LIBCDT(3) Library Functions Manual

NAME
Cdt — container data types

SYNOPSIS
#include <cdt.h>

DICTIONARY TYPES
Dt_t;
Dtdisc_t;
Dtmethod_t;
Dtlink_t;
Dtstat_t;

DICTIONARY CONTROL

LIBCDT(3)

Dt_t* dtopen (const Dtdisc_t* disc, const Dtmethod_t* meth);

int dtclose (Dt_t* dt);

void dtclear (dt) ;

Dtmethod_t* dtmethod (Dt_t* dt, const Dtmethod_t* meth);
Dtdisc_t* dtdisc (Dt_t* dt, const Dtdisc_t* disc);
Dt_t~* dtview(Dt_t* dt, Dt_t* wview);

STORAGE METHODS
Dtmethod_t* Dtset;
Dtmethod_t* Dtoset;
Dtmethod_t* Dtobag;
Dtmethod_t* Dtqueue;

DISCIPLINE
#define DTDISC (disc, key,size,link,makef, freef, comparf)
typedef void* (*Dtmake_f) (void*, Dtdisc_t¥*);
typedef void (*Dtfree_f) (void*, Dtdisc_t¥*);
typedef int (*Dtcompar_f) (Dt_t*, wvoid*, wvoid*,

OBJECT OPERATIONS
void* dtinsert (Dt_t* dt, void* obj)
void* dtdelete (Dt_t* dt, void* obj);
void* dtdetach (Dt_t* dt, void* obj)
void* dtsearch (Dt_t* dt, void* obj)
void* dtmatch (Dt_t* dt, void* key);
void* dtfirst (Dt_t* dt);
void* dtnext (Dt_t* dt, void* obj);
void* dtlast (Dt_t* dt);
void* dtprev (Dt_t* dt, void* obj);
void* dtfinger (Dt_t* dt);
void* dtrenew (Dt_t* dt, void* obj);
int dtwalk (Dt_t* dt, int (*userf) (void*, wvoid¥*),
Dtlink_t* dtflatten(Dt_t* dt);
Dtlink_t* dtlink (Dt_t*, Dtlink_t* link);
void* dtobj(Dt_t* dt, Dtlink_ t* link);
Dtlink_t* dtextract(Dt_t* dt);

int dtrestore(Dt_t* dt, Dtlink_t* 1link);
DICTIONARY STATUS

int dtsize (Dt_t* dt);

int dtstat (Dt_t* dt, Dtstat_t*, int all);
HASH FUNCTIONS

unsigned int dtstrhash(void *str, int n);

Dtdisc_t*);

void*) ;

LIBCDT(3) Library Functions Manual LIBCDT(3)

DESCRIPTION
Cdt manages run-time dictionaries using standard container data types: unordered set/multiset, ordered
set/multiset, list, stack, and queue.

DICTIONARY TYPES
Dt_t
This is the type of a dictionary handle.

Dtdisc_t
This defines the type of a discipline structure which describes object lay-out and manipulation functions.

Dtmethod_t
This defines the type of a container method.

Dtlink_t
This is the type of a dictionary object holder (see dtdisc ().)

Dtstat_t
This is the type of a structure to return dictionary statistics (see dtstat () .)

DICTIONARY CONTROL
Dt_t* dtopen(const Dtdisc_t* disc, const Dtmethod_t* meth)
This creates a new dictionary. disc is a discipline structure to describe object format. meth specifies a
manipulation method. dtopen () returns the new dictionary or NULL on error.

int dtclose(Dt_t* dt)
This deletes dt and its objects. Note that dtclose () fails if dt is being viewed by some other dictionar-
ies (see dtview ()). dtclose () returns O on success and —1 on error.

void dtclear(Dt_t* dt)
This deletes all objects in dt without closing dt.

Dtmethod_t dtmethod(Dt_t* dt, const Dtmethod_t* meth)
If meth is NULL, dtmethod () returns the current method. Otherwise, it changes the storage method of
dt tometh. Object order remains the same during a method switch for Dt queue. Switching to and from
Dtset and Dtoset/Dtobag may cause objects to be rehashed, reordered, or removed as the case re-
quires. dtmethod () returns the previous method or NULL on error.

Dtdisc_t* dtdisc(Dt_t* dt, const Dtdisc_t* disc)
If disc is NULL, dtdisc () returns the current discipline. Otherwise, it changes the discipline of dt to
disc. Objects may be rehashed, reordered, or removed as appropriate. dtdisc () returns the previous
discipline on success and NULL on error.

Dt_t* dtview(Dt_t* dt, Dt_t* view)
A viewpath allows a search or walk starting from a dictionary to continue to another. dtview () first ter-
minates any current view from dt to another dictionary. Then, if view is NULL, dtview returns the ter-
minated view dictionary. If view is not NULL, a viewpath from dt to view is established. dtview ()
returns dt on success and NULL on error.

It is an error to have dictionaries on a viewpath with different storage methods. In addition, dictionaries on
the same view path should treat objects in a consistent manner with respect to comparison or hashing. If
not, undefined behaviors may result.

STORAGE METHODS
Storage methods are of type Dtmethod_t*. Cdt supports the following methods:

Dtoset
Dtobag
Objects are ordered by comparisons. Dtoset keeps unique objects. Dt obag allows repeatable objects.

Dtset
Objects are unordered. Dt set keeps unique objects. This method uses a hash table with chaining to man-
age the objects.

LIBCDT(3) Library Functions Manual LIBCDT(3)

Dtqueue
Objects are kept in a queue, i.e., in order of insertion. Thus, the first object inserted is at queue head and
will be the first to be deleted.

DISCIPLINE
Object format and associated management functions are defined in the type Dtdisc_t:

typedef struct

{ int key, size;
int link;
Dtmake_f makef;
Dtfree_f freef;
Dtcompar_f comparf;

} Dtdisc_t;

int key, size
Each object ob] is identified by a key used for object comparison or hashing. key should be non-negative
and defines an offset into obj. If size is negative, the key is a null-terminated string with starting address
* (void**) ((char*)obj+key). If size is zero, the key is a null-terminated string with starting ad-
dress (void*) ((char*)obj+key). Finally, if size is positive, the key is a byte array of length
size starting at (void*) ((char*)obj+key).

int link
Let obj be an object to be inserted into dt as discussed below. If 1ink is negative, an internally allocated
object holder is used to hold obj. Otherwise, obj should have a Dt1ink_t structure embedded 1ink
bytes into it, i.e., at address (Dtlink_t*) ((char*)obj+link).

void* (*makef)(void* obj, Dtdisc_t* disc)
If makef is not NULL, dtinsert (dt, obj) will call it to make a copy of ob j suitable for insertion into
dt. If makef is NULL, obj itself will be inserted into dt.

void (*freef)(void* obj, Dtdisc_t* disc)
If not NULL, freef is used to destroy data associated with obJ.

int (*comparf)(Dt_t* dt, void* keyl, void* key2, Dtdisc_t* disc)
If not NULL, comparf is used to compare two keys. Its return value should be <0, =0, or >0 to indicate
whether key1 is smaller, equal to, or larger than key2. All three values are significant for method
Dtoset and Dtobag. For other methods, a zero value indicates equality and a non-zero value indicates
inequality. If (*comparf) () is NULL, an internal function is used to compare the keys as defined by the
Dtdisc_t.size field.

#define DTDISC(disc,key,size link,makef,freef,comparf)
This macro function initializes the discipline pointed to by disc with the given values.

OBJECT OPERATIONS
void* dtinsert(Dt_t* dt, void* obj)
This function adds an object prototyped by obj into dt. dtinsert () performs the same function for all
methods. If there is an existing object in dt matching obJj and the storage method is Dt set or Dtoset,
dtinsert () will simply return the matching object. Otherwise, a new object is inserted according to the
method in use. See Dtdisc_t .makef for object construction. The new object or a matching object as
noted will be returned on success while NULL is returned on error.

void* dtdelete(Dt_t* dt, void* obj)
If obj is NULL, method Dtqueue deletes queue head while other methods do nothing. If obj is not
NULL, there are two cases. If the method in use is not Dt obag, the first object matching obj is deleted.
On the other hand, if the method in use is or Dt obag, the library check to see if ob7j is in the dictionary
and delete it. If obj is not in the dictionary, some object matching it will be deleted. See Dt-
disc_t.freef for object destruction. dtdelete () returns the deleted object (even if it was deallo-
cated) or NULL on error.

LIBCDT(3) Library Functions Manual LIBCDT(3)

void* dtdetach(Dt_t* dt, void* obj)
This function is similar to dtdelete () but the object to be deleted from dt will not be freed (via the dis-
cipline freef function).

void* dtsearch(Dt_t* dt, void* obj)

void* dtmatch(Dt_t* dt, void* key)
These functions find an object matching obj or key either from dt or from some dictionary accessible
from dt via a viewpath (see dtview ().) dtsearch () and dtmatch () return the matching object or
NULL on failure.

void* dtfirst(Dt_t* dt)

void* dtnext(Dt_t* dt, void* obj)
dtfirst () returns the first object in dt. dtnext () returns the object following obj. Objects are or-
dered based on the storage method in use. For Dtoset and Dtobag, objects are ordered by object com-
parisons. For Dtqueue, objects are ordered in order of insertion. For Dtset, objects are ordered by
some internal order (more below). Thus, objects in a dictionary or a viewpath can be walked using a
for (;;) loop as below.

for(obj = dtfirst(dt); obj; obj = dtnext (dt,obj))

When a dictionary uses Dt set, the object order is determined upon a call to dtfirst ()/dtlast ().
This order is frozen until a call dtnext ()/dtprev () returns NULL or when these same functions are
called with a NULL object argument. It is important thata dtfirst () /dtlast () call be balanced by a
dtnext () /dtprev () call as described. Nested loops will require multiple balancing, once per loop. If
loop balancing is not done carefully, either performance is degraded or unexpected behaviors may result.

void* dtlast(Dt_t* dt)

void* dtprev(Dt_t* dt, void* obj)
dtlast () and dtprev () are like dtfirst () and dtnext () but work in reverse order. Note that
dictionaries on a viewpath are still walked in order but objects in each dictionary are walked in reverse or-
der.

void* dtfinger(Dt_t* dt)
This function returns the current object of dt, if any. The current object is defined after a successful call to
one of dtsearch (), dtmatch (), dtinsert (), dtfirst (), dtnext (), dtlast (), or dt—
prev (). As aside effect of this implementation of Cdt, when a dictionary is based on Dtoset and Dto-
bag, the current object is always defined and is the root of the tree.

void* dtrenew(Dt_t* dt, void* obj)
This function repositions and perhaps rehashes an object ob j after its key has been changed. dtrenew ()
only works if obj is the current object (see dt finger ()).

dtwalk(Dt_t* dt, int (*userf)(void*, void*), void* data)
This function calls (*userf) (obj,data) on each object in dt and other dictionaries viewable from it.
If userf () returns a <0 value, dtwalk () terminates and returns the same value. dtwalk () returns O
on completion.

Dtlink_t* dtflatten(Dt_t* dt)
Dtlink_t* dtlink(Dt_t* dt, Dtlink_t* link)
void* dtobj(Dt_t* dt, Dtlink_t* link)
Using dtfirst () /dtnext () or dtlast () /dtprev () to walk a single dictionary can incur signifi-
cant cost due to function calls. For efficient walking of a single directory (i.e., no viewpathing), dtflat-
ten () and dt1link () can be used. Objects in dt are made into a linked list and walked as follows:
for(link = dtflatten(dt); link; link = dtlink(dt,link))

Note that dtflatten () returns a list of type Dt1ink_t*, not void*. That is, it returns a dictionary
holder pointer, not a user object pointer (although both are the same if the discipline field 1ink is zero.)
The macro function dt1ink () returns the dictionary holder object following 1ink. The macro function
dtobj (dt, 1ink) returns the user object associated with 1ink, Beware that the flattened object list is
unflattened on any dictionary operations other than dt1ink ().

LIBCDT(3) Library Functions Manual LIBCDT(3)

Dtlink_t* dtextract(Dt_t* dt)

int dtrestore(Dt_t* dt, Dtlink_t* link)
dtextract () extracts all objects from dt and makes it appear empty. dtrestore () repopulates dt
with objects previously obtained via dtextract (). dtrestore () will fail if dt is not empty. These
functions can be used to share a same dt handle among many sets of objects. They are useful to reduce
dictionary overhead in an application that creates many concurrent dictionaries. It is important that the
same discipline and method are in use at both extraction and restoration. Otherwise, undefined behaviors
may result.

DICTIONARY INFORMATION
int dtsize(Dt_t* dt)
This function returns the number of objects stored in dt.

int dtstat(Dt_t *dt, Dtstat_t* st, int all)
This function reports dictionary statistics. If all is non-zero, all fields of st are filled. Otherwise, only
the dt_type and dt_size fields are filled. It returns O on success and —1 on error.

Dtstat_t contains the below fields:

int dt_type:
This is one of DT_SET, DT_OSET, DT_OBAG, and DT_QUEUE.

int dt_size:
This contains the number of objects in the dictionary.

int dt_n:
For Dt set, this is the number of non-empty chains in the hash table. For Dtoset and Dtobag,
this is the deepest level in the tree (counting from zero.) Each level in the tree contains all nodes
of equal distance from the root node. dt_n and the below two fields are undefined for other
methods.

int dt_max:
For Dt set, this is the size of a largest chain. For Dtoset and Dtobag, this is the size of a
largest level.

int* dt_count:
For Dt set, this is the list of counts for chains of particular sizes. For example, dt_count [1]
is the number of chains of size 1. For Dtoset and Dtobag, this is the list of sizes of the levels.
For example, dt _count [1] is the size of level 1.

HASH FUNCTIONS
unsigned int dtstrhash(void *str, int n)
This function computes hash values from bytes or strings. dtstrhash () computes a new hash value
from string str. If n is positive, str is a byte array of length n; otherwise, str is a null-terminated
string.
IMPLEMENTATION NOTES

Dtset are based on hash tables with move-to-front collision chains. Dtoset and Dtobag are based on
top-down splay trees. Dtqueue is based on doubly linked list.

AUTHOR
Kiem-Phong Vo, kpv@research.att.com

