Interaction plot for factor level statistics.
Note. If categorial factors are supplied levels will be internally recoded to integers. This ensures matplotlib compatiblity.
uses pandas.DataFrame to calculate an aggregate statistic for each level of the factor or group given by trace.
Parameters : | x : array-like
trace : array-like
response : array-like
func : function
plottype : str {‘line’, ‘scatter’, ‘both’}, optional
ax : axes, optional
xlabel : str, optional
ylabel : str, optional
colors : list, optional
linestyles : list, optional
markers : list, optional
kwargs :
|
---|---|
Returns : | fig : Figure
|
Examples
>>> import numpy as np
>>> np.random.seed(12345)
>>> weight = np.random.randint(1,4,size=60)
>>> duration = np.random.randint(1,3,size=60)
>>> days = np.log(np.random.randint(1,30, size=60))
>>> fig = interaction_plot(weight, duration, days,
... colors=['red','blue'], markers=['D','^'], ms=10)
>>> import matplotlib.pyplot as plt
>>> plt.show()
(Source code, png, hires.png, pdf)