Negative Binomial Model for count data
Parameters : | endog : array-like
exog : array-like
loglike_method : string
missing : str
|
---|
References
References:
Attributes
endog | array | A reference to the endogenous response variable |
exog | array | A reference to the exogenous design. |
Methods
cdf(X) | The cumulative distribution function of the model. |
cov_params_func_l1(likelihood_model, xopt, ...) | Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. |
fit([start_params, method, maxiter, ...]) | |
fit_regularized([start_params, method, ...]) | Fit the model using a regularized maximum likelihood. |
from_formula(formula, data[, subset]) | Create a Model from a formula and dataframe. |
hessian(params) | The Hessian matrix of the model |
information(params) | Fisher information matrix of model |
initialize() | Initialize is called by |
loglike(params) | Loglikelihood for negative binomial model |
pdf(X) | The probability density (mass) function of the model. |
predict(params[, exog, exposure, offset, linear]) | Predict response variable of a count model given exogenous variables. |
score(params) | Score vector of model. |
scoreobs(params) |
Attributes
endog_names | |
exog_names |