OpenSSL
OpenSSL is an open-source implementation of the SSL and TLS protocols, designed to be as flexible as possible. It is supported on a variety of platforms, including BSD, Linux, OpenVMS, Solaris and Windows.
Installation
openssl is installed by default on Arch Linux (as a dependency of coreutils).
There are various OpenSSL library bindings available for developers:
- python-pyopenssl, python2-pyopenssl
- perl-net-ssleay
- lua-sec, lua52-sec, lua51-sec
- haskell-hsopenssl
- haskell-openssl-streams
Configuration
On Arch Linux the OPENSSLDIR
is /etc/ssl
.
The OpenSSL configuration file, conventionally placed in /etc/ssl/openssl.cnf
, may appear complicated at first. Remember that variables may be expanded in assignments, much like how shell scripts work. For a thorough explanation of the configuration file format, see config(5ssl).
req section
Settings related to generating keys, requests and self-signed certificates.
The req section is responsible for the DN prompts. A general misconception is the Common Name (CN) prompt, which suggests that it should have the user's proper name as a value. End-user certificates need to have the machine hostname as CN, whereas CA should not have a valid TLD, so that there is no chance that, between the possible combinations of certified end-users' CN and the CA certificate's, there is a match that could be misinterpreted by some software as meaning that the end-user certificate is self-signed. Some CA certificates do not even have a CN, such as Equifax:
$ openssl x509 -subject -noout < /etc/ssl/certs/Equifax_Secure_CA.pem
subject= /C=US/O=Equifax/OU=Equifax Secure Certificate Authority
Usage
This sections assumes you have read Transport Layer Security#Obtaining a certificate.
Generate an RSA private key
With genpkey(1ssl), which supersedes genrsa according to openssl(1ssl):
$ openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:keysize -out file
If an encrypted key is desired, use the -aes-256-cbc
option.
Generate a certificate signing request
Use req(1ssl):
$ openssl req -new -sha256 -key private_key -out filename
Generate a self-signed certificate
$ openssl req -key private_key -x509 -new -days days -out filename
Generate a self-signed certificate with private key in a single command
You can combine the above command in OpenSSL into a single command which might be convenient in some cases:
$ openssl req -x509 -newkey rsa:4096 -days days -keyout key_filename -out cert_filename
Generate Diffie–Hellman parameters
See Diffie–Hellman key exchange for more information.
$ openssl dhparam -out filename 2048
-dsaparam
option [1].Troubleshooting
"bad decrypt" while decrypting
OpenSSL 1.1.0 changed the default digest algorithm for the dgst and enc commands from MD5 to SHA256. [2]
Therefore if a file has been encrypted using OpenSSL 1.0.2 or older, trying to decrypt it with an up to date version may result in an error like:
error:06065064:digital envelope routines:EVP_DecryptFinal_ex:bad decrypt:crypto/evp/evp_enc.c:540
Supplying the -md md5
option should solve the issue:
$ openssl enc -d -md md5 -in encrypted -out decrypted
See also
- Wikipedia page on OpenSSL, with background information.
- OpenSSL project page.
- FreeBSD Handbook
- Step-by-step guide to create a signed SSL certificate
- OpenSSL Certificate Authority
- Bulletproof SSL and TLS by Ivan Ristić, a more formal introduction to SSL/TLS
- OpenSSL Certificate Authority — Jamie Nguyen