respect to thked criterion is considered. It will be
shown in section 4.1 that this criterion is a reasonable ecomjse between good statistical properties
and efficiency. The stopping criteria for both the CP and #eegjc algorithm are based on comparing
the current improvement of the optimality criterion withetimitial improvement. There are however
some practical differences and we start by describing thgpstg criteria for the CP algorithm.



CP algorithm
The improvement in the first steg\G,, is saved. Then in thé-th step the following inequality is
checked

AGy < eAGh. 4)

Heree is a chosen parameter. In the computations presented ipahir the value = 10~% was used.

If the inequality is satisfied the while-loop is ended. Foample, to obtain an OLH witlvV = 30
andp = 6, required 31 iterations in a test run. The value of the ddtefor the resulting LH equals
G(L) = 0.5331.

Genetic algorithm

The step of producing one new generation in the genetic ithgois cheap compared to the CP-sweep.
Also there is the possibility that the best LH in the new gatien is not an improvement even if further
iterations gives important improvements. For these reaiomaccumulated improvement in the first
(sayn = 50 or 100) generations is saved (not only the first improvement)

AG, = G(L,) — G(Ly), (5)

whereL, is the best LH in thé&-th generation. Then in generati&nif & is a multiple ofn. the following
inequality is checked )
G(Ly) — G(Lg_,) < eAG,. (6)

In the computations = 10~7 was used. Applying this algorithm to compute an OLH wih= 30 and
p = 6 OLH, required approximatel$300 generations. The resulting LH hat& L) = 0.5326.

2.5 Descriptive sampling

Here we describe how to go from the discrete sampling mdirdetermined by the OLH algorithm to
the design of experiment matriX where the distribution of each variable is taken into actoun

We recall that each column in these matrices correspondsstwariable which thus has a given probabil-
ity distribution. In the matrixZ a column is a permutation of the numbers IMoTo find the realization
xr(m) of the random variabl&, 1 < k < p, corresponding to the number, 1 < m < N, in thek-th
column of the matrix the cumulative distribution function (CDF) d{;, is used

zp(m) = F~ (i), (7)
where )
- m
=N TN (®)
In other words, the range of variability of each random \a@gas divided into/V intervals of equal
probability and the valuesy (i), i = 1,..., N correspond to probabilistic midpoints (mediansygfin

these intervals. Another choice, instead of (8), is to chog$:) randomly in the-th interval. However,

in [10] and [7] it was shown that the choice of medians or meanes (here a numerical integration is
often required) of random variables in the intervals resulimore precise estimators (smaller estimation
variance).

It is important to mention that in general the random vagaltan be arbitrarily distributed and cor-
related. However, to use the sample design generated wittheHMariables must be first numerically
transformed to a set of uncorrelated random variables.elodlse when the joint probability density func-
tion is known the Rosenblatt transformation [17] can be @wtwhen only marginal CDFs of variables
and the correlation matrix are known one may use the Natasfmamation [14]. Both transform the
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original variables to the space of independent standaidizussian variables. The values of the random
variables found in the transformed space using (7) are remx$formed back to the original random vari-
ablesX. Another approach of imposing correlation between inputdes through reordering columns
of L matrices was presented in [8] and [7]. However, in the presetihors opinion the transformation
approach gives more flexibility since it does not requiresgation of a LH for each correlation structure
of the input data. Instead, the pre-generated, data basec@h e used for whichever correlations.

2.6 Sobol sequences

For all aspects of the generation of Sobol sequences wetodi): That article describes the implemen-
tation of Algorithm 659 of ACM which we have used to produce thsults presented in sections 4.1 and
4.4. Here we only note that, when the parameters of the metteofixed, as in the downloadable version
(from Netlib) of Algorithm 659. Then, giverV, the method produces an infinite “fixed” sequence of
samples in theV-dimensional hypercub@, 1]P. To getN samples, we take the firdf of these. Each
coordinate of these can then be transformed according teaitiesponding distribution as described in
section 2.5. The generation of Sobol sequences is less tatigmal expensive than OLH.

3 Analysis of the CP algorithm

Both the CP and the genetic algorithm seem impossible tyamabmpletely from the complexity point
of view. However, for the CP, quite informative estimatestfee execution time can be obtained. Below
some expressions on how the computational time depends tire number of samples apdhe number
of variables is presented.

Here, the term complexity is used to denote the asymptobwifr of execution time whewv andp
grows. For a functiod’(V), the notatioril” = O(N?) means that there are constafts&ndc, such that

NI <T< EQNq, (9)

for sufficiently largeN. This fact will also be expressed by the formila~ N4.

To determine the complexity of one CP-sweep the followiragdees of the algorithm must be taken into
account:

e The outer loop is over the columns.
e In each column all first order modifications are checked. &laeeO(N?) such modifications.

e For each modification the changed distances between théspuoust be updated. This requires
O(Np) operations, see section 5. When the distances have beentahthe criterion must be
evaluated, this require®(N?) operations. For the execution tirfig;; of this step we thus have

Terit(N,p) ~ c1Np + co N2, (10)

Summarizing the above information the following complexir the CP-sweep is obtained
Tep ~ pN%(c1Np 4 o N?). (11)

The only remaining step in the analysis of the complexityhef CP-method is to determine how many
times the (outer) while-loop is executed. We denote thikifovn) number byy(N,p). From our
experimental tests, the following is a reasonable gueshécomplexity ofy.

¥(N,p) ~ N (12)
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Equations (11) and (12) together lead to the following esgian for the execution time of the CP-
algorithm.
Tiot ~ PN?(c1Np + caN?) (13)

It must be emphasized that the execution time is very seaditi variations inV. As mentioned above
a number of tests have been performed to estimate the spdbd obmputations. These include the
casesN = 50,60,...,100 for p = 3 which indicate an execution timE ~ N? with ¢ between 4.5
and 5.5. To illustrate the order of magnitude of the growthextapolate from the execution time of
approximately 3 minutes for th)0 x 3 OLH on an SGI Octane2 workstation, assuming- N°. This
gives an execution time fdio00 x 3 OLH of eight months.

4 Computational experiments

4.1 Comparison of criteria

In this section two examples are investigated. In the firsstuey a function of two random variables
and in the second a mechanical model problem with six randmmables.

The first test caseconsists of the so-called Rosenbrock functiatefined as
b(X1, X2) = 100(Xo — X7)? 4+ (1 — X1)2 (14)

It is assumed that the two variabl&s and X are random and uniformly distributed in the interj@l2].
The goal is to obtain the mean value of the variable

Z =b(X1, Xo9), (15)

which can be easily calculated analytically

2 2
1

To evaluate the different sampling methods we now set outloutate this value with the following
methods:

e OLH with the force criterion.

e OLH with the minimum distance criterion.

e Arandom Latin hypercube (i.e. without subsequent optitiord, referred to as RLH.
e The ‘standard’ Monte Carlo (MC) method.

e Sobol sequences.

The results of the computations are shown in Tab. 1, wheretheage of the error percentage in the
mean estimates is shown. To obtain these numbers, fifstiesigns of experiment«&X("f)}ﬁi1 with

the method in question are determined. The elements of thasséces are denoted lm;éf) Next, from
these,M estimategn(*) of the meari(Z) are computed,

N

_ 1 k) (k

mh) = =3 by 2. (17)
i=1
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The value given in Tab. 1 is then the average of the error @etlestimates, given as a percentage of the
exact mean value,

. M

— N m™ —187]. 18

o O | (18)
k=1

For the Sobol sequences, the error using a single sequesca,single sampling, is shown in the table.

This sequence is deterministic once several 'initial dat/e been chosen, there is no natural way to

chose these initial data randomly.

N | OLH OLH RLH | MC | Sobol
Force | Min.dist.
10 9.1 12.5 20.7 | 37.8| 21.9
20 3.5 7.9 14.3| 17.8| 3.6
50 1.5 3.9 10.2 | 125| 8.8
100 | 1.1 2.7 6.6 | 94 1.7
200 | 0.6 1.8 56 | 6.0 | 2.0
500 | 0.3 0.8 24 | 48 | 0.31

1000 - - 15| 32| 0.01
2000 - - 11 | 22| 0.06
5000 - - 0.7 | 1.2 | 0.03

Table 1: The average of the error percentage for the diffesampling methods for different sample
sizes. OLH withV greater then 200 have not been computed because of the lomgutational time.
The last column shows the error when the mean is computedhétBobol sequence generator.

By examining the results in the table it is easy to rank the fost methods. The best is the OLH
optimized with the force criterion then comes the OLH witlk thinimum distance criterion, the RLH
and last Monte Carlo which gives the largest average errtireinmean estimation.

Concerning Sobol, we note that, on the average, it is inféddOLH with the force criterion for this
example. We also observe its less regular convergence,vetthgood values for N=20, 100, 500 and
1000, and rather poor values for N=50, 200 and 2000.

The cost of generating large OLHs (witth > 500) grows fast. However, for the application we have in
mind which is stochastic simulation of car crash phenomeéhanhardly imaginable one could afford
1000 or more sample points. The power of the OLH design isitlpabvides sufficiently good quality
of results with limited number of points.

The second test caséllustrated in Fig. 2, is a non-linear mechanical probledken from [6] pp.2. The
non-linearity results from the geometry, the constitutiekation for the bar and the spring are taken to be
linear elastic. The unknown of the problemuis the vertical displacement of the right node of the bar.
The data are

e E: The Young modulus of the bar material.
e A: The cross-sectional area of the bar.
e [: The length of the unloaded bar.

e 2 > (: The vertical coordinate of the right node of the bar whens iinloaded.



Initial Configuration (S=0)

Figure 2: The single bar structure prone to 'snap-througpétinstability. The forceS shown on the
picture has negative sign.

e K: The stiffness of the spring.

e S: The vertical force applied to the right node of the bar.

The displacement) can be determined from the following equation (cf. [6]):
_BA( L, 3 a1 3
S—l—3<zw—|—§zw —|—§w>—|—sz. (29)

In the derivation of this equation, it is assumed that theleafig(see Fig. 2) is small which implies
z,w < [. Equation (19) is a third degree polynomial equatiomfor-or some values of the parameters

there is one (unique) real root, for other values of the patars there are three roots. In the case of

three roots we choose the one corresponding to the smaldgtitade of displacement. This situation

occurs when the applied force is smaller than the criticaddahat cause the bar to snap-through to the

other equilibrium position. The case with one root of theatmun (19) corresponds to the state of the
bar after snap-through or when the stiffness of the sprisg isig that it prevents this kind of instability.

Now we turn to the stochastic description of the problem. Sikevariables are chosen to be uniformly
distributed around the following mean values.

E = 5-10°N/mm?
A = 100mm?

[ = 2500mm

z = 25mm
K, = 09N/mm

S = —225N

The interval of variation of the first five variables is takerbe 1% of the mean value. For the force we
take the interval [-23,-22] N.

With the above distributions for the variables there is ald®@%6 probability of snap-through behavior.

For this problem we also approximate the mém) by the different sampling methods to compare
their efficiency. Since the exact mean value is not knowne lieis not possible to give the tables
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N | OLH | RLH | MC
10 0.691| 0.942| 1.333
20 0.387| 0.568| 0.859
30 0.303| 0.481| 0.862
40 0.234| 0.395| 0.620
50 0.180| 0.386| 0.514
100 | 0.095| 0.276| 0.417

300 - 0.152| 0.237
1000 - 0.087| 0.151
3000 - 0.051| 0.092

Table 2: The standard deviation for the mean estimates diffitegent sample sizes/.

corresponding to those for the Rosenbrock function. Fromnmt#lcCarlo simulations we conclude that
the mean is-17.923 £+ 0.001. The results presented in Tab. 2 are instead the standaiatides of the
mean estimates. Having comput&fl mean estimatesi,, £k = 1,..., M with a method, the standard
deviation given in Tab. 2 is obtained by the following exgiea

1 M LM 2
Y > (m —~ M;m) (20)

k=1

4.2 Determination of parameters in the genetic algorithm

Below we describe computational experiments to deternfivevélues of the following parameters in-
volved in the genetic algorithm

e The population sizéV,p,.
e The probability of mutatiom,,,;.

The optimal values of these parameters will depend on thébruwf sample pointsV and the number
of parameter® of the Latin hypercube.

We have done many investigation of the type illustrated gsF8 and 4 for different sizes of LHV =
50,100, ...,300, p = 5,10,...,30). As was mentioned above the optimal parameter values depen
the size of the problem. However, as a robust choice, we re@mN,,,, = 50 andp,,,,; = 0.1 which
has led to near optimal convergence in all the tests.

Concerning the comparison between the genetic algorithdrttenCP algorithm we advocate the use of
CP for N < 150 and the genetic algorithm for larger problems. The boundtarg is, of course, rather
fuzzy and also depends slightly gn The general trend, however, is clearly that the genetiorélgn
gains compared to CP for larger problems. In particulamitsal improvements are much bigger.

Another positive result is the robustness of the genetiordlgn. The convergence curves are always
quite similar to those shown in Figs. 3 and 4. Furthermore hese never experienced the potential
pitfall of converging to a local minimum while CP finds a cadesiably better design.
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Figure 3: Convergence curves for the CP algorithm and thetgesigorithm with various values &¥,,,,
(denoted GA pop on the graph) apg,; (denoted Pm) for an OLH with00 points in 10 dimensions.
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is more effective.
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4.3 Example OLH

In Fig. 5 we give some examples of LH wifii = 15 and, the case that can be easily illustrated graph-
ically, p = 2. It is difficult to identify ‘visually’ the superiority of tk force criterion which was shown
ave

Figure 5: Left: OLH with force criterion, center. OLH with mmum distance criterion, right: RLH. In
the figures the minimum distance between samples have bdieated with a line connecting the points
in question. For the two OLH the minimum distance/i$0 and for theR L H itis /2. Observe also that,
by chance, the OLH optimized with the force criterion turrt tmbe better than the minimum distance
OLH with respect to theninimum distanceriterion (smallem(L)). This is however a purely random
phenomenon and depends on with which RLH the optimizatiarisst

4.4 The force criterion applied to Sobol sequences

In this section we present computations of the force cateé’(L), from equation (3), for Sobol se-
quences in a rather wide range®f andp-values. Let{z;})¥, C [0, 1]? denote the samples generated
by Algorithm 659. To make the proper comparison with the Olflthe same size we then calculate

G(NL),

i.e. we scale the matrik;, = xz;; with IV, the number of sample points, before evaluating the optiynal
criterion G. This is done fop € {2,5,10,20} and N in the interval[10, 100], the results are presented
in Fig. 6. There it is seen that the OLH consistently givesgaificantly better (lower) value of the
optimality criterion, than the Sobol sequence.

5 Remarks on the implementation

Especially concerning the CP method there is a variety ofémpntation issues which strongly affects
the efficiency of the program. Some are details concerning stauctures, for example, the distance
matrix, introduced below. In this section however, we willyomake a few remarks concerning the
following issues in the organization of the computation:

e No square root in the criterion calculation

¢ Update only needed elements when interchanging
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Figure 6: Comparison of the force criterion for OLH and Sosedjuences. The dotted line represents
the Sobol sequence and the full line OLH. On the abcissae wee/Maand the ordinate shows the value
of G(L). The upper left corresponds po= 2, upper rightp = 5, lower leftp = 10, lower rightp = 20.

Square root. When evaluating the functiod(L), see equation (2), one must first calculate all the
distances. We denote the distance between pgi@nd pointx; by d;;. Then all these numbers are
searched for the minimum. It is however more efficient to cote@nd comparé?j since this does not
require the square root computation. This may not seem itapiprout the criterion is evaluated in the
innermost loop of the CP method and many (see next poingrdistcalculations must be done.

Update. Except in the first iteration, we do not need to update theeistance matrix between the
evaluations of the criteria. In between two evaluationsydnlo elements of thel matrix are inter-
changed, thus it is necessary only to update two columnsvamdbivs in the distance matrix. Of course,
since the distance matrix is symmetric only the half of ittbwut diagonal) must be stored. Thasy —1
elements in the distance matrix are updated between eacbriies modification of the CP method.

6 Conclusions

The design of experiment is a crucial component of stoahasgtulation of complex, computationally
expensive problems.
For problems where one can afford a medium number of samgdgs20-1000) the use of optimized
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Latin Hypercubes is recommended.

Basing on the computations presented in section 4.1 the fues dorce optimality criterion for LH
optimization is recommended over the minimum distancegoit.

Depending on the size of the Latin hypercube the CP algorihia genetic algorithm are found to be
most competitive. Our experiments, as described in sedtiBrsuggest the use of CP fof less than
150 and the genetic algorithm for larger problems. We furttfeee give a complete description of some
new modifications of the genetic algorithm for this probleFhe description includes optimal values for
the parameters in the algorithm.

The results in sections 4.1 and 4.4, indicate that OLH camlmdtarnative to Sobol sequences for mean
prediction (and thereby for integration). This statemenstnof course, be seen in the context of this
paper: computationally expensive problems with a mediumber of samples affordable.
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