Node.js v0.6.15 Manual & Documentation
Table of Contents
- net
- net.createServer([options], [connectionListener])
- net.connect(arguments...)
- net.createConnection(arguments...)
- Class: net.Server
- Class: net.Socket
- new net.Socket([options])
- socket.connect(port, [host], [connectListener])
- socket.connect(path, [connectListener])
- socket.bufferSize
- socket.setEncoding([encoding])
- socket.setSecure()
- socket.write(data, [encoding], [callback])
- socket.write(data, [encoding], [callback])
- socket.end([data], [encoding])
- socket.destroy()
- socket.pause()
- socket.resume()
- socket.setTimeout(timeout, [callback])
- socket.setNoDelay([noDelay])
- socket.setKeepAlive([enable], [initialDelay])
- socket.address()
- socket.remoteAddress
- socket.remotePort
- socket.bytesRead
- socket.bytesWritten
- Event: 'connect'
- Event: 'data'
- Event: 'end'
- Event: 'timeout'
- Event: 'drain'
- Event: 'error'
- Event: 'close'
- net.isIP(input)
- net.isIPv4(input)
- net.isIPv6(input)
net#
Stability: 3 - Stable
The net
module provides you with an asynchronous network wrapper. It contains
methods for creating both servers and clients (called streams). You can include
this module with require('net');
net.createServer([options], [connectionListener])#
Creates a new TCP server. The connectionListener
argument is
automatically set as a listener for the 'connection'
event.
options
is an object with the following defaults:
{ allowHalfOpen: false
}
If allowHalfOpen
is true
, then the socket won't automatically send FIN
packet when the other end of the socket sends a FIN packet. The socket becomes
non-readable, but still writable. You should call the end()
method explicitly.
See 'end' event for more information.
Here is an example of a echo server which listens for connections on port 8124:
var net = require('net');
var server = net.createServer(function(c) { //'connection' listener
console.log('server connected');
c.on('end', function() {
console.log('server disconnected');
});
c.write('hello\r\n');
c.pipe(c);
});
server.listen(8124, function() { //'listening' listener
console.log('server bound');
});
Test this by using telnet
:
telnet localhost 8124
To listen on the socket /tmp/echo.sock
the third line from the last would
just be changed to
server.listen('/tmp/echo.sock', function() { //'listening' listener
Use nc
to connect to a UNIX domain socket server:
nc -U /tmp/echo.sock
net.connect(arguments...)#
net.createConnection(arguments...)#
Construct a new socket object and opens a socket to the given location. When the socket is established the 'connect' event will be emitted.
The arguments for these methods change the type of connection:
net.connect(port, [host], [connectListener])
net.createConnection(port, [host], [connectListener])
Creates a TCP connection to
port
onhost
. Ifhost
is omitted,'localhost'
will be assumed.net.connect(path, [connectListener])
net.createConnection(path, [connectListener])
Creates unix socket connection to
path
.
The connectListener
parameter will be added as an listener for the
'connect' event.
Here is an example of a client of echo server as described previously:
var net = require('net');
var client = net.connect(8124, function() { //'connect' listener
console.log('client connected');
client.write('world!\r\n');
});
client.on('data', function(data) {
console.log(data.toString());
client.end();
});
client.on('end', function() {
console.log('client disconnected');
});
To connect on the socket /tmp/echo.sock
the second line would just be
changed to
var client = net.connect('/tmp/echo.sock', function() { //'connect' listener
Class: net.Server#
This class is used to create a TCP or UNIX server.
A server is a net.Socket
that can listen for new incoming connections.
server.listen(port, [host], [listeningListener])#
Begin accepting connections on the specified port
and host
. If the
host
is omitted, the server will accept connections directed to any
IPv4 address (INADDR_ANY
). A port value of zero will assign a random port.
This function is asynchronous. When the server has been bound,
'listening' event will be emitted.
the last parameter listeningListener
will be added as an listener for the
'listening' event.
One issue some users run into is getting EADDRINUSE
errors. This means that
another server is already running on the requested port. One way of handling this
would be to wait a second and then try again. This can be done with
server.on('error', function (e) {
if (e.code == 'EADDRINUSE') {
console.log('Address in use, retrying...');
setTimeout(function () {
server.close();
server.listen(PORT, HOST);
}, 1000);
}
});
(Note: All sockets in Node set SO_REUSEADDR
already)
server.listen(path, [listeningListener])#
Start a UNIX socket server listening for connections on the given path
.
This function is asynchronous. When the server has been bound,
'listening' event will be emitted.
the last parameter listeningListener
will be added as an listener for the
'listening' event.
server.close()#
Stops the server from accepting new connections. This function is
asynchronous, the server is finally closed when the server emits a 'close'
event.
server.address()#
Returns the bound address and port of the server as reported by the operating system.
Useful to find which port was assigned when giving getting an OS-assigned address.
Returns an object with two properties, e.g. {"address":"127.0.0.1", "port":2121}
Example:
var server = net.createServer(function (socket) {
socket.end("goodbye\n");
});
// grab a random port.
server.listen(function() {
address = server.address();
console.log("opened server on %j", address);
});
Don't call server.address()
until the 'listening'
event has been emitted.
server.maxConnections#
Set this property to reject connections when the server's connection count gets high.
server.connections#
The number of concurrent connections on the server.
net.Server
is an EventEmitter
with the following events:
Event: 'listening'#
Emitted when the server has been bound after calling server.listen
.
Event: 'connection'#
- Socket object The connection object
Emitted when a new connection is made. socket
is an instance of
net.Socket
.
Event: 'close'#
Emitted when the server closes.
Event: 'error'#
- Error Object
Emitted when an error occurs. The 'close'
event will be called directly
following this event. See example in discussion of server.listen
.
Class: net.Socket#
This object is an abstraction of a TCP or UNIX socket. net.Socket
instances implement a duplex Stream interface. They can be created by the
user and used as a client (with connect()
) or they can be created by Node
and passed to the user through the 'connection'
event of a server.
new net.Socket([options])#
Construct a new socket object.
options
is an object with the following defaults:
{ fd: null
type: null
allowHalfOpen: false
}
fd
allows you to specify the existing file descriptor of socket. type
specified underlying protocol. It can be 'tcp4'
, 'tcp6'
, or 'unix'
.
About allowHalfOpen
, refer to createServer()
and 'end'
event.
socket.connect(port, [host], [connectListener])#
socket.connect(path, [connectListener])#
Opens the connection for a given socket. If port
and host
are given,
then the socket will be opened as a TCP socket, if host
is omitted,
localhost
will be assumed. If a path
is given, the socket will be
opened as a unix socket to that path.
Normally this method is not needed, as net.createConnection
opens the
socket. Use this only if you are implementing a custom Socket or if a
Socket is closed and you want to reuse it to connect to another server.
This function is asynchronous. When the 'connect' event is
emitted the socket is established. If there is a problem connecting, the
'connect'
event will not be emitted, the 'error'
event will be emitted with
the exception.
The connectListener
parameter will be added as an listener for the
'connect' event.
socket.bufferSize#
net.Socket
has the property that socket.write()
always works. This is to
help users get up and running quickly. The computer cannot always keep up
with the amount of data that is written to a socket - the network connection
simply might be too slow. Node will internally queue up the data written to a
socket and send it out over the wire when it is possible. (Internally it is
polling on the socket's file descriptor for being writable).
The consequence of this internal buffering is that memory may grow. This property shows the number of characters currently buffered to be written. (Number of characters is approximately equal to the number of bytes to be written, but the buffer may contain strings, and the strings are lazily encoded, so the exact number of bytes is not known.)
Users who experience large or growing bufferSize
should attempt to
"throttle" the data flows in their program with pause()
and resume()
.
socket.setEncoding([encoding])#
Sets the encoding (either 'ascii'
, 'utf8'
, or 'base64'
) for data that is
received. Defaults to null
.
socket.setSecure()#
This function has been removed in v0.3. It used to upgrade the connection to SSL/TLS. See the TLS section for the new API.
socket.write(data, [encoding], [callback])#
Sends data on the socket. The second parameter specifies the encoding in the case of a string--it defaults to UTF8 encoding.
Returns true
if the entire data was flushed successfully to the kernel
buffer. Returns false
if all or part of the data was queued in user memory.
'drain'
will be emitted when the buffer is again free.
The optional callback
parameter will be executed when the data is finally
written out - this may not be immediately.
socket.write(data, [encoding], [callback])#
Write data with the optional encoding. The callback will be made when the data is flushed to the kernel.
socket.end([data], [encoding])#
Half-closes the socket. i.e., it sends a FIN packet. It is possible the server will still send some data.
If data
is specified, it is equivalent to calling
socket.write(data, encoding)
followed by socket.end()
.
socket.destroy()#
Ensures that no more I/O activity happens on this socket. Only necessary in case of errors (parse error or so).
socket.pause()#
Pauses the reading of data. That is, 'data'
events will not be emitted.
Useful to throttle back an upload.
socket.resume()#
Resumes reading after a call to pause()
.
socket.setTimeout(timeout, [callback])#
Sets the socket to timeout after timeout
milliseconds of inactivity on
the socket. By default net.Socket
do not have a timeout.
When an idle timeout is triggered the socket will receive a 'timeout'
event but the connection will not be severed. The user must manually end()
or destroy()
the socket.
If timeout
is 0, then the existing idle timeout is disabled.
The optional callback
parameter will be added as a one time listener for the
'timeout'
event.
socket.setNoDelay([noDelay])#
Disables the Nagle algorithm. By default TCP connections use the Nagle
algorithm, they buffer data before sending it off. Setting true
for
noDelay
will immediately fire off data each time socket.write()
is called.
noDelay
defaults to true
.
socket.setKeepAlive([enable], [initialDelay])#
Enable/disable keep-alive functionality, and optionally set the initial
delay before the first keepalive probe is sent on an idle socket.
enable
defaults to false
.
Set initialDelay
(in milliseconds) to set the delay between the last
data packet received and the first keepalive probe. Setting 0 for
initialDelay will leave the value unchanged from the default
(or previous) setting. Defaults to 0
.
socket.address()#
Returns the bound address and port of the socket as reported by the operating
system. Returns an object with two properties, e.g.
{"address":"192.168.57.1", "port":62053}
socket.remoteAddress#
The string representation of the remote IP address. For example,
'74.125.127.100'
or '2001:4860:a005::68'
.
socket.remotePort#
The numeric representation of the remote port. For example,
80
or 21
.
socket.bytesRead#
The amount of received bytes.
socket.bytesWritten#
The amount of bytes sent.
net.Socket
instances are EventEmitters with the following events:
Event: 'connect'#
Emitted when a socket connection is successfully established.
See connect()
.
Event: 'data'#
- Buffer object
Emitted when data is received. The argument data
will be a Buffer
or
String
. Encoding of data is set by socket.setEncoding()
.
(See the Readable Stream section for more
information.)
Note that the data will be lost if there is no listener when a Socket
emits a 'data'
event.
Event: 'end'#
Emitted when the other end of the socket sends a FIN packet.
By default (allowHalfOpen == false
) the socket will destroy its file
descriptor once it has written out its pending write queue. However, by
setting allowHalfOpen == true
the socket will not automatically end()
its side allowing the user to write arbitrary amounts of data, with the
caveat that the user is required to end()
their side now.
Event: 'timeout'#
Emitted if the socket times out from inactivity. This is only to notify that the socket has been idle. The user must manually close the connection.
See also: socket.setTimeout()
Event: 'drain'#
Emitted when the write buffer becomes empty. Can be used to throttle uploads.
See also: the return values of socket.write()
Event: 'error'#
- Error object
Emitted when an error occurs. The 'close'
event will be called directly
following this event.
Event: 'close'#
had_error
Boolean true if the socket had a transmission error
Emitted once the socket is fully closed. The argument had_error
is a boolean
which says if the socket was closed due to a transmission error.
net.isIP(input)#
Tests if input is an IP address. Returns 0 for invalid strings, returns 4 for IP version 4 addresses, and returns 6 for IP version 6 addresses.
net.isIPv4(input)#
Returns true if input is a version 4 IP address, otherwise returns false.
net.isIPv6(input)#
Returns true if input is a version 6 IP address, otherwise returns false.