FIELDS(3) FIELDS(3)

NAME

SYNTAX

fieldread, fieldmake, fieldwrite, fieldfree — field access package

#include "fields.h"

typedef struct {
int nfields;
int hadnl;
char *linebuf;
char **fields;
} field_t;

#define FLD_RUNS 0x0001
#define FLD_SNGLQUOTES 0x0002
#define FLD_BACKQUOTES 0x0004
#define FLD_DBLQUOTES 0x0008
#define FLD_SHQUOTES 0x0010
#define FLD_STRIPQUOTES 0x0020
#define FLD_BACKSLASH 0x0040

extern field_t *fieldread (FILE * file, char * delims,
int flags, int maxf);
extern field_t *fieldmake (char * line, int allocated,
char * delims, int flags, int maxf);
extern int fieldwrite (FILE * file, field_t * fieldp,
int delim);
extern void fieldfree (field_t * fieldp);

extern unsigned int field_line_inc;
extern unsigned int field_field_inc;

DESCRIPTION

The fields access package eases the common task of parsing and accessing information which is separated
into fields by whitespace or other delimiters. Various options can be specified to handle many common
cases, including selectable delimiters, runs of delimiters, and quoting.

fieldread reads one line from a file, parses it into fields as specified by the parameters, and returns a field_t
structure describing the result. fieldmake performs the same process on a buffer already in memory. field-
write creates an output line from a field_t structure and writes it to an output file. fieldfree frees a field_t
structure and any associated memory allocated by the package.

The field_t structure describes the fields in a parsed line. A well-behaved should only access the nfields,
fields, and hadnl elements; all other elements are used internally by the package and are not guaranteed to
remain the same even though they are documented here. Nfields gives the number of fields in the parsed
line, just like the argc argument to a C program; fields is a pointer to an array of string pointers, just like
the argv argument to a C program. As in C, the last field pointer is followed by a null pointer, although the
field count is the preferred method of accessing fields. The user may alter nfields by decreasing it, and may
replace any pointer in fields without harm. This is often useful in replacing a single field with a calculated
value preparatory to output. The hadnl element is nonzero if the original line was terminated with a new-
line when it was parsed; this is used to accurately reproduce the input when fieldwrite is called.

The linebuf element contains a pointer to an internal buffer allocated by fieldread or provided to fieldmake.
This buffer is not guaranteed to contain anything sensible, although in the current implementation all of the
field contents can be found therein.

fieldread reads a single line of arbitrary length from file, allocating as much memory as necessary to hold it,
and then parses the line according to its remaining arguments. A pointer to the parsed field_t structure is

local 1

FIELDS(3) FIELDS(3)

returned, with NULL returned if an error occurs or if EOF is reached on the input file. Fields in the input
line are considered to be separated by any of the delimiters in the delims parameter. For example, if delim-
iters of ":.;" are specified, a line containing "a:b;c.d" would be considered to have four fields.

The default parsing of fields considers each delimiter to indicate a separate field, and does not allow any
quoting. This is similar to the parsing done by cut(1). This behavior can be modified by specifying flags.
Multiple flags may be OR’ed together. The available flags are:

FLD_RUNS
Consider runs of delimiters to be the same as a single delimiter, suppressing all null fields. This is
similar to the way utilities like awk(1) and sort(1) treat whitespace, but it is not limited to whites-
pace. A run does not have to consist of a single type of delimiter; if both semicolon and colon are
delimiters, ";::;" is a run.

FLD_SNGLQUOTES
Allow field contents to be quoted with single quotes. Delimiters and other quotes appearing
within single quotes are ignored. This may appear in combination with other quote options.

FLD_BACKQUOTES
Allow field contents to be quoted with reverse single quotes. Delimiters and other quotes appear-
ing within reverse single quotes are ignored. This may appear in combination with other quote
options.

FLD_DBLQUOTES
Allow field contents to be quoted with single quotes. Delimiters and other quotes appearing
within double quotes are ignored. This may appear in combination with other quote options.

FLD_SHQUOTES
Allow shell-style quoting. In the absence of this option, quotes are only recognized at the begin-
ning of a field, and characters following the close quote are removed from the field (and are thus
lost from the input line). If this option is specified, quotes may appear within a field, in the same
way as they are handled by sh(1). Multiple quoting styles may be used in the same field. If none
of FLD_SNGLQUOTES, FLD_BACKQUOTES, or FLD_DBLQUOTES is specified with
FLD_SHQUOTES, all three options are implied.

FLD_STRIPQUOTES
Remove quotes and backslash sequences from the field while parsing, converting backslash
sequences to their proper ASCII equivalent. The C sequences \a, \b, \f, \n, \r, \v, \xnn, and \nnn are
supported. Any other sequence is simply converted to the backslashed character, as in sh(1).

FLD_BACKSLASH
Accept standard C-style backslash sequences. The sequence will be converted to an ASCII equiv-
alent if FLD_STRIPQUOTES is specified (q.v.).

FLD_NOSHRINK
Don’t shrink allocated memory using realloc(3) before returning. This option can have a signifi-
cant effect on performance, especially when fieldfree is going to be called soon after fieldread or
fieldmake. The disadvantage is that slightly more memory will be occupied until the field structure
is freed.

The maxf parameter, if nonzero, specifies the maximum number of fields to be generated. This may
enhance performance if only the first few fields of a long line are of interest to the caller. The actual num-
ber of fields returned is one greater than maxf , because the remainder of the line will be returned as a single
contiguous (and uninterpreted, FLD_STRIPQUOTES or FLD_BACKSL ASH is specified) field.

fieldmake operates exactly like fieldread, except that the line parsed is provided by the caller rather than
being read from a file. If the allocated parameter is nonzero, the memory pointed to by the line parameter
will automatically be freed when fieldfree is called; otherwise this memory is the caller’s responsibility.
The memory pointed to by line is destroyed by fieldmake. All other parameters are the same as for field-
read.

fieldwrite writes a set of fields to the specified file, separating them with the delimiter character delim (note

local 2

FIELDS(3) FIELDS(3)

that this is a character, not a string), and appending a newline if specified by the hadnl element of the struc-
ture. The field structure is not freed. fieldwrite will return nonzero if an I/O error is detected.

fieldfree frees the field_t structure passed to it, along with any associated auxiliary memory allocated by the
package (or passed to fieldmake). The structure may not be accessed after fieldfree is called.

field_line_inc (default 512) and field_field_inc (default 20) describe the increments to use when expanding
lines as they are read in and parsed. fieldread initially allocates a buffer of field_line_inc bytes and, if the
input line is larger than that, expands the buffer in increments of the same amount until it is large enough.
If input lines are known to consistently reach a certain size, performance will be improved by setting
field_line_inc to a value larger than that size (larger because there must be room for a null byte).
field_field_inc serves the same purpose in both fieldread and fieldmake, except that it is related to the num-
ber of fields in the line rather than to the line length. If the number of fields is known, performance will be
improved by setting field_field_inc to at least one more than that number.

RETURN VALUES

BUGS

fieldread and fieldmake return NULL if an error occurs or if EOF is reached on the input file. fieldwrite
returns nonzero if an output error occurs.

Thanks to the vagaries of ANSI C, the fields.h header file defines an auxiliary macro named P. If the user
needs a similarly-named macro, this macro must be undefined first, and the user’s macro must be defined
after fields.h is included.

local 3

