Logo

scikits.statsmodels.sandbox.regression.gmm.IVGMM

class scikits.statsmodels.sandbox.regression.gmm.IVGMM(endog, exog, instrument, nmoms=None, **kwds)[source]

Class for linear instrumental variables estimation with homoscedastic errors

currently mainly a test case, doesn’t exploit linear structure

Methods

calc_cov_params(moms, gradmoms[, weights, ...]) calculate covariance of parameter estimates
calc_weightmatrix(moms[, method, wargs]) calculate omega or the weighting matrix
cov_params(**kwds)
fit([start]) Estimate the parameters using default settings.
fitgmm(start[, weights]) estimate parameters using GMM
fititer(start[, maxiter, start_weights, ...]) iterative estimation with updating of optimal weighting matrix
fitstart()
get_bse([method]) method option not defined yet
gmmobjective(params, weights) objective function for GMM minimization
gradient_momcond(params[, epsilon, method])
jtest() overidentification test
momcond(params)
momcond_mean(params) mean of moment conditions,

Attributes

bse standard error of the parameter estimates

Previous topic

sm.sandbox.regression.gmm.IV2SLS.whiten

Next topic

sm.sandbox.regression.gmm.IVGMM.calc_cov_params

This Page